HW: In \Re^{n}, why $\|\mathbf{u}\|_{p}$ may not have an inner product for $p \neq 2$?
Motivation:

- Consider the following inner product on \Re^{2} : For any $\mathbf{x}, \mathbf{y} \in \Re^{2}$, let $<\mathbf{x}, \mathbf{y}\rangle=2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+4 x_{2} y_{2}$. It can be easily verified that this in an inner product (by checking for linearity, symmetry and positive definiteness by expressing it as a sum of squares).
- This inner product is certainly different from the conventional (Eucledian) dot product $<\mathbf{x}, \mathbf{y}\rangle_{E}=x_{1} y_{1}+x_{2} y_{2}$ which corredponds to the $\|\cdot\|_{2}$ norm.
- Is it possible that the $\langle\mathbf{x}, \mathbf{y}\rangle$ defined in step 1 (or some other such inner product) corresponds to $\|\cdot\|_{p}$ norm for $p \neq 2$?

HW: In \Re^{n}, why $\|\mathbf{u}\|_{p}$ may not have an inner product for $p \neq 2$?
Motivation:

- Consider the following inner product on \Re^{2} : For any $\mathbf{x}, \mathbf{y} \in \Re^{2}$, let $<\mathbf{x}, \mathbf{y}\rangle=2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+4 x_{2} y_{2}$. It can be easily verified that this in an inner product (by checking for linearity, symmetry and positive definiteness by expressing it as a sum of squares).
- This inner product is certainly different from the conventional (Eucledian) dot product $<\mathbf{x}, \mathbf{y}\rangle_{E}=x_{1} y_{1}+x_{2} y_{2}$ which corredponds to the $\|\cdot\|_{2}$ norm.
- Is it possible that the $\langle\mathbf{x}, \mathbf{y}\rangle$ defined in step 1 (or some other such inner product) corresponds to $\|\cdot\|_{p}$ norm for $p \neq 2$?
In \Re^{n}, it can be proved that for any inner product vector space $\left.(\mathcal{V},<,\rangle.\right)$, the inner product $<., .>$ (including the Eucledian one) can be represented as
$<\mathbf{u}, \mathbf{v}>=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j}<\mathbf{e}_{i}, \mathbf{e}_{j}>=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{a}^{T} E \mathbf{b}=<\mathbf{a}^{T}, \mathbf{b}>_{E}$

Convex Sets

Convex sets

- affine and convex sets.
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

- In 2D, a line through any two distinct points $\mathbf{x}_{1}, \mathbf{x}_{2}$: That is, all points x s.t.

$$
\mathbf{x}=\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2} \text { where } \alpha+\beta=1, \alpha \geq 0, \beta \geq 0
$$

- In general, A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector space $V \subseteq \Re^{n}, A$ is affine iff:
$A(=V$ shifted by $\mathbf{u})=\left\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in \Re^{n}\right.$ is fixed and $\left.\mathbf{v} \in V\right\}$.
- For some P with rank $=n-\operatorname{dim}(V)$ and \mathbf{b}, A is affine iff:
$A=\{\mathbf{x} \mid P \mathbf{x}=b\}$ i.e. solution set of linear equations represented by $P \mathbf{x}=b$.
- No Solution: $\mathbf{x}=\phi$. Is that affine? Homework: Making use of
- Unique Solution: x is a point. the basic idea of solving
- Infinitely Many Solutions: \mathbf{x} is a line, or a plane, etc. linear system of equations, show the following (conversely every affine set can be expressed as solution set of system of linear equations)

Convex set

- In 2D, a line segment between distinct points $\mathbf{x}_{1}, \mathbf{x}_{2}$: That is, all points x s.t.

$$
\begin{array}{ll}
\mathrm{x}= & \alpha x_{1}+\beta \mathrm{x}_{2} \\
\text { where } & \alpha+\beta=1,0 \leq \alpha \leq 1(\text { also, } 0 \leq \beta \leq 1)
\end{array}
$$

- Convex set : $\mathbf{x}_{1}, \mathbf{x}_{2} \in C, 0 \leq \alpha \leq 1 \Rightarrow \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in C$

- Convex set is connected. Convex set can but not necessarily contains 'O'

Is every affine set convex? Is the reverse true?

Cone, conic combination and convex cone

- Cone A set C is a cone if $\forall \mathbf{x} \in C, \alpha \mathbf{x} \in C$ for $\alpha \geq 0$.

- Conic (nonnegative) combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2} \\
& \text { with } \quad \alpha, \beta \geq 0 .
\end{aligned}
$$

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors (points) \mathbf{x}_{1} and \mathbf{x}_{2} forming the sides of the parallelogram.

- Convex cone: The set that contains all conic combinations of points in the set.

Filled up cone

Convex

Convex combination and convex hull

- Convex combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right) \\
& \text { with } \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1, \theta_{i} \geq 0
\end{aligned}
$$

- Convex hull or $\operatorname{conv}(\mathbf{S})$ is the set of all convex combinations of point in the set S .

- Should S be always convex? No
- What about the convexity of conv(S)? Yes

Convex combination and convex hull

- Convex combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{array}{ll}
\mathbf{x}= & \theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right) \\
\text { with } & \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1, \theta_{i} \geq 0
\end{array}
$$

- Convex hull or conv(S) is the set of all convex combinations of point in the set S.

- Should S be always convex? No.
- What about the convexity of conv(S)? It's always convex.

More Convex Sets (illustrated in \Re^{n})

More Convex Sets (illustrated in \Re^{n})

- Euclidean balls and ellipsoids.
- Norm balls and norm cones.
- Compact representation of vector space.

- Dual Representation.
- Different Representations of Affine Sets

Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r is given by: $B\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\|_{2} \leq r\right\}=\left\{\mathbf{x}_{c}+r u \mid\|u\|_{2} \leq 1\right\}$ Show that this set is
- Ellipsoid is a set of form: convex
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} P^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}$, where $\mathrm{P} \in S_{++}^{n}$ i.e. P is SPD matrix.
- Other representation: $\left\{\mathbf{x}_{c}+\mathrm{A} u \mid\|u\|_{2} \leq 1\right\}$ with A square and non-singular(i.e. A^{-1} exists).

Norm balls

- Recap Norm: A function ${ }^{6}| | .| |$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?

ANS: triangle inequality that is used to prove that Eucledian ball is convex set... can be simply reused

Norm balls

- Recap Norm: A function ${ }^{6}\|$.$\| that satisfies:$
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

- $\mathrm{Eg}: M_{N}(I)=$

Norm balls

- Recap Norm: A function ${ }^{6}| | .| |$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}$,

Homework: Try and make some sense of vector induced matrix norms

