Norm balls

• **Recap Norm:** A function⁶ ||.|| that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here, $\sup_{s \in S} f(s) = \widehat{f}$ if \widehat{f} is the minimum upper bound for f(s) over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$

• If
$$N = \|.\|_2$$
,

Norm balls

• **Recap Norm:** A function⁶ ||.|| that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here, $\sup_{s \in S} f(s) = \widehat{f}$ if \widehat{f} is the minimum upper bound for f(s) over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$

• If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

• If $N = \|.\|_{\infty}$,

Norm balls

• **Recap Norm:** A function⁶ ||.|| that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here,
$$\sup_{s \in S} f(s) = \hat{f}$$
 if \hat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$

• If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

• If
$$N = \|.\|_{\infty}$$
, $M_N(A) = \max_i \sum_{i=1} |a_{ij}|$

Homework

$$V = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

1 If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{i}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$

Or Changing the order of summation:

$$V = ||.||_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

a If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$
a Changing the order of summation: $N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}||x_{j}| = \sum_{j=1}^{m} ||x_{j}| \sum_{i=1}^{n} |a_{ij}|$
a Let $C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|$. Then

$$I = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

a If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}| |x_{j}|$
a Changing the order of summation: $N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{i=1}^{m} ||x_{j}| \sum_{i=1}^{n} |a_{ij}|$
a Let $C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|$. Then $||A\mathbf{x}||_{1} \le C ||\mathbf{x}||_{1} \Rightarrow ||A||_{1} = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} \le C$
a Now consider a \mathbf{x}

- - / - · ·

Λ

$$\begin{aligned} \mathbf{J} &= \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})} \\ & \text{ If } N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}| \text{ then } N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \leq \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}| |x_{j}| \\ & \text{ Changing the order of summation: } N(A\mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{m} ||x_{j}| \sum_{i=1}^{n} |a_{ij}| \\ & \text{ Let } C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|. \text{ Then } ||A\mathbf{x}||_{1} \leq C ||\mathbf{x}||_{1} \Rightarrow ||A||_{1} = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} \leq C \\ & \text{ Now consider a } \mathbf{x} = [0, 0..1, 0...0] \text{ which has 1 only in the } k^{th} \text{ position and a 0 everywhere else. Then} \\ & \text{ The upper bound in (3) is indeed attained at this choice of } \mathbf{x} \end{aligned}$$

Ľ

$$\begin{split} \mathbf{N} &= \| . \|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \ \frac{N(A\mathbf{x})}{N(\mathbf{x})} \\ & \text{ If } N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}| \text{ then } N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \leq \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}| |x_{j}| \\ & \text{ Changing the order of summation: } N(A\mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{m} ||x_{j}| \sum_{i=1}^{n} |a_{ij}| \\ & \text{ Let } C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|. \text{ Then } ||A\mathbf{x}||_{1} \leq C ||\mathbf{x}||_{1} \Rightarrow ||A||_{1} = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} \leq C \\ & \text{ Now consider a } \mathbf{x} = [0, 0..1, 0...0] \text{ which has 1 only in the } k^{th} \text{ position and a 0 everywhere else. Then } ||\mathbf{x}||_{1} = 1 \text{ and } ||A\mathbf{x}||_{1} = C \\ & \text{ Thus, there exists } \mathbf{x} = [0, 0..1, 0...0] \text{ for which the inequalities in steps (2) and (3) become equalities! That is,} \end{split}$$

$$\begin{split} I &= \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \ \frac{N(A\mathbf{x})}{N(\mathbf{x})} \\ & \text{ If } N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}| \text{ then } N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}| |x_{j}| \\ & \text{ Changing the order of summation: } N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{m} ||x_{j}| \sum_{i=1}^{n} |a_{ij}| \\ & \text{ Let } C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|. \text{ Then } ||A\mathbf{x}||_{1} \le C ||\mathbf{x}||_{1} \Rightarrow ||A||_{1} = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} \le C \\ & \text{ Now consider a } \mathbf{x} = [0, 0..1, 0...0] \text{ which has 1 only in the } k^{th} \text{ position and a 0 everywhere else. Then } ||\mathbf{x}||_{1} = 1 \text{ and } ||A\mathbf{x}||_{1} = C \\ & \text{ Thus, there exists } \mathbf{x} = [0, 0..1, 0...0] \text{ for which the inequalities in steps (2) and (3) become equalities! That is,} \end{split}$$

$$M_{\mathcal{N}}(A) = \|A\mathbf{x}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

 $\mathbf{0} \ M_{\mathcal{N}}(A) = \sup_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}. \text{ We know that } \|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

(From basic notes on Linear Algebra⁷):

we know that A^{TA} is positive semi-definite

⁷https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$M_{\mathcal{N}}(A) = \sup_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **(**From basic notes on Linear Algebra⁷): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition,

⁷https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **(**From basic notes on Linear Algebra⁷): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, there exists orthonormal U with column vectors u_i and diagonal matrix Σ of non-negative eigenvalues σ_i of A^TA such that A^TA = U^TΣU with (A^TA)u_i = σ_iu_i
- Without loss of generality, let $\sigma_1 \geq \sigma_2 .. \geq \sigma_n$.
- **③** Since columns of U form an orthonormal basis for \Re^n , let $\mathbf{x} =$

⁷https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$\mathbf{0} \ M_{\mathcal{N}}(A) = \sup_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **(**From basic notes on Linear Algebra⁷): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, there exists orthonormal U with column vectors u_i and diagonal matrix Σ of non-negative eigenvalues σ_i of A^TA such that A^TA = U^TΣU with (A^TA)u_i = σ_iu_i
- Without loss of generality, let $\sigma_1 \geq \sigma_2 .. \geq \sigma_n$.

Since columns of U form an orthonormal basis for \Re^n , let $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{u}_i$

• Then,
$$\|\mathbf{x}\|_2 = \sqrt{\sum_i \alpha_i^2}$$
 and $\|A\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T (A^T A \mathbf{x})} =$

⁷https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$\mathbf{0} \ M_{\mathcal{N}}(A) = \sup_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **2** (From basic notes on Linear Algebra⁷): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, there exists orthonormal U with column vectors u_i and diagonal matrix Σ of non-negative eigenvalues σ_i of A^TA such that A^TA = U^TΣU with (A^TA)u_i = σ_iu_i
- Without loss of generality, let $\sigma_1 \geq \sigma_2 .. \geq \sigma_n$.

Since columns of U form an orthonormal basis for \Re^n , let $\mathbf{x} = \sum \alpha_i \mathbf{u}_i$

• Then,
$$\|\mathbf{x}\|_2 = \sqrt{\sum_i \alpha_i^2}$$
 and $\|A\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T (A^T A \mathbf{x})} = \sqrt{(\sum_{i=1}^n \alpha_i \mathbf{u}_i)^T (\sum_{i=1}^n \sigma_i \alpha_i \mathbf{u}_i)}.$

• If $\alpha_1 = 1$ and $\alpha_j = 0$ for all $j \neq 1$, the maximum value in (7) will be attained. Thus, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

⁷https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

Norm balls: Summary

- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set.
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

► Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N
► If $N = \|.\|_1$, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$
► If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$
► If $N = \|.\|_{\infty}$, $M_N(A) = \max_i \sum_{j=1}^m |a_{ij}|$

• Matrix norm with an inner product:
$$||A||_F = \sqrt{\sum_{i,j} a_{ij}^2} = \sqrt{trace(A^T A)}$$
 is the Frobenius

norm.

If vector space $V \subseteq \Re^n$ and $\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_K\}$ is finite spanning set in V^{\perp} , then:-

- $V = (V^{\perp})^{\perp} = { \mathbf{x} | \mathbf{q}_i^T \mathbf{x} = 0; i = 1, ..., K }, \text{ where } K = dim(V)$
- A dual representation of vector subspace V (in \Re^n): $\{\mathbf{x} | Q\mathbf{x} = 0; \mathbf{q}_i^T \text{ is the } i^{th} \text{ row of } Q\}$
- What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?

HW: Dual Representations of Affine Sets

Recall affine sets(say $A \subseteq \Re^n$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A$: $\theta \mathbf{u} + (1 \theta)\mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector space $V \subseteq \Re^n$, A is affine iff: $A(=V \text{ shifted by } \mathbf{u}) = \{ \mathbf{u} + \mathbf{v} | \mathbf{u} \in \Re^n \text{ is fixed and } \mathbf{v} \in V \}.$
- Procedure: Let \mathbf{u} be some element in the affine set A. Then $V(=A \text{ shifted by } -\mathbf{u}) = \{ \mathbf{v} \mathbf{u} | \mathbf{v} \in A \}$ is a vector space which has a dual representation $\{ \mathbf{x} | Q\mathbf{x} = 0 \}$
- The dual representation for A is therefore $\{x \mid Qx = Qu\}$

HW: Dual Representations of Affine Sets

Recall affine sets(say $A \subseteq \Re^n$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A$: $\theta \mathbf{u} + (1 \theta)\mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector space $V \subseteq \Re^n$, A is affine iff: $A(=V \text{ shifted by } \mathbf{u}) = \{ \mathbf{u} + \mathbf{v} | \mathbf{u} \in \Re^n \text{ is fixed and } \mathbf{v} \in V \}.$
- Procedure: Let \mathbf{u} be some element in the affine set A. Then $V(=A \text{ shifted by } -\mathbf{u}) = \{ \mathbf{v} \mathbf{u} | \mathbf{v} \in A \}$ is a vector space which has a dual representation $\{ \mathbf{x} | Q\mathbf{x} = 0 \}$
- The dual representation for A is therefore $\{\mathbf{x}| Q\mathbf{x} = Q\mathbf{u}\}$

HW: Dual Representations of Affine Sets

- For some Q with rank = n dim(V) and u, A is affine iff:
 A = {x|Qx = Qu} i.e. solution set of linear equations represented by Qx = b where b = Qu.
- Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If Q has rank 2, we can get a plane, a line or no solution.
- Thus hyperplanes are affine spaces of dimension n-1 with $Q\mathbf{x} = \mathbf{b}$ given by $p^T \mathbf{x} = \mathbf{b}$. We will soon see the duality of convex cones, and in general convex sets.

Examples of Convex Cones

More on Convex Sets and Cones

- Half-spaces as cones (induced by hyperplanes)
- Norm Cones
- Positive Semi-definite cone.
- Positive Semi-definite cone: Example and Notes.
- Convexity Preserving Operations on Sets

Hyperplanes and halfspaces.

Hyperplane: Set of the form $\{\mathbf{x}|\mathbf{a}^T\mathbf{x} = \mathbf{b}\} \ (\mathbf{a} \neq 0)$

- where $\mathbf{b} = \mathbf{x}_0^T \mathbf{a}$
- Alternatively: $\{\mathbf{x} | (\mathbf{x} \mathbf{x}_0) \perp \mathbf{a}\}$, where \mathbf{a} is normal and $\mathbf{x}_0 \in H$

Hyperplanes and halfspaces.

halfspace: Set of the form $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} \leq \mathbf{b}\} \ (\mathbf{a} \neq 0)$

Is the half space a convex cone? Yes: The upper half space, as long as the hyperplane passes through the origin.. b = 0

• where
$$\mathbf{b} = \mathbf{x}_0^T \mathbf{a}$$

Norm cones

- Norm ball with center x_c and radius r: {x|||x x_x|| ≤ r}.
 Norm cone: A set of form: {(x, t) ∈ ℜⁿ⁺¹|||x|| ≤ t}.
 - Norm balls and cones are convex.
 - Euclidean norm cone is called-second order cone. If $\mathbf{x} \in \mathbb{R}^2$, it is shown in \mathbb{R}^3 as:-

Positive semidefinite cone

Notation

- S^n is set of symmetric $n \times n$ matrices.
- $S^N_+ = \{X \in S^n \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices.

$$X \in S^N_+ \iff z^T X z \ge 0 \text{ for all } z$$

• S^N_+ is a convex cone.

•
$$S_{++}^{N} = \{X \in S^{n} \mid X \succ 0\}$$
: positive definite $n \times n$ matrices.

Positive semidefinite cone: Example

Consider a positive semi-definite matrix S in \Re^2 . Then S must be of the form

$$\mathbf{5} = \begin{bmatrix} \mathbf{x} & \mathbf{y} \\ \mathbf{y} & \mathbf{z} \end{bmatrix}$$
(33)

We can represent the space of matrices S_+^2 of the form $S \in S_+^2$ as a three dimensional space with non-negative \mathbf{x} , y and z coordinates and a non-negative determinant. This space

corresponds to a cone as shown in the Figure above.

Positive semidefinite cone: Notes

$$S_{+}^{n} = \{A \in S^{n} | A \succeq 0\} = \{A \in S^{n} | \mathbf{y}^{T} A \mathbf{y} \succeq 0 \forall || \mathbf{y} || = 1\}$$

$$S_{0}, S_{+}^{n} = \bigcap_{||y||=1} \{A \in S | < \mathbf{y}^{T} \mathbf{y}, A \geq \succeq 0\}$$

$$\mathbf{y}^{T} A \mathbf{y} = \sum_{i} \sum_{j} y_{i} a_{ij} y_{j} = \sum_{i} \sum_{j} (y_{i} y_{j}) a_{ij} = \langle \mathbf{y} \mathbf{y}^{T}, A \rangle = tr((\mathbf{y} \mathbf{y}^{T})^{T} A) = tr(\mathbf{y} \mathbf{y}^{T} A)$$

$$\vdash \mathsf{H}/\mathsf{W}:$$

$$\mathbf{y} = \begin{bmatrix} Cos(\theta) \\ Sin(\theta) \end{bmatrix}$$
(34)

$$\mathbf{y}\mathbf{y}^{\mathsf{T}} = \begin{bmatrix} Cos^{2}(\theta) & Cos(\theta)Sin(\theta) \\ Cos(\theta)Sin(\theta) & Sin^{2}(\theta) \end{bmatrix}$$
(35)

• Plot a finite # of halfspaces parameterized by (θ) .

• So S_+^n = intersection of infinite # of half spaces belonging to $\Re^{n(n+1)/2}$ [Dual Representation]

Positive semidefinite cone: Notes

- S^n_+ = intersection of infinite # of half spaces belonging to $R^{n(n+1)/2}$ [Dual Representation]
 - Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
 - **2** Origin = O = matrix with all 0 eigenvalues.
 - **③** Interior consists of all full rank matrices A (rank A = m) i.e. $A \succ 0$.

Polyhedra

- Solution set of finitely many inequalities or equalities: $Ax \leq b$, $Cx \equiv d$
 - $A \in \Re^{m \times n}$
 - $C \in \Re^{p \times n}$
 - \leq is component wise inequality

Like specifying some hyperplanes

- Intersection of finite number of half-spaces and hyperplanes.
- Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads to definition of simplex.

Polyhedra

- \bullet Solution set of finitely many inequalities or equalities: $A{\bf x} \preceq {\bf b}$, $C{\bf x} \equiv {\bf d}$
 - $A \in \Re^{m \times n}$
 - $C \in \Re^{p \times n}$
 - \leq is component wise inequality

- Intersection of finite number of half-spaces and hyperplanes.
- Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads to definition of simplex.
- Ans: If $\exists S \subset P$ s.t. |S| is finite and P = conv(S), then P is a polytope.
- Simplex: An n dimensional simplex is conv(S) where S is affinely independent set of
 - n+1 points.

Convex combinations Generalized

• Convex combination of points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ is any point \mathbf{x} of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k = \mathit{conv}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\})$$

with $\theta_1 + \theta_2 + \ldots + \theta_k = 1, \theta_i \ge 0.$

- Equivalent Definition of Convex Set: *C* is convex iff it is closed under generalized convex combinations.
- Convex hull or conv(S) is the set of all convex combinations of point in the set S.
- conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.
 - Prove by contradiction that if a point lies in another smallest convex set , and not in conv(S), then it must be in conv(S).

• The idea of convex combination can be generalized to include infinite sums, integrals, and, in most general form, probability distributions.

Conic combinations generalized

- cone A set C is a cone if $\forall \mathbf{x} \in C$, $\theta \mathbf{x} \in C$ for $\theta \ge 0$.
- conic (nonnegative) combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k$$

with $\theta_i \ge 0$.

example : diagonal vector of a parallelogram is a conic combination of two vectors(points) \mathbf{x}_1 and \mathbf{x}_2 forming the parallelogram.

Conic hull and Affine hull

- Conic hull or conic(S): The set that contains all conic combinations of points in set S.
- conic(S) = Smallest conic set that contains S.

- Similarly, Affine hull or aff(S): The set that contains all affine combinations of points in set S.
- aff(S) = Smallest affine set that contains S.

٠