
Norm balls
Recap Norm: A function6 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥2,
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Homework



N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation:
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The upper bound in (3) is indeed attained at this choice
of x
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5 Thus, there exists x = [0, 0..1, 0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,
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If N = ∥.∥2, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra7):

7https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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7 If α1 = 1 and αj = 0 for all j ̸= 1, the maximum value in (7) will be attained. Thus,
MN(A) =

√
σ1 , where σ1 is the dominant eigenvalue of ATA
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Norm balls: Summary
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set.

▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

▶ If N = ∥.∥∞, MN(A) = max
i

m∑

j=1

|aij|

Matrix norm with an inner product: ∥A∥F =

√∑

i,j
a2ij =

√
trace(ATA) is the Frobenius

norm.
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HW: Dual Representation

If vector space V ⊆ ℜn and {q1,q2, ...,qK} is finite spanning set in V⊥, then:-
V = (V⊥)⊥ = {x|qT

i x = 0; i = 1, ...,K}, where K = dim(V)
A dual representation of vector subspace V (in ℜn): {x|Qx = 0; qT

i is the ith row of Q}
What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?
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HW: Dual Representations of Affine Sets

Recall affine sets(say A ⊆ ℜn).
A is affine iff ∀u,v ∈ A: θu + (1− θ)v ∈ A, ∀ θ ∈ ℜ.
For some vector space V ⊆ ℜn, A is affine iff:
A(= V shifted by u) = { u + v|u ∈ ℜn is fixed and v ∈ V }.
Procedure: Let u be some element in the affine set A. Then V(= A shifted by −u) = {
v − u|v ∈ A } is a vector space which has a dual representation {x|Qx = 0}
The dual representation for A is therefore
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HW: Dual Representations of Affine Sets

For some Q with rank = n− dim(V) and u, A is affine iff:
A = {x|Qx = Qu} i.e. solution set of linear equations represented by Qx = b where
b = Qu.
Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If Q
has rank 2, we can get a plane, a line or no solution.
Thus hyperplanes are affine spaces of dimension n− 1 with Qx = b given by pTx = b.
We will soon see the duality of convex cones, and in general convex sets.
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Examples of Convex Cones
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More on Convex Sets and Cones

Half-spaces as cones (induced by hyperplanes)
Norm Cones
Positive Semi-definite cone.
Positive Semi-definite cone: Example and Notes.
Convexity Preserving Operations on Sets
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Hyperplanes and halfspaces.

Hyperplane: Set of the form {x|aTx = b} (a ̸= 0)

where b = xT
0 a

Alternatively: {x|(x − x0) ⊥ a}, where a is normal and x0 ∈ H
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Hyperplanes and halfspaces.

halfspace: Set of the form {x|aTx ≤ b} (a ̸= 0)

where b = xT
0 a
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Is the half space a convex cone?
Yes: The upper half space, 
as long as the hyperplane
passes through the origin..
b = 0



Norm cones
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r}.
Norm cone: A set of form: {(x, t) ∈ ℜn+1|∥x∥ ≤ t}.

▶ Norm balls and cones are convex.
▶ Euclidean norm cone is called-second order cone. If x ∈ ℜ2, it is shown in ℜ3 as:-
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Positive semidefinite cone

Notation
Sn is set of symmetric n× n matrices.
SN
+ = {X ∈ Sn | X ⪰ 0}: positive semidefinite n× n matrices.
▶ X ∈ SN

+ ⇐⇒ zTXz ≥ 0 for all z
▶ SN

+ is a convex cone.

SN
++ = {X ∈ Sn | X ≻ 0}: positive definite n× n matrices.
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Positive semidefinite cone: Example
Consider a positive semi-definite matrix S in ℜ2. Then S must be of the form

S =

[
x y
y z

]
(33)

We can represent the space of matrices S2
+ of the form S ∈ S2

+ as a three dimensional space
with non-negative x, y and z coordinates and a non-negative determinant. This space

corresponds to a cone as shown in the Figure above.
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Positive semidefinite cone: Notes
1 Sn

+ = {A ∈ Sn|A ⪰ 0} = {A ∈ Sn|yTAy ⪰ 0∀∥y∥ = 1}
2 So, Sn

+ = ∩∥y∥=1 {A ∈ S| < yTy,A >⪰ 0}
3 yTAy =

∑
i
∑

j yiaijyj =
∑

i
∑

j(yiyj)aij = < yyT,A > = tr((yyT)TA) = tr(yyTA)
▶ H/W:

y =

[
Cos(θ)
Sin(θ)

]
(34)

yyT =

[
Cos2(θ) Cos(θ)Sin(θ)

Cos(θ)Sin(θ) Sin2(θ)

]
(35)

▶ Plot a finite # of halfspaces parameterized by (θ).
4 So Sn

+ = intersection of infinite # of half spaces belonging to ℜn(n+1)/2 [Dual
Representation]
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Positive semidefinite cone: Notes

1 Sn
+ = intersection of infinite # of half spaces belonging to Rn(n+1)/2 [Dual
Representation]

1 Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
2 Origin = O = matrix with all 0 eigenvalues.
3 Interior consists of all full rank matrices A (rank A = m) i.e. A ≻ 0.
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Polyhedra
Solution set of finitely many inequalities or equalities: Ax ⪯ b , Cx ≡ d

▶ A ∈ ℜm×n

▶ C ∈ ℜp×n

▶ ⪯ is component wise inequality

Intersection of finite number of half-spaces and hyperplanes.
Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads
to definition of simplex.
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Polyhedra
Solution set of finitely many inequalities or equalities: Ax ⪯ b , Cx ≡ d

▶ A ∈ ℜm×n

▶ C ∈ ℜp×n

▶ ⪯ is component wise inequality

Intersection of finite number of half-spaces and hyperplanes.
Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads
to definition of simplex.
Ans: If ∃ S ⊂ P s.t. |S| is finite and P = conv(S), then P is a polytope.
Simplex: An n - dimensional simplex is conv(S) where S is affinely independent set of
n+ 1 points.
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Convex combinations Generalized
Convex combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk = conv({x1,x2, ...,xk})
with θ1 + θ2 + ...+ θk = 1, θi ≥ 0.

Equivalent Definition of Convex Set: C is convex iff it is closed under generalized convex
combinations.
Convex hull or conv(S) is the set of all convex combinations of point in the set S.
conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.

▶ Prove by contradiction that if a point lies in another smallest convex set , and not in
conv(S), then it must be in conv(S).

▶

The idea of convex combination can be generalized to include infinite sums, integrals,
and, in most general form, probability distributions.
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Conic combinations generalized

cone A set C is a cone if ∀x ∈ C, θx ∈ C for θ ≥ 0.
conic (nonnegative) combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with θi ≥ 0.

example : diagonal vector of a parallelogram is a conic combination of two
vectors(points) x1 and x2 forming the parallelogram.
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Conic hull and Affine hull
Conic hull or conic(S): The set that contains all conic combinations of points in set S.
conic(S) = Smallest conic set that contains S.

Similarly, Affine hull or aff(S): The set that contains all affine combinations of points in
set S.
aff(S) = Smallest affine set that contains S.
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