Norm balls

- Recap Norm: A function ${ }^{6}\|$.$\| that satisfies:$
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.
$s \in S$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}$,

Norm balls

- Recap Norm: A function ${ }^{6}\|$.$\| that satisfies:$
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$
- If $N=\|\cdot\|_{\infty}$,

Norm balls

- Recap Norm: A function ${ }^{6}\|$.$\| that satisfies:$
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$
- If $N=\|\cdot\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right| \quad$ Homework

$$
\begin{aligned}
& N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})} \\
& \text { (1) If } N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right| \text { then } N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|
\end{aligned}
$$

(2) Changing the order of summation:
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m} \| x_{j}\left|\sum_{i=1}^{n}\right| a_{i j} \mid$
(- Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2) Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m} \| x_{j}\left|\sum_{i=1}^{n}\right| a_{i j} \mid$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a x
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2. Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m} \| x_{j}\left|\sum_{i=1}^{n}\right| a_{i j} \mid$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ which has 1 only in the $k^{\text {th }}$ position and a 0 everywhere else. Then

The upper bound in (3) is indeed attained at this choice of x
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2. Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m} \| x_{j}\left|\sum_{i=1}^{n}\right| a_{i j} \mid$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ which has 1 only in the $k^{\text {th }}$ position and a 0 everywhere else. Then $\|\mathbf{x}\|_{1}=1$ and $\|A \mathbf{x}\|_{1}=C$
(0) Thus, there exists $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ for which the inequalities in steps (2) and (3) become equalities! That is,
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2. Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m} \| x_{j}\left|\sum_{i=1}^{n}\right| a_{i j} \mid$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ which has 1 only in the $k^{\text {th }}$ position and a 0 everywhere else. Then $\|\mathrm{x}\|_{1}=1$ and $\|A \mathbf{x}\|_{1}=C$
(0) Thus, there exists $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ for which the inequalities in steps (2) and (3) become equalities! That is,

$$
M_{N}(A)=\|A \mathbf{x}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{7}$):

we know that A^{\wedge} TA is positive semi-definite

[^0]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{\top} A^{\top} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{7}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite

- By spectral decomposition,

[^1]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{7}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite
(3) By spectral decomposition, there exists orthonormal U with column vectors \mathbf{u}_{i} and diagonal matrix Σ of non-negative eigenvalues σ_{i} of $A^{T} A$ such that $A^{T} A=U^{T} \Sigma U$ with $\left(A^{T} A\right) \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}$
(9) Without loss of generality, let $\sigma_{1} \geq \sigma_{2} . . \geq \sigma_{n}$.
(0. Since columns of U form an orthonormal basis for \Re^{n}, let $\mathbf{x}=$

[^2]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{7}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite
(3) By spectral decomposition, there exists orthonormal U with column vectors \mathbf{u}_{i} and diagonal matrix Σ of non-negative eigenvalues σ_{i} of $A^{T} A$ such that $A^{T} A=U^{T} \Sigma U$ with $\left(A^{T} A\right) \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}$
(9) Without loss of generality, let $\sigma_{1} \geq \sigma_{2} . . \geq \sigma_{n}$.
(0) Since columns of U form an orthonormal basis for \Re^{n}, let $\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}$
(0) Then, $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} \alpha_{i}^{2}}$ and $\|A \mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{\top}\left(A^{\top} A \mathbf{x}\right)}=$

[^3]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{7}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite
(3) By spectral decomposition, there exists orthonormal U with column vectors \mathbf{u}_{i} and diagonal matrix Σ of non-negative eigenvalues σ_{i} of $A^{T} A$ such that $A^{T} A=U^{T} \Sigma U$ with $\left(A^{T} A\right) \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}$
(9) Without loss of generality, let $\sigma_{1} \geq \sigma_{2} . . \geq \sigma_{n}$.
(3) Since columns of U form an orthonormal basis for \Re^{n}, let $\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}$
(0) Then, $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} \alpha_{i}^{2}}$ and $\|A \mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{\top}\left(A^{\top} A \mathbf{x}\right)}=\sqrt{\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}\right)^{T}\left(\sum_{i=1}^{n} \sigma_{i} \alpha_{i} \mathbf{u}_{i}\right)}$.
(3) If $\alpha_{1}=1$ and $\alpha_{j}=0$ for all $j \neq 1$, the maximum value in (7) will be attained. Thus, $M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$

[^4]
Norm balls: Summary

- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set.
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|.\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{\top} A$
- If $N=\|.\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$
- Matrix norm with an inner product: $\|A\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}=\sqrt{\operatorname{trace}\left(A^{T} A\right)}$ is the Frobenius norm.

HW: Dual Representation

If vector space $V \subseteq \Re^{n}$ and $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{K}\right\}$ is finite spanning set in V^{\perp}, then:-

- $V=\left(V^{\perp}\right)^{\perp}=\left\{\mathbf{x} \mid \mathbf{q}_{i}^{T} \mathbf{x}=0 ; i=1, \ldots, K\right\}$, where $K=\operatorname{dim}(V)$
- A dual representation of vector subspace V (in \Re^{n}): $\left\{\mathbf{x} \mid Q \mathbf{x}=0 ; \mathbf{q}_{i}^{T}\right.$ is the $i^{\text {th }}$ row of $\left.Q\right\}$
- What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?

HW: Dual Representations of Affine Sets

Recall affine sets(say $A \subseteq \Re^{n}$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector space $V \subseteq \Re^{n}, A$ is affine iff:
$A(=V$ shifted by $\mathbf{u})=\left\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in \Re^{n}\right.$ is fixed and $\left.\mathbf{v} \in V\right\}$.
- Procedure: Let \mathbf{u} be some element in the affine set A. Then $V(=A$ shifted by $-\mathbf{u})=\{$ $\mathbf{v}-\mathbf{u} \mid \mathbf{v} \in A\}$ is a vector space which has a dual representation $\{\mathbf{x} \mid Q \mathbf{x}=0\}$
- The dual representation for A is therefore $\{x \mid \mathrm{Qx}=\mathrm{Qu}\}$

HW: Dual Representations of Affine Sets

Recall affine sets(say $A \subseteq \Re^{n}$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector space $V \subseteq \Re^{n}, A$ is affine iff:
$A(=V$ shifted by $\mathbf{u})=\left\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in \Re^{n}\right.$ is fixed and $\left.\mathbf{v} \in V\right\}$.
- Procedure: Let \mathbf{u} be some element in the affine set A. Then $V(=A$ shifted by $-\mathbf{u})=\{$ $\mathbf{v}-\mathbf{u} \mid \mathbf{v} \in A\}$ is a vector space which has a dual representation $\{\mathbf{x} \mid Q \mathbf{x}=0\}$
- The dual representation for A is therefore $\{\mathbf{x} \mid Q \mathbf{x}=Q \mathbf{u}\}$

HW: Dual Representations of Affine Sets

- For some Q with rank $=n-\operatorname{dim}(V)$ and \mathbf{u}, A is affine iff:
$A=\{\mathbf{x} \mid Q \mathbf{x}=Q \mathbf{u}\}$ i.e. solution set of linear equations represented by $Q \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=Q \mathbf{u}$.
- Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If Q has rank 2 , we can get a plane, a line or no solution.
- Thus hyperplanes are affine spaces of dimension $n-1$ with $Q \mathbf{x}=\mathbf{b}$ given by $p^{T} \mathbf{x}=\mathbf{b}$. We will soon see the duality of convex cones, and in general convex sets.

Examples of Convex Cones

More on Convex Sets and Cones

- Half-spaces as cones (induced by hyperplanes)
- Norm Cones
- Positive Semi-definite cone.
- Positive Semi-definite cone: Example and Notes.
- Convexity Preserving Operations on Sets

Hyperplanes and halfspaces.

Hyperplane: Set of the form $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x}=\mathbf{b}\right\}(\mathbf{a} \neq 0)$

- where $\mathbf{b}=\mathbf{x}_{0}^{T} \mathbf{a}$
- Alternatively: $\left\{\mathrm{x} \mid\left(\mathrm{x}-\mathrm{x}_{0}\right) \perp \mathrm{a}\right\}$, where a is normal and $\mathrm{x}_{0} \in \mathrm{H}$

Hyperplanes and halfspaces.
halfspace: Set of the form $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq \mathbf{b}\right\} \quad(\mathbf{a} \neq 0)$
Is the half space a convex cone? Yes: The upper half space, as long as the hyperplane passes through the origin.. $\mathrm{b}=0$

- where $\mathbf{b}=\mathbf{x}_{0}^{T} \mathbf{a}$

Norm cones

- Norm ball with center \mathbf{x}_{c} and radius $\mathbf{r}:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$.
- Norm cone: A set of form: $\left\{(\mathbf{x}, t) \in \Re^{n+1} \mid\|\mathbf{x}\| \leq t\right\}$.
- Norm balls and cones are convex.
- Euclidean norm cone is called-second order cone. If $\mathbf{x} \in \Re^{2}$, it is shown in \Re^{3} as:-

Positive semidefinite cone

Notation

- S^{n} is set of symmetric $n \times n$ matrices.
- $S_{+}^{N}=\left\{X \in S^{n} \mid X \succeq 0\right\}$: positive semidefinite $n \times n$ matrices.
- $X \in S_{+}^{N} \Longleftrightarrow z^{T} X z \geq 0$ for all z
- S_{+}^{N} is a convex cone.
- $S_{++}^{N}=\left\{X \in S^{n} \mid X \succ 0\right\}$: positive definite $n \times n$ matrices.

Positive semidefinite cone: Example

Consider a positive semi-definite matrix S in \Re^{2}. Then S must be of the form

$$
S=\left[\begin{array}{ll}
\mathrm{x} & y \tag{33}\\
y & z
\end{array}\right]
$$

We can represent the space of matrices \mathcal{S}_{+}^{2} of the form $S \in \mathcal{S}_{+}^{2}$ as a three dimensional space with non-negative \mathbf{x}, y and z coordinates and a non-negative determinant. This space
corresponds to a cone as shown in the Figure above.

Positive semidefinite cone: Notes

(1) $S_{+}^{n}=\left\{A \in S^{n} \mid A \succeq 0\right\}=\left\{A \in S^{n} \mid \mathbf{y}^{\top} A \mathbf{y} \succeq 0 \forall\|\mathbf{y}\|=1\right\}$
(2) So, $S_{+}^{n}=\cap_{\|y\|=1}\left\{A \in S \mid<\mathbf{y}^{\top} \mathbf{y}, A>\succeq 0\right\}$
(0) $\mathbf{y}^{\top} A \mathbf{y}=\sum_{i} \sum_{j} y_{i} a_{i j} y_{j}=\sum_{i} \sum_{j}\left(y_{i} y_{j}\right) a_{i j}=\left\langle\mathbf{y y}{ }^{\top}, A>=\operatorname{tr}\left(\left(\mathbf{y y}^{\top}\right)^{\top} A\right)=\operatorname{tr}\left(\mathbf{y} \mathbf{y}^{\top} A\right)\right.$

- H/W:

$$
\begin{gather*}
\mathbf{y}=\left[\begin{array}{c}
\operatorname{Cos}(\theta) \\
\operatorname{Sin}(\theta)
\end{array}\right] \tag{34}\\
\mathbf{y} \mathbf{y}^{T}=\left[\begin{array}{cc}
\operatorname{Cos}^{2}(\theta) & \operatorname{Cos}(\theta) \operatorname{Sin}(\theta) \\
\operatorname{Cos}(\theta) \operatorname{Sin}(\theta) & \operatorname{Sin}^{2}(\theta)
\end{array}\right] \tag{35}
\end{gather*}
$$

- Plot a finite \# of halfspaces parameterized by (θ).
(a) So $S_{+}^{n}=$ intersection of infinite $\#$ of half spaces belonging to $\Re^{n(n+1) / 2}$ [Dual Representation]

Positive semidefinite cone: Notes

(1) $S_{+}^{n}=$ intersection of infinite $\#$ of half spaces belonging to $R^{n(n+1) / 2}$ [Dual Representation]
(1) Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
(2) Origin $=0=$ matrix with all 0 eigenvalues.
(3) Interior consists of all full rank matrices $\mathrm{A}($ rank $\mathrm{A}=\mathrm{m})$ i.e. $\mathrm{A} \succ 0$.

Polyhedra

- Solution set of finitely many inequalities or equalities: $A x \preceq b, C x \equiv d$
- $A \in \Re^{m \times n}$
- $C \in \Re^{p \times n}$
- \preceq is component wise inequality

Specifying intersection of half spaces

- Intersection of finite number of half-spaces and hyperplanes.
- Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads to definition of simplex.

Polyhedra

- Solution set of finitely many inequalities or equalities: $A \mathbf{x} \preceq \mathbf{b}, C \mathbf{x} \equiv \mathbf{d}$
- $A \in \Re^{m \times n}$
- $C \in \Re^{p \times n}$
- \preceq is component wise inequality

- Intersection of finite number of half-spaces and hyperplanes.
- Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads to definition of simplex.
- Ans: If $\exists S \subset P$ s.t. $|S|$ is finite and $P=\operatorname{conv}(S)$, then P is a polytope.
- Simplex: An n-dimensional simplex is $\operatorname{conv}(S)$ where S is affinely independent set of $n+1$ points.

Convex combinations Generalized

- Convex combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right) \\
& \text { with } \quad \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1, \theta_{i} \geq 0
\end{aligned}
$$

- Equivalent Definition of Convex Set: C is convex iff it is closed under generalized convex combinations.
- Convex hull or $\operatorname{conv}(S)$ is the set of all convex combinations of point in the set S.
- $\operatorname{conv}(S)=$ The smallest convex set that contains S. S may not be convex but conv (S) is.
- Prove by contradiction that if a point lies in another smallest convex set, and not in $\operatorname{conv}(S)$, then it must be in conv(S).
- The idea of convex combination can be generalized to include infinite sums, integrals, and, in most general form, probability distributions.

Conic combinations generalized

- cone A set C is a cone if $\forall \mathbf{x} \in C, \theta \mathbf{x} \in C$ for $\theta \geq 0$.

- conic (nonnegative) combination of points $\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k} \\
& \text { with } \quad \theta_{i} \geq 0
\end{aligned}
$$

example : diagonal vector of a parallelogram is a conic combination of two vectors(points) \mathbf{x}_{1} and \mathbf{x}_{2} forming the parallelogram.

Conic hull and Affine hull

- Conic hull or conic(S): The set that contains all conic combinations of points in set S.
- $\operatorname{conic}(S)=$ Smallest conic set that contains S.

- Similarly, Affine hull or aff(S): The set that contains all affine combinations of points in set S.
- $\operatorname{aff}(S)=$ Smallest affine set that contains S.

[^0]: ${ }^{7}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^1]: ${ }^{7}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^2]: ${ }^{7}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^3]: ${ }^{7}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^4]: ${ }^{7}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

