Positive semidefinite cone: Primal Description

Consider a positive semi-definite matrix S in \Re^2 . Then S must be of the form

$$S = \begin{bmatrix} \mathbf{x} & y \\ y & z \end{bmatrix}$$
(33)

We can represent the space of matrices S_+^2 of the form $S \in S_+^2$ as a three dimensional space with non-negative \mathbf{x} , y and z coordinates and a non-negative determinant. This space

corresponds to a cone as shown in the Figure above.

Positive semidefinite cone: **Dual Description**

Instead of all vectors $z \in \Re^n$, we can, without loss of generality, only require the above inequality to hold for all y with $||y||_2 = 1$.

$$S^n_+ = \{ A \in S^n | A \succeq 0 \} = \{ A \in S^n | \mathbf{y}^T A \mathbf{y} \succeq 0, \forall \| \mathbf{y} \|_2 = 1 \}$$

$$\textbf{So, } S_{+}^{n} = \cap_{\parallel \mathbf{y} \parallel = 1} \{ A \in S \mid < \mathbf{y}^{T} \mathbf{y}, A \geq \succeq 0 \}$$

 $\bigcirc \mathbf{y}^T A \mathbf{y} = \sum_i \sum_j y_i \mathbf{a}_{ij} y_j = \sum_i \sum_j (\mathbf{y}_i \mathbf{y}_j) \mathbf{a}_{ij} = \langle \mathbf{y} \mathbf{y}^T, \mathbf{A} \rangle = tr((\mathbf{y} \mathbf{y}^T)^T \mathbf{A}) = tr(\mathbf{y} \mathbf{y}^T \mathbf{A})$

• One parametrization for y such that $\|y\|_2 = 1$ is Frobenius inner product

$$\mathbf{y} = \begin{bmatrix} Cos(\theta) \\ Sin(\theta) \end{bmatrix}$$
(34)

$$\mathbf{y}\mathbf{y}^{\mathsf{T}} = \begin{bmatrix} Cos^{2}(\theta) & Cos(\theta)Sin(\theta) \\ Cos(\theta)Sin(\theta) & Sin^{2}(\theta) \end{bmatrix}$$
(35)

• Assignment 1: Plot a finite # of halfspaces parameterized by (θ) .

Positive semidefinite cone: **Dual Description**

- $S^n_+ =$ intersection of infinite # of half spaces belonging to $R^{n(n+1)/2}$ [Dual Representation]
 - Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
 - **2** Origin = O = matrix with all 0 eigenvalues.
 - Interior consists of all full rank matrices A (rank A = m) i.e. $A \succ 0$.

HW:
$$N = \|.\|_{\infty}$$
, $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})} = \sup_{\|\mathbf{x}\|=1} N(A\mathbf{x})$

• If
$$N(\mathbf{x}) = \max_{i} |x_i|$$
 then $N(A\mathbf{x}) = \max_{i} |\sum_{j=1}^{m} a_{ij}x_j| \le \max_{i} \sum_{j=1}^{m} |a_{ij}| |x_j| \le \max_{i} \sum_{j=1}^{m} |a_{ij}|$
where the last inequality is attained by considering a $\mathbf{x} = [1, 1..1, 1...1]$ which has 1 in all positions. Then $\|\mathbf{x}\|_{\infty} = 1$ and for such an \mathbf{x} , the upper bounded on the supremum in

positions. Then $\|\mathbf{x}\|_{\infty} = 1$ and for such an \mathbf{x} , the upper bounded on the supremum in indeed attained.

Therefore, it must be that $||A\mathbf{x}||_1 = \max_i \sum_{j=1}^m |a_{ij}|$ (the maximum absolute row sum)
 That is,

$$M_N(A) = ||A\mathbf{x}||_1 = \max_i \sum_{j=1}^m |a_{ij}|$$

Convex Polyhedron

- \bullet Solution set of finitely many inequalities or equalities: $A\mathbf{x} \preceq \mathbf{b}$, $C\mathbf{x} \equiv \mathbf{d}$
 - $A \in \Re^{m \times n}$
 - ► $C \in \Re^{p \times n}$

• This is a **Dual or** *H* **Description**: Intersection of finite number of half-spaces and hyperplanes.

- Primal or V Description: Can you define convex polyhedra in terms of convex hull?
 - **(**) Convex hull of finite # of points \Rightarrow **Convex Polytope**
 - **2** Conic hull of finite # of points \Rightarrow **Polyhedral Cone**
 - **③** Convex hull of n + 1 affinely independent points \Rightarrow **Simplex**

V = vertices or points

Convex combinations and Convex Hull

• Convex combination of points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ is any point \mathbf{x} of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k = \mathit{conv}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\})$$

with $\theta_1 + \theta_2 + \ldots + \theta_k = 1, \theta_i \ge 0.$

- Equivalent Definition of Convex Set: *C* is convex iff it is closed under generalized convex combinations.
- Convex hull or conv(S) is the set of all convex combinations of points in the set S.
- conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.
 - Prove by contradiction that if a point lies in another smallest convex set , and not in conv(S), then it must be in conv(S).

S is a finite set of points

Original set was not convex, whereas the convex hull is

• The idea of convex combination can be generalized to include infinite sums, integrals, and, in most general form, probability distributions.

Basic Prerequisite Topological Concepts in \Re^n

Definition

[Balls in \Re^n]: Consider a point $\mathbf{x} \in \Re^n$. Then the closed ball around \mathbf{x} of radius ϵ is

$$\mathcal{B}[\mathbf{x},\epsilon] = \left\{\mathbf{y} \in \Re^n |||\mathbf{y} - \mathbf{x}|| \le \epsilon
ight\}$$

Likewise, the open ball around $\mathbf x$ of radius ϵ is defined as

$$\mathcal{B}(\mathbf{x}, \epsilon) = \left\{ \mathbf{y} \in \Re^n |||\mathbf{y} - \mathbf{x}|| < \epsilon \right\}$$

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.

Definition

[Boundedness in \Re^n]: We say that a set $S \subset \Re^n$ is *bounded* when there exists an $\epsilon > 0$ such that $S \subseteq \mathcal{B}[0, \epsilon]$.

In other words, a set $S \subseteq \Re^n$ is bounded means that there exists a number $\epsilon > 0$ such that for all $\mathbf{x} \in S$, $||\mathbf{x}|| \le \epsilon$.

Prof. Ganesh Ramakrishnan (IIT Bombay)

Convex Polytope: Primal and Dual Descriptions

Dual or *H* **Description:** A Convex Polytope *P* is a **Bounded Convex Polyhedron**. That is, is solution set of finitely many inequalities or equalities: $P = \{\mathbf{x} | A\mathbf{x} \leq \mathbf{b}, C\mathbf{x} = \mathbf{d}\}$ where $A \in \Re^{m \times n}$, $C \in \Re^{p \times n}$ such that *P* is also bounded. **Primal or** *V* **Description** : If $\exists S \subset P$ s.t. |S| is finite and P = conv(S), then *P* is a **Convex Polytope**.

Conic combinations and Conic Hull

- Recap **Cone**: A set C is a cone if $\forall x \in C$, $\theta x \in C$ for $\theta \ge 0$.
- Conic (nonnegative) Combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k$$

with $\theta_i \geq 0$.

• Conic hull or conic(S): The set that contains all conic combinations of points in set S.

• conic(S) =Smallest conic set that contains S.

Polyhedral Cone: **Primal** and **Dual** Descriptions

Dual or *H* **Description** : A Polyhedral Cone *P* is a Convex Polyhedron with $\mathbf{b} = 0$. That is, $\{\mathbf{x} | A\mathbf{x} \succeq 0\}$ where $A \in \Re^{m \times n}$ and \succeq is component wise inequality. **Primal of** *V* **Description** : If $\exists S \subset P$ s.t. |S| is finite and P = cone(S), then *P* is a **Polyhedral Cone**.

Affine combinations, Affine hull and Dimension of a set S

• Affine Combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = heta_1 \mathbf{x}_1 + heta_2 \mathbf{x}_2 + ... + heta_k \mathbf{x}_k$$

with $\sum_i heta_i = 1$

• Affine hull or aff(S): The set that contains all affine combinations of points in set S = Smallest affine set that contains S.

1010

- Dimension of a set S = dimension of aff(S) = dimension of vector space V such that $aff(S) = \mathbf{v} + V$ for some $\mathbf{v} \in aff(S)$.
- $S = {\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{n+1}}$ is set of n+1 affinely independent points if ${\mathbf{x}_1 \mathbf{x}_0, \mathbf{x}_2 \mathbf{x}_0, \dots, \mathbf{x}_{n+1} \mathbf{x}_0}$ are linearly independent.

Simplex (plural: simplexes) Polytope: Primal and Dual Descriptions

Dual or *H* **Description**: An *n* Simplex *S* is a convex Polytope with of affine dimension *n* and having n + 1 corners. That is, is solution set of finitely many inequalities or equalities: $S = {\mathbf{x} | A\mathbf{x} \leq \mathbf{b}, C\mathbf{x} = \mathbf{d}}$ where $A \in \Re^{m \times n}$, $C \in \Re^{p \times n}$ such that *S* with affine dimension *n* and having n + 1 corners.

Primal or *V* **Description**: Convex hull of n + 1 affinely independent points. Specifically, let $S = {x_0, x_1, ..., x_{n+1}}$ be a set of n + 1 affinely independent points, then an *n*-dimensional simplex is conv(S).

Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.

Convexity preserving operations

Assigment 1 is about ascertaining convexity or non-convexity and other properties of a whole bunch of sets

In practice if you want to establish the convexity of a set \mathcal{C} , you could either

- prove it from first principles, *i.e.*, using the definition of convexity or
- Prove that C can be built from simpler convex sets through some basic operations which preserve convexity.

Some of the important operations that preserve complexity are:

- Intersection
- 2 Affine Transform
- Perspective and Linear Fractional Function

Closure under Intersection

The intersection of any number of convex sets is convex. Consider the set S:

$$S = \left\{ \mathbf{x} \in \Re^n \mid |\mathbf{p}(t)| \le 1 \text{ for } |t| \le \frac{\pi}{3} \right\}$$
(36)

where

$$p(t) = x_1 \cos t + x_2 \cos 2t + \ldots + x_m \cos mt$$

p(t) plotted for different values of x1..xm

Prof. Ganesh Ramakrishnan (IIT Bombay)

Convex Sets : CS709

(37)

Closure under Intersection (contd.)

Any value of t that satisfies $|p(t)| \leq 1$, defines two regions, *viz.*,

$$\Re^{\leq}(t) = \left\{ \mathbf{x} \mid x_1 \cos t + x_2 \cos 2t + \ldots + x_m \cos mt \le 1 \right\}$$

and

$$\Re^{\geq}(t) = \left\{ \mathbf{x} \mid x_1 \cos t + x_2 \cos 2t + \ldots + x_m \cos mt \ge -1 \right\}$$

Each of the these regions is convex and for a given value of t, the set of points that may lie in S is given by $\Re(t) = \Re^{\leq}(t) \cap \Re^{\geq}(t)$

Closure under Intersection (contd.)

 $\Re(t)$ is also convex. However, not all the points in $\Re(t)$ lie in S, since the points that lie in S satisfy the inequalities for every value of t. Thus, S can be given as:

Closure under Affine transform

An affine transform is one that preserves

- Collinearity between points, *i.e.*, three points which lie on a line continue to be collinear after the transformation.
- Ratios of distances along a line, *i.e.*, for distinct colinear points p₁, p₂, p₃, ||p₂-p₁|| is preserved.
 Verify that affine transformation preserves these..

An affine transformation or affine map between two vector spaces $f: \Re^n \to \Re^m$ consists of a linear transformation followed by a translation:

 $\mathbf{x}\mapsto A\mathbf{x}+\mathbf{b}$

where $A \in \Re^{n \times m}$ and $\mathbf{b} \in \Re^m$.

Closure under Affine transform (contd.)

In the finite-dimensional case each affine transformation is given by a matrix A and a vector \mathbf{b} . The image and pre-image of convex sets under an affine transformation defined as

$$f(\mathbf{x}) = \sum_{i}^{n} x_{i} a_{i} + b$$

yield convex sets⁸. Here a_i is the i^{th} row of A. The following are examples of convex sets that are either images or inverse images of convex sets under affine transformations:

() the solution set of linear matrix inequality $(A_i, B \in S^m)$

$$\left\{\mathbf{x}\in\mathfrak{R}^n\mid x_1A_1+\ldots+x_nA_n\preceq B\right\}$$

is a convex set. Here $A \leq B$ means B - A is positive semi-definite⁹. This set is the inverse image under an affine mapping of the **positive semidefinite cone**

⁹The inequality induced by positive semi-definiteness corresponds to a generalized inequality \leq_{κ} with $\kappa = S_{+}^{n}$.

⁸Exercise: Prove.

Closure under Affine transform (contd.) H/W: Prove

In the finite-dimensional case each affine transformation is given by a matrix A and a vector \mathbf{b} . The image and pre-image of convex sets under an affine transformation defined as

$$f(\mathbf{x}) = \sum_{i}^{n} x_{i} a_{i} + b$$

yield convex sets⁸. Here a_i is the i^{th} row of A. The following are examples of convex sets that are either images or inverse images of convex sets under affine transformations:

() the solution set of linear matrix inequality $(A_i, B \in S^m)$

$$\left\{\mathbf{x}\in\mathfrak{R}^n\mid x_1A_1+\ldots+x_nA_n\preceq B\right\}$$

is a convex set. Here $A \leq B$ means B - A is positive semi-definite⁹. This set is the inverse image under an affine mapping of the spositive semi-definite cone. That is, $f^{-1}(cone) = \{\mathbf{x} \in \Re^n | B - (x_1A_1 + \ldots + x_nA_n) \in S^m_+\} = \{\mathbf{x} \in \Re^n | B \geq (x_1A_1 + \ldots + x_nA_n)\}$. ⁸Exercise: Prove. ⁹The image under the positive semi-definite consultation of the spontaneous set of

⁹The inequality induced by positive semi-definiteness corresponds to a generalized inequality \leq_{κ} with $\kappa = S_{+}^{n}$.

Closure under Affine transform (contd.)

2 hyperbolic cone $(P \in S^n_+)$, which is the inverse image of the

Closure under Affine transform (contd.)

Setting, P = A^TA, we get the equation of the hyperbolic cone:
Approximate of the norm cone $\begin{pmatrix}
 P \in S_{+}^{n} \\
 P \in S_{+}^{n}
 \end{pmatrix}$ which is the inverse image of the norm cone $\begin{pmatrix}
 C_{m+1} = \left\{ (\mathbf{z}, u) || |\mathbf{z}| | \leq u, u \geq 0, \mathbf{z} \in \Re^{m} \right\} = \left\{ (\mathbf{z}, u) | \mathbf{z}^{T} \mathbf{z} - u^{2} \leq 0, u \geq 0, \mathbf{z} \in \Re^{m} \right\}$ is a convex set. The inverse image is given by $\begin{pmatrix}
 f^{-1} (\mathcal{C}_{m+1}) = \left\{ \mathbf{x} \in \Re^{n} | (A\mathbf{x}, \mathbf{c}^{T} \mathbf{x}) \in \mathcal{C}_{m+1} \right\} = \left\{ \mathbf{x} \in \Re^{n} | \mathbf{x}^{T} A^{T} A \mathbf{x} - (\mathbf{c}^{T} \mathbf{x})^{2} \leq 0 \right\}$ Setting, P = A^TA, we get the equation of the hyperbolic cone:

$$\left\{ \mathbf{x} \mid \mathbf{x}^{\mathsf{T}} \mathsf{P} \mathbf{x} \le (\mathbf{c}^{\mathsf{T}} \mathbf{x})^2, \mathbf{c}^{\mathsf{T}} \mathbf{x} \ge 0 \right\}$$

Closure under Perspective and linear-fractional functions

H/w: Prove

The perspective function $P: \Re^{n+1} \to \Re^n$ is defined as follows:

 $P: \Re^{n+1} \to \Re^n \text{ such that Shrinks from n+1 to n by division using t}$ $P(x, t) = x/t \qquad \text{dom } P = \{(x, t) \mid t > 0\}$ (38)

The linear-fractional function f is a generalization of the perspective function and is defined as: $\Re^n \to \Re^m$:

$$f: \mathfrak{R}^{n} \to \mathfrak{R}^{m} \text{ such that} f(\mathbf{x}) = \frac{A\mathbf{x} + \mathbf{b}}{\mathbf{c}^{T}\mathbf{x} + d} \qquad \text{dom } f = \{\mathbf{x} \mid \mathbf{c}^{T}\mathbf{x} + d > 0\}$$
(39)

The images and inverse images of convex sets under perspective and linear-fractional functions are convex¹⁰.

¹⁰Exercise: Prove.

Prof. Ganesh Ramakrishnan (IIT Bombay)

Closure under Perspective and linear-fractional functions (contd)

The Figure below shows an example set.

Closure under Perspective and linear-fractional functions (contd)

Consider the linear-fractional function $f = \frac{1}{x_1 + x_2 + 1}x$. The following Figure shows the image of the set (from the prevous slide) under the linear-fractional function f.

