Positive semidefinite cone: Primal Description

Consider a positive semi-definite matrix S in \Re^{2}. Then S must be of the form

$$
S=\left[\begin{array}{ll}
\mathrm{x} & y \tag{33}\\
y & z
\end{array}\right]
$$

We can represent the space of matrices \mathcal{S}_{+}^{2} of the form $S \in \mathcal{S}_{+}^{2}$ as a three dimensional space with non-negative \mathbf{x}, y and z coordinates and a non-negative determinant. This space
corresponds to a cone as shown in the Figure above.

Positive semidefinite cone: Dual Description

Instead of all vectors $\mathbf{z} \in \Re^{n}$, we can, without loss of generality, only require the above inequality to hold for all \mathbf{y} with $\|\mathbf{y}\|_{2}=1$.
(1) $S_{+}^{n}=\left\{A \in S^{n} \mid A \succeq 0\right\}=\left\{A \in S^{n} \mid \mathbf{y}^{\top} A \mathbf{y} \succeq 0, \forall\|\mathbf{y}\|_{2}=1\right\}$
(2) So, $S_{+}^{n}=\cap_{\|\mathbf{y}\|=1}\left\{A \in S \mid<\mathbf{y}^{\top} \mathbf{y}, A>\succeq 0\right\}$
(3) $\mathbf{y}^{\top} A \mathbf{y}=\sum_{i} \sum_{j} y_{i} a_{i j} y_{j}=\sum_{i} \sum_{j}\left(y_{i} y_{j}\right) a_{i j}=<\mathbf{y} \mathbf{y}^{T}, A>=\operatorname{tr}\left(\left(\mathbf{y} \mathbf{y}^{T}\right)^{T} A\right)=\operatorname{tr}\left(\mathbf{y y}^{T} A\right)$ - One parametrization for \mathbf{y} such that $\|\mathbf{y}\|_{2}=1$ is Frobenius inner product

$$
\begin{gather*}
\mathbf{y}=\left[\begin{array}{l}
\operatorname{Cos}(\theta) \\
\operatorname{Sin}(\theta)
\end{array}\right] \tag{34}\\
\mathbf{y} \mathbf{y}^{\top}=\left[\begin{array}{cc}
\operatorname{Cos}^{2}(\theta) & \operatorname{Cos}(\theta) \operatorname{Sin}(\theta) \\
\operatorname{Cos}(\theta) \operatorname{Sin}(\theta) & \operatorname{Sin}^{2}(\theta)
\end{array}\right] \tag{35}
\end{gather*}
$$

- Assignment 1: Plot a finite $\#$ of halfspaces parameterized by (θ).

Positive semidefinite cone: Dual Description

(1) $S_{+}^{n}=$ intersection of infinite $\#$ of half spaces belonging to $R^{n(n+1) / 2}$ [Dual Representation]
(1) Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
(2) Origin $=\mathrm{O}=$ matrix with all 0 eigenvalues.
(3) Interior consists of all full rank matrices $A(\operatorname{rank} A=m)$ i.e. $A \succ 0$.
$\mathrm{HW}: N=\|\cdot\|_{\infty}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}=\sup _{\|\mathbf{x}\|=1} N(A \mathrm{x})$
(1) If $N(\mathbf{x})=\max _{i}\left|x_{i}\right|$ then $N(A \mathbf{x})=\max _{i}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right| \leq \leq \max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$
where the last inequality is attained by considering a $\mathbf{x}=[1,1 . .1,1 \ldots 1]$ which has 1 in all positions. Then $\|\mathbf{x}\|_{\infty}=1$ and for such an \mathbf{x}, the upper bounded on the supremum in indeed attained.
(2) Therefore, it must be that $\|A \mathbf{x}\|_{1}=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$ (the maximum absolute row sum)

- That is,

$$
M_{N}(A)=\|A \mathbf{x}\|_{1}=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|
$$

Convex Polyhedron

- Solution set of finitely many inequalities or equalities: $A \mathbf{x} \preceq \mathbf{b}, C \mathbf{x} \equiv \mathbf{d}$
- $A \in \Re^{m \times n}$
- $C \in \Re^{p \times n}$
- \preceq is component wise inequality

- This is a Dual or H Description: Intersection of finite number of half-spaces and hyperplanes.
- Primal or V Description: Can you define convex polyhedra in terms of convex hull?
(1) Convex hull of finite $\#$ of points \Rightarrow Convex Polytope
(2) Conic hull of finite \# of points \Rightarrow Polyhedral Cone

> V = vertices or points
(3) Convex hull of $n+1$ affinely independent points \Rightarrow Simplex

Convex combinations and Convex Hull

- Convex combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right) \\
& \text { with } \quad \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1, \theta_{i} \geq 0
\end{aligned}
$$

- Equivalent Definition of Convex Set: C is convex iff it is closed under generalized convex combinations.
- Convex hull or $\operatorname{conv}(S)$ is the set of all convex combinations of points in the set S.
- $\operatorname{conv}(S)=$ The smallest convex set that contains $S . S$ may not be convex but conv (S) is.
- Prove by contradiction that if a point lies in another smallest convex set, and not in $\operatorname{conv}(S)$, then it must be in $\operatorname{conv}(S)$.

S is a finite set of points

Original set was not convex, whereas the convex hull is

- The idea of convex combination can be generalized to include infinite sums, integrals, and, in most general form, probability distributions.

Basic Prerequisite Topological Concepts in \Re^{n}

Definition

[Balls in \Re^{n}]: Consider a point $\mathbf{x} \in \Re^{n}$. Then the closed ball around \mathbf{x} of radius ϵ is

$$
\mathcal{B}[\mathbf{x}, \epsilon]=\left\{\mathbf{y} \in \Re^{n}\| \| \mathbf{y}-\mathbf{x} \| \leq \epsilon\right\}
$$

Likewise, the open ball around \mathbf{x} of radius ϵ is defined as

$$
\mathcal{B}(\mathbf{x}, \epsilon)=\left\{\mathbf{y} \in \Re^{n}\| \| \mathbf{y}-\mathbf{x} \|<\epsilon\right\}
$$

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.

Definition

[Boundedness in \Re^{n}]: We say that a set $\mathcal{S} \subset \Re^{n}$ is bounded when there exists an $\epsilon>0$ such that $\mathcal{S} \subseteq \mathcal{B}[0, \epsilon]$.

In other words, a set $\mathcal{S} \subseteq \Re^{n}$ is bounded means that there exists a number $\epsilon>0$ such that for all $\mathbf{x} \in \mathcal{S},\|\mathbf{x}\| \leq \epsilon$.

Convex Polytope: Primal and Dual Descriptions

Dual or H Description: A Convex Polytope P is a Bounded Convex Polyhedron. That is, is solution set of finitely many inequalities or equalities: $P=\{\mathbf{x} \mid A \mathbf{x} \preceq \mathbf{b}$, $C \mathbf{x}=\mathbf{d}\}$ where $A \in \Re^{m \times n}, C \in \Re^{p \times n}$ such that P is also bounded.
Primal or V Description : If $\exists S \subset \mathrm{P}$ s.t. $|S|$ is finite and $P=\operatorname{conv}(S)$, then P is a Convex Polytope.

Conic combinations and Conic Hull

- Recap Cone: A set C is a cone if $\forall \mathbf{x} \in C, \theta \mathbf{x} \in C$ for $\theta \geq 0$.

- Conic (nonnegative) Combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k} \\
& \text { with } \quad \theta_{i} \geq 0
\end{aligned}
$$

- Conic hull or $\operatorname{conic}(S)$: The set that contains all conic combinations of points in set S.
- conic $(S)=$ Smallest conic set that contains S.

Polyhedral Cone: Primal and Dual Descriptions

Dual or H Description : A Polyhedral Cone P is a Convex Polyhedron with $\mathbf{b}=0$. That is, $\{\mathbf{x} \mid A \mathbf{x} \succeq 0\}$ where $A \in \Re^{m \times n}$ and \succeq is component wise inequality.
Primal of V Description : If $\exists S \subset \mathrm{P}$ s.t. $|S|$ is finite and $P=\operatorname{cone}(S)$, then P is a Polyhedral Cone.

Affine combinations, Affine hull and Dimension of a set S

- Affine Combination of points $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{array}{ll}
\mathbf{x}= & \theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k} \\
\text { with } & \sum_{i} \theta_{i}=1
\end{array}
$$

- Affine hull or $\operatorname{aff}(\mathbf{S})$: The set that contains all affine combinations of points in set $S=$ Smallest affine set that contains S.

- Dimension of a set $S=$ dimension of $\operatorname{aff}(S)=$ dimension of vector space V such that $\operatorname{aff}(S)=\mathbf{v}+V$ for some $\mathbf{v} \in \operatorname{aff}(S)$.
- $S=\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n+1}\right\}$ is set of $n+1$ affinely independent points if $\left\{\mathbf{x}_{1}-\mathbf{x}_{0}, \mathbf{x}_{2}-\mathbf{x}_{0}, \ldots, \mathbf{x}_{n+1}-\mathbf{x}_{0}\right\}$ are linearly independent.

Simplex (plural: simplexes) Polytope: Primal and Dual Descriptions

Dual or H Description: An n Simplex S is a convex Polytope with of affine dimension n and having $n+1$ corners. That is, is solution set of finitely many inequalities or equalities: $S=\{\mathbf{x} \mid A \mathbf{x} \preceq \mathbf{b}, C \mathbf{x}=\mathbf{d}\}$ where $A \in \Re^{m \times n}, C \in \Re^{p \times n}$ such that S with affine dimension n and having $n+1$ corners.
Primal or V Description: Convex hull of $n+1$ affinely independent points. Specifically, let $S=\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n+1}\right\}$ be a set of $n+1$ affinely independent points, then an n-dimensional simplex is $\operatorname{conv}(S)$.
Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.

Convexity preserving operations

Assigment 1 is about ascertaining convexity or non-convexity and other properties of
a whole bunch of sets
In practice if you want to establish the convexity of a set \mathcal{C}, you could either
(1) prove it from first principles, i.e., using the definition of convexity or
(2) prove that \mathcal{C} can be built from simpler convex sets through some basic operations which preserve convexity.
Some of the important operations that preserve complexity are:
(1) Intersection
(2) Affine Transform
(3) Perspective and Linear Fractional Function

Closure under Intersection

The intersection of any number of convex sets is convex. Consider the set \mathcal{S} :

$$
\begin{equation*}
\mathcal{S}=\left\{\mathrm{x} \in \Re^{n}| | p(t) \mid \leq 1 \text { for }|t| \leq \frac{\pi}{3}\right\} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
p(t)=x_{1} \cos t+x_{2} \cos 2 t+\ldots+x_{m} \cos m t \tag{37}
\end{equation*}
$$

$p(t)$ plotted for different values of x1..xm

Closure under Intersection (contd.)

Any value of t that satisfies $|p(t)| \leq 1$, defines two regions, viz.,

$$
\Re^{\leq}(t)=\left\{\mathbf{x} \mid x_{1} \cos t+x_{2} \cos 2 t+\ldots+x_{m} \cos m t \leq 1\right\}
$$

and

$$
\Re \geq(t)=\left\{\mathbf{x} \mid x_{1} \cos t+x_{2} \cos 2 t+\ldots+x_{m} \cos m t \geq-1\right\}
$$

Each of the these regions is convex and for a given value of t, the set of points that may lie in \mathcal{S} is given by $\Re(t)=\Re \leq(t) \cap \Re \geq(t)$

Closure under Intersection (contd.)

$\Re(t)$ is also convex. However, not all the points in $\Re(t)$ lie in \mathcal{S}, since the points that lie in \mathcal{S} satisfy the inequalities for every value of t. Thus, \mathcal{S} can be given as:

$$
\mathcal{S}=\cap_{|t| \leq \frac{\pi}{3}} \Re(t)
$$

Closure under Affine transform

An affine transform is one that preserves

- Collinearity between points, i.e., three points which lie on a line continue to be collinear after the transformation.
- Ratios of distances along a line, i.e., for distinct colinear points $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \frac{\left\|\mathbf{p}_{2}-\mathbf{p}_{1}\right\|}{\left\|\mathbf{p}_{3}-\mathbf{p}_{2}\right\|}$ is preserved. Verify that affine transformation preserves these..
An affine transformation or affine map between two vector spaces $f: \Re^{n} \rightarrow \Re^{m}$ consists of a linear transformation followed by a translation:

```
x}\mapstoA\textrm{x}+\textrm{b
```

where $A \in \Re^{n \times m}$ and $\mathbf{b} \in \Re^{m}$.

Closure under Affine transform (contd.)

In the finite-dimensional case each affine transformation is given by a matrix A and a vector \mathbf{b}. The image and pre-image of convex sets under an affine transformation defined as

$$
f(\mathbf{x})=\sum_{i}^{n} x_{i} a_{i}+b
$$

yield convex sets ${ }^{8}$. Here a_{i} is the $i^{\text {th }}$ row of A. The following are examples of convex sets that are either images or inverse images of convex sets under affine transformations:
(1) the solution set of linear matrix inequality $\left(A_{i}, B \in \mathcal{S}^{m}\right)$

$$
\left\{\mathbf{x} \in \Re^{n} \mid x_{1} A_{1}+\ldots+x_{n} A_{n} \preceq B\right\}
$$

is a convex set. Here $A \preceq B$ means $B-A$ is positive semi-definite ${ }^{9}$. This set is the inverse image under an affine mapping of the positive semidefinite cone

[^0]
Closure under Affine transform (contd.) H/W: Prove

In the finite-dimensional case each affine transformation is given by a matrix A and a vector \mathbf{b}. The image and pre-image of convex sets under an affine transformation defined as

$$
f(\mathbf{x})=\sum_{i}^{n} x_{i} a_{i}+b
$$

yield convex sets ${ }^{8}$. Here a_{i} is the $i^{\text {th }}$ row of A. The following are examples of convex sets that are either images or inverse images of convex sets under affine transformations:
(1) the solution set of linear matrix inequality $\left(A_{i}, B \in \mathcal{S}^{m}\right)$

$$
\left\{\mathbf{x} \in \Re^{n} \mid x_{1} A_{1}+\ldots+x_{n} A_{n} \preceq B\right\}
$$

is a convex set. Here $A \preceq B$ means $B-A$ is positive semi-definite ${ }^{9}$. This set is the inverse image under an affine mapping of the spositive semi-definite cone. That is, f^{-1} (cone) $=$ $\left\{\mathrm{x} \in \Re^{n} \mid B-\left(x_{1} A_{1}+\ldots+x_{n} A_{n}\right) \in \mathcal{S}_{+}^{m}\right\}=\left\{\mathrm{x} \in \Re^{n} \mid B \geq\left(x_{1} A_{1}+\ldots+x_{n} A_{n}\right)\right\}$.

[^1]
Closure under Affine transform (contd.)

(2) hyperbolic cone $\left(P \in \mathcal{S}_{+}^{n}\right)$, which is the inverse image of the

Closure under Affine transform (contd.)

(2) hyperbolic cone $\left(P \in \mathcal{S}_{+}^{n}\right)$, which is the inverse image of the norm cone
$\mathcal{C}_{m+1}=\left\{(\mathbf{z}, u)\|\mid\| \mathbf{z} \| \leq u, u \geq 0, \mathbf{z} \in \Re^{m}\right\}=\left\{(\mathbf{z}, u) \mid \mathbf{z}^{T} \mathbf{z}-u^{2} \leq 0, u \geq 0, \mathbf{z} \in \Re^{m}\right\}$ is a convex set. The inverse image is given by
$f^{-1}\left(\mathcal{C}_{m+1}\right)=\left\{\mathrm{x} \in \Re^{n} \mid\left(A \mathrm{x}, \mathrm{c}^{T} \mathrm{x}\right) \in \mathcal{C}_{m+1}\right\}=\left\{\mathrm{x} \in \Re^{n} \mid \mathbf{x}^{T} A^{T} A \mathbf{x}-\left(\mathbf{c}^{T} \mathbf{x}\right)^{2} \leq 0\right\}$.
Setting, $P=A^{\top} A$, we get the equation of the hyperbolic cone:

$$
\left\{\mathrm{x} \mid \mathrm{x}^{T} P \mathrm{x} \leq\left(\mathrm{c}^{T} \mathrm{x}\right)^{2}, \mathrm{c}^{T} \mathrm{x} \geq 0\right\}
$$

Closure under Perspective and linear-fractional functions

The perspective function $P: \Re^{n+1} \rightarrow \Re^{n}$ is defined as follows:

$$
\begin{align*}
& P: \Re^{n+1} \rightarrow \Re^{n} \text { such that Shrinks from } \mathrm{n}+1 \text { to } \mathrm{n} \text { by division using } \mathrm{t} \\
& P(x, t)=x / t \quad \text { dom } P=\{(x, t) \mid t>0\} \tag{38}
\end{align*}
$$

The linear-fractional function f is a generalization of the perspective function and is defined as: $\Re^{n} \rightarrow \Re^{m}$:

$$
\begin{align*}
& f: \Re^{n} \rightarrow \Re^{m} \text { such that } \\
& f(\mathbf{x})=\frac{A \mathbf{x}+\mathbf{b}}{\mathbf{c}^{T} \mathbf{x}+d} \quad \operatorname{dom} f=\left\{\mathbf{x} \mid \mathbf{c}^{T} \mathbf{x}+d>0\right\} \tag{39}
\end{align*}
$$

The images and inverse images of convex sets under perspective and linear-fractional functions are convex 10
${ }^{10}$ Exercise: Prove.

Closure under Perspective and linear-fractional functions (contd)

The Figure below shows an example set.

Closure under Perspective and linear-fractional functions (contd)

Consider the linear-fractional function $f=\frac{1}{x_{1}+x_{2}+1} x$. The following Figure shows the image of the set (from the prevous slide) under the linear-fractional function f.

[^0]: ${ }^{8}$ Exercise: Prove.
 ${ }^{9}$ The inequality induced by positive semi-definiteness corresponds to a generalized inequality \preceq_{K} with $K=\mathcal{S}_{+}^{n}$.

[^1]: ${ }^{8}$ Exercise: Prove.
 ${ }^{9}$ The inequality induced by positive semi-definiteness corresponds to a generalized inequality \preceq_{K} with $K=\mathcal{S}_{+}^{n}$.

