
Positive semidefinite cone: Primal Description
Consider a positive semi-definite matrix S in ℜ2. Then S must be of the form

S =

[
x y
y z

]
(33)

We can represent the space of matrices S2
+ of the form S ∈ S2

+ as a three dimensional space
with non-negative x, y and z coordinates and a non-negative determinant. This space

corresponds to a cone as shown in the Figure above.
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Positive semidefinite cone: Dual Description
Instead of all vectors z ∈ ℜn, we can, without loss of generality, only require the above
inequality to hold for all y with ∥y∥2 = 1.

1 Sn
+ = {A ∈ Sn|A ⪰ 0} = {A ∈ Sn|yTAy ⪰ 0, ∀∥y∥2 = 1}

2 So, Sn
+ = ∩∥y∥=1 {A ∈ S| < yTy,A >⪰ 0}

3 yTAy =
∑

i
∑

j yiaijyj =
∑

i
∑

j(yiyj)aij = < yyT,A > = tr((yyT)TA) = tr(yyTA)
▶ One parametrization for y such that ∥y∥2 = 1 is

y =

[
Cos(θ)
Sin(θ)

]
(34)

yyT =

[
Cos2(θ) Cos(θ)Sin(θ)

Cos(θ)Sin(θ) Sin2(θ)

]
(35)

▶ Assignment 1: Plot a finite # of halfspaces parameterized by (θ).
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Positive semidefinite cone: Dual Description

1 Sn
+ = intersection of infinite # of half spaces belonging to Rn(n+1)/2 [Dual
Representation]

1 Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
2 Origin = O = matrix with all 0 eigenvalues.
3 Interior consists of all full rank matrices A (rank A = m) i.e. A ≻ 0.
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HW: N = ∥.∥∞, MN(A) = sup
x̸=0

N(Ax)
N(x) = sup

∥x∥=1

N(Ax)

1 If N(x) = max
i

|xi| then N(Ax) = max
i

|
m∑

j=1

aijxj| ≤ max
i

m∑

j=1

|aij||xj| ≤≤ max
i

m∑

j=1

|aij|

where the last inequality is attained by considering a x = [1, 1..1, 1...1] which has 1 in all
positions. Then ∥x∥∞ = 1 and for such an x, the upper bounded on the supremum in
indeed attained.

2 Therefore, it must be that ∥Ax∥1 = maxi
∑m

j=1 |aij| (the maximum absolute row sum)
3 That is,

MN(A) = ∥Ax∥1 = max
i

m∑

j=1

|aij|
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Convex Polyhedron
Solution set of finitely many inequalities or equalities: Ax ⪯ b , Cx ≡ d

▶ A ∈ ℜm×n

▶ C ∈ ℜp×n

▶ ⪯ is component wise inequality

This is a Dual or H Description: Intersection of finite number of half-spaces and
hyperplanes.
Primal or V Description: Can you define convex polyhedra in terms of convex hull?

1 Convex hull of finite # of points ⇒ Convex Polytope
2 Conic hull of finite # of points ⇒ Polyhedral Cone
3 Convex hull of n+ 1 affinely independent points ⇒ Simplex
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Convex combinations and Convex Hull
Convex combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk = conv({x1,x2, ...,xk})
with θ1 + θ2 + ...+ θk = 1, θi ≥ 0.

Equivalent Definition of Convex Set: C is convex iff it is closed under generalized convex
combinations.
Convex hull or conv(S) is the set of all convex combinations of points in the set S.
conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.

▶ Prove by contradiction that if a point lies in another smallest convex set , and not in
conv(S), then it must be in conv(S).

The idea of convex combination can be generalized to include infinite sums, integrals,
and, in most general form, probability distributions.
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Basic Prerequisite Topological Concepts in ℜn

Definition
[Balls in ℜn]: Consider a point x ∈ ℜn. Then the closed ball around x of radius ϵ is

B[x, ϵ] =
{

y ∈ ℜn|||y − x|| ≤ ϵ
}

Likewise, the open ball around x of radius ϵ is defined as

B(x, ϵ) =
{

y ∈ ℜn|||y − x|| < ϵ
}

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.
Definition
[Boundedness in ℜn]: We say that a set S ⊂ ℜn is bounded when there exists an ϵ > 0 such

that S ⊆ B[0, ϵ].

In other words, a set S ⊆ ℜn is bounded means that there exists a number ϵ > 0 such that for
all x ∈ S, ||x|| ≤ ϵ.
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Convex Polytope: Primal and Dual Descriptions

Dual or H Description: A Convex Polytope P is a Bounded Convex Polyhedron. That is,
is solution set of finitely many inequalities or equalities: P = {x|Ax ⪯ b ,
Cx = d} where A ∈ ℜm×n, C ∈ ℜp×n such that P is also bounded.

Primal or V Description : If ∃ S ⊂ P s.t. |S| is finite and P = conv(S), then P is a Convex
Polytope.
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Conic combinations and Conic Hull

Recap Cone: A set C is a cone if ∀x ∈ C, θx ∈ C for θ ≥ 0.
Conic (nonnegative) Combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with θi ≥ 0.

Conic hull or conic(S): The set that contains all conic combinations of points in set S.

conic(S) = Smallest conic set that contains S.
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Polyhedral Cone: Primal and Dual Descriptions

Dual or H Description : A Polyhedral Cone P is a Convex Polyhedron with b = 0. That is,
{x|Ax ⪰ 0} where A ∈ ℜm×n and ⪰ is component wise inequality.

Primal of V Description : If ∃ S ⊂ P s.t. |S| is finite and P = cone(S), then P is a
Polyhedral Cone.
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Affine combinations, Affine hull and Dimension of a set S
Affine Combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with
∑

i
θi = 1

Affine hull or aff(S): The set that contains all affine combinations of points in set S =
Smallest affine set that contains S.

Dimension of a set S = dimension of aff(S) = dimension of vector space V such that
aff(S) = v + V for some v ∈ aff(S).
S = {x0,x1, . . . ,xn+1} is set of n+ 1 affinely independent points if
{x1 − x0,x2 − x0, . . . ,xn+1 − x0} are linearly independent.
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Simplex (plural: simplexes) Polytope: Primal and Dual Descriptions

Dual or H Description: An n Simplex S is a convex Polytope with of affine dimension n and
having n+ 1 corners. That is, is solution set of finitely many inequalities or
equalities: S = {x|Ax ⪯ b , Cx = d} where A ∈ ℜm×n, C ∈ ℜp×n such that S
with affine dimension n and having n+ 1 corners.

Primal or V Description: Convex hull of n+ 1 affinely independent points. Specifically, let
S = {x0,x1, . . . ,xn+1} be a set of n+ 1 affinely independent points, then an
n-dimensional simplex is conv(S).
Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary
dimensions.
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Convexity preserving operations

In practice if you want to establish the convexity of a set C, you could either
1 prove it from first principles, i.e., using the definition of convexity or
2 prove that C can be built from simpler convex sets through some basic operations which
preserve convexity.

Some of the important operations that preserve complexity are:
1 Intersection
2 Affine Transform
3 Perspective and Linear Fractional Function
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Closure under Intersection
The intersection of any number of convex sets is convex. Consider the set S:

S =

{
x ∈ ℜn | |p(t)| ≤ 1 for |t| ≤ π

3

}
(36)

where
p(t) = x1 cos t+ x2 cos 2t+ . . .+ xm cosmt (37)
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Closure under Intersection (contd.)

Any value of t that satisfies |p(t)| ≤ 1, defines two regions, viz.,

ℜ≤(t) =
{

x | x1 cos t+ x2 cos 2t+ . . .+ xm cosmt ≤ 1
}

and

ℜ≥(t) =
{

x | x1 cos t+ x2 cos 2t+ . . .+ xm cosmt ≥ −1
}

Each of the these regions is convex and for a given value of t, the set of points that may lie in
S is given by ℜ(t) = ℜ≤(t) ∩ ℜ≥(t)
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Closure under Intersection (contd.)
ℜ(t) is also convex. However, not all the points in ℜ(t) lie in S, since the points that lie in S
satisfy the inequalities for every value of t. Thus, S can be given as:

S = ∩|t|≤π
3
ℜ(t)

Figure 4: Illustration of the closure property for S defined in (36), for m = 2.Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 118 / 167



Closure under Affine transform

An affine transform is one that preserves
Collinearity between points, i.e., three points which lie on a line continue to be collinear
after the transformation.
Ratios of distances along a line, i.e., for distinct colinear points p1,p2,p3, ||p2−p1||

||p3−p2|| is
preserved.

An affine transformation or affine map between two vector spaces f : ℜn → ℜm consists of a
linear transformation followed by a translation:

x 7→ Ax + b

where A ∈ ℜn×m and b ∈ ℜm.
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Closure under Affine transform (contd.)
In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

f(x) =
n∑

i
xiai + b

yield convex sets8. Here ai is the ith row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:

1 the solution set of linear matrix inequality (Ai,B ∈ Sm)
{

x ∈ ℜn | x1A1 + . . .+ xnAn ⪯ B
}

is a convex set. Here A ⪯ B means B−A is positive semi-definite9. This set is the inverse
image under an affine mapping of the

8Exercise: Prove.
9The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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Closure under Affine transform (contd.)
In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

f(x) =
n∑

i
xiai + b

yield convex sets8. Here ai is the ith row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:

1 the solution set of linear matrix inequality (Ai,B ∈ Sm)
{

x ∈ ℜn | x1A1 + . . .+ xnAn ⪯ B
}

is a convex set. Here A ⪯ B means B−A is positive semi-definite9. This set is the inverse
image under an affine mapping of the spositive semi-definite cone. That is, f−1 (cone) ={

x ∈ ℜn |B− (x1A1 + . . .+ xnAn) ∈ Sm
+

}
=

{
x ∈ ℜn|B ≥ (x1A1 + . . .+ xnAn)

}
.

8Exercise: Prove.
9The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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Closure under Affine transform (contd.)

2 hyperbolic cone (P ∈ Sn
+), which is the inverse image of the
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Closure under Affine transform (contd.)

2 hyperbolic cone (P ∈ Sn
+), which is the inverse image of the norm cone

Cm+1 =
{
(z, u)|||z|| ≤ u, u ≥ 0, z ∈ ℜm} =

{
(z, u)|zTz − u2 ≤ 0, u ≥ 0, z ∈ ℜm

}
is a

convex set. The inverse image is given by
f−1 (Cm+1) =

{
x ∈ ℜn |

(
Ax, cTx

)
∈ Cm+1

}
=

{
x ∈ ℜn|xTATAx − (cTx)2 ≤ 0

}
.

Setting, P = ATA, we get the equation of the hyperbolic cone:
{

x | xTPx ≤ (cTx)2, cTx ≥ 0
}
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Closure under Perspective and linear-fractional functions
The perspective function P : ℜn+1 → ℜn is defined as follows:

P : ℜn+1 → ℜn such that
P(x, t) = x/t dom P = {(x, t) | t > 0} (38)

The linear-fractional function f is a generalization of the perspective function and is defined as:
ℜn → ℜm:

f : ℜn → ℜm such that
f(x) = Ax+b

cTx+d dom f = {x | cTx + d > 0} (39)

The images and inverse images of convex sets under perspective and linear-fractional functions
are convex10.

10Exercise: Prove.
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H/w: Prove



Closure under Perspective and linear-fractional functions (contd)

The Figure below shows an example set.
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Closure under Perspective and linear-fractional functions (contd)
Consider the linear-fractional function f = 1

x1+x2+1x. The following Figure shows the image of
the set (from the prevous slide) under the linear-fractional function f.
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