PAGES 216 TO 231 OF
http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz ation.pdf, interspersed with pages between 239 and 253 and summary of material thereafter, which extend univariate concepts to generic spaces
Maximum and Minimum values of univariate functions
Let f be a function with domain \mathcal{D}. Then f has an absolute maximum (or global maximum) value at point $c \in \mathcal{D}$ if

$$
f(x) \leq f(c), \forall x \in \mathcal{D}
$$

and an absolute minimum (or global minimum) value at $c \in \mathcal{D}$ if

$$
f(x) \geq f(c), \forall x \in \mathcal{D}
$$

If there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x), \forall x \in \mathcal{I}$, then we say that $f(c)$ is a local maximum value of f. On the other hand, if there is an open interval \mathcal{I} containing c in which $f(c) \leq f(x), \forall x \in \mathcal{I}$, then we say that $f(c)$ is a local minimum value of f. If $f(c)$ is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$, the $f(c)$ is called a local extreme value of f.

Theorem 39 If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f^{\prime}(c)=0 . \rightarrow$ if all pods of f exist at $x=C C C D \subseteq R^{n}$ \& if $f(c)$ is local extiveme, $\nabla f(c)=0$
Theorem 40 A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

Note: $[a, \infty)$ is closed bat NoT bounded replace with set for k \mathbb{R}^{n} So both conditions are needed

For \mathbb{R}^{n}

Theorem 60 If $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \Re^{n}$ has a local maximum or minimum at \mathbf{x}^{*} and if the first-order partial derivatives exist at \mathbf{x}^{*}, then $f_{x_{i}}\left(\mathbf{x}^{*}\right)=0$ for all $1 \leq i \leq n$.

$$
\text { ic } \nabla f\left(x^{x}\right)=0
$$

Definition 27 [Critical point]: A point \mathbf{x}^{*} is called a critical point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^{n}$ if

1. If $f_{x_{i}}\left(\mathbf{x}^{*}\right)=0$, for $1 \leq i \leq n$.
2. OR $f_{x_{i}}\left(\mathbf{x}^{*}\right)$ fails to exist for any $1 \leq i \leq n$.

A procedure for computing all critical points of a function f is:

1. Compute $f_{x_{i}}$ for $1 \leq i \leq n$.
2. Determine if there are any points where any one of $f_{x_{i}}$ fails to exist. Add such points (if any) to the list of critical points.
3. Solve the system of equations $f_{x_{i}}=0$ simultaneously. Add the solution points to the list of saddle points.

Figure 4.17: The paraboloid $f\left(x_{1}, x_{2}\right)=9-x_{1}^{2}-x_{2}^{2}$ attains its maximum at $(0,0)$. The tanget plane to the surface at $(0,0, f(0,0))$ is also shown, and so is

Figure 4.18: Plot illustrating critical points where derivative fails to exist.

Definition 28 [Saddle point]: A point \mathbf{x}^{*} is called a saddle point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^{n}$ if \mathbf{x}^{*} is a critical point of f but \mathbf{x}^{*} does not correspond to a local maximum or minimum of the function.

Figure 4.19: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, which has a saddle point at $(0,0)$.

Figure 4.20: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, when viewed from the x_{1} axis is concave up.

Figure 4.21: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, when viewed from the x_{2} axis is concave down.

Note: For LP's, $A x \geqslant 6$ is closed and bounded $D \& f^{\prime}(x)=c^{T} x$ attains
global max / min on boy of D. : This the not applicable
Theorem 41 A continuous function $f(x)$ on a closed and bounded interval $a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. If $a<c<b$ and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$. If $a<d<b$ and $f^{\prime}(d)$ exists, then $f^{\prime}(d)=0$: If $D \subseteq \mathbb{R}^{n}$ is closed \& bounded \& f is cts on D \& if global max min is attained at $C E \ln \ell(D)$ \& f is differentiable at C then $\nabla f(c)=0$
Theorem 42 If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$ and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Figure 4.1 illustrates Rolle's theorem with an example function $f(x)=9-x^{2}$ on the interval $[-3,+3]$.

Figure 4.1: Illustration of Rolle's theorem with $f(x)=9-x^{2}$ on the interval $[-3,+3]$. We see that $f^{\prime}(0)=0$.
Q: What is a more general version of Rile's the?
Ans. Mean value thu

Theorem 43 If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$, then there is some $c \in(a, b)$ such that, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. If $D \subseteq \mathbb{R}^{n}$ is closed \& bounded \& fisc cts on D \& diff cm
 int (D) then: Turn to neat page

Figure 4.2: Illustration of mean value theorem with $f(x)=9-x^{2}$ on the interval $[-3,1]$. We see that $f^{\prime}(-1)=\frac{f(1)-f(-3)}{4}$.

Figure 4.4: The mean value theorem can be violated if $f(x)$ is not differentiable at even a single point of the interval. Illustration on $f(x)=x^{2 / 3}$ with the

The mean value theorem in one variable generalizes to several variables by applying the theorem in one variable via parametrization. Let G be an open subset of \mathbf{R}^{n}, and let $f: G \rightarrow \mathbf{R}$ be a differentiable function. Fix points $x, y \in G$ such that the interval $x y$ lies in G, and define $g(t)=f((1-t) x+t y)$. Since g is a differentiable function in one variable, the mean value theorem gives:

$$
g(1)-g(0)=g^{\prime}(c)
$$

for some c between 0 and 1 . But since $g(1)=f(y)$ and $g(0)=f(x)$, computing $g^{\prime}(c)$ explicitly we have:

$$
f(y)-f(x)=\nabla f((1-c) x+c y) \cdot(y-x)
$$

Converaty of the domain is fundamental
since $\forall t \in[0,1], \frac{x(1-k)+t y \in D \text { amain }]}{d}$
That is, we require convexity of set in some sense

Corollary 44 Let f be continuous on $[a, b]$ and differentiable on (a, b) with $m \leq f^{\prime}(x) \leq M, \forall x \in(a, b)$. Then, $m(x-t) \leq f(x)-f(t) \leq M(x-t)$, if $a \leq t \leq x \leq b$. Applying mean. value the
\quad Let \mathcal{D} be the domain of function f. We define

Let \mathcal{D} be the domain of function f. We define 4 substituting inequality

1. the linear approximation of a differentiable function $f(x)$ as $L_{a}(x)=$ $f(a)+f^{\prime}(a)(x-a)$ for some $a \in \mathcal{D}$. We note that $L_{a}(x)$ and its first derivative at a agree with $f(a)$ and $f^{\prime}(a)$ respectively.

$$
\rightarrow f(a)+f^{\prime}(c)(x-a) \text { for }(c-a) \text { is MVi }
$$

2. the quadratic approximation of a twice differentiable function $f(x)$ as the parabola $Q_{a}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$. We note that $Q_{a}(x)$ and its first and second derivatives at a agree with $f(a), f^{\prime}(a)$ and $f^{\prime \prime}(a)$ respectively. $P_{a}(x)=C_{1}+c_{2} x+c_{3} x^{2}$ sot $P_{a}(a) \leq f(a) P_{a}^{\prime}(a) \leq f^{\prime}(a)$ $x)^{\prime \prime} \stackrel{a}{a}(a)=f^{\prime}(a)$
3. the cubic approximation of a thrice differentiable function $f(x)$ is $C_{a}(x) \stackrel{a(a)}{=}$
$f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{6} f^{\prime \prime \prime}(a)(x-a)^{3} . C_{a}(x)$ and its first, second and third derivatives at a agree with $f(a), f^{\prime}(a), f^{\prime \prime}(a)$ and $f^{\prime \prime \prime}(a)$

$$
\begin{aligned}
& R^{\prime \prime}(a)=f^{\prime \prime}(a) \\
& R^{\prime \prime \prime}(a)=f^{\prime \prime}(a)
\end{aligned}
$$

Figure 4.3: Plot of $f(x)=\frac{1}{x}$, and its linear, quadratic and cubic approximations.
can be thought of as general $n^{\text {in }}$ order representation of Theorem 45 The Taylor's theorem states that if f and its first n aerivatives $f(b)$
$f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on the closed interval $[a, b]$, and differentiable on (a, b), then there exists a number $c \in(a, b)$ such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2!} f^{\prime \prime}(a)(b-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(b-a)^{n}+\frac{1}{(n+1)!} f^{(n+1)}(c)(b-
$$

\downarrow MUT is special case
MVT: ヨ $C \in(a, b)$ sit $f(b)=f(a)+f^{\prime}(c)(b-a)$ Ho c in $^{\circ}$ in the Tor prove use MIT successively on $f(\cdot), f^{\prime}(0), \ldots f^{n}(\cdot)$

Consider the function $\phi(t)=f(\mathrm{x}+t \mathrm{~h})$ considered in theorem 71, defined on the domain $\mathcal{D}_{\phi}=[0,1]$. Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continuous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem (45) with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives second order approx
\left.${\underset{\sim}{x}}_{f(t \mathrm{~h}}^{\mathrm{x}}\right)=f(\mathrm{x})+t \mathrm{~h}^{T} \nabla f(\mathrm{x})+t^{2} \frac{1}{2} h^{T} \nabla^{2} f(\mathrm{x}) \mathrm{h}+O\left(t^{3}\right)$
replace $\nabla^{2} f(x) \leq y \nabla^{2} f(x+c h)$ for $C E(0, t)$

We discussed in class, derivation of the second order Taylor expression.
We piso discussed that the matrix $\nabla^{2} f$ of mixed partial derivatives is symmetric if f has continuous mixed partial derivatives

We will introduce some definitions at this point:
strictly

- A function f is said to be increasing on an interval \mathcal{I} in its domain \mathcal{D} if $f(t)<f(x)$ whenever $t<\hat{x}$.
strictly
- The function f is said to be decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if $f(t)>f(x)$ whenever $t<x$.

These definitions help us derive the following theorem:

Theorem 46 Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and diferentiable on $\operatorname{int}(\mathcal{I})$. Then:

1. if $f^{\prime}(x)>0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is increasing on \mathcal{I}; \rightarrow Sufficient
2. if $f^{\prime}(x)<0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is decreasing on \mathcal{I};
3. if $f^{\prime}(x)=0$ for all $x \in \operatorname{int}(\mathcal{I})$, iff, f is constant on \mathcal{I}. \rightarrow Necessary \& sufficient

Figure 4.5: Illustration of the increasing and decreasing regions of a function $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$

Theorem 47 Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $\operatorname{int}(\mathcal{I})$. Then:

1. if $f^{\prime}(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f^{\prime}(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is increasing on \mathcal{I}; Necessary
2. if $f^{\prime}(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f^{\prime}(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is decreasing on \mathcal{I}. Necessary

Theorem 48 Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and di. ferentiable in int (\mathcal{I}). Then:

1. if f is increasing on \mathcal{I}, then $f^{\prime}(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$;
2. if f is decreasing on \mathcal{I}, then $f^{\prime}(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$.

Figure 4.6: Plot of $f(x)=x^{5}$, illustrating that though the function is increasing on $(-\infty, \infty), f^{\prime}(0)=0$.
In summary: $f^{\prime}(x) \geqslant 0 \Longleftrightarrow f$ is increasing
$f^{\prime}(x) \geqslant 0 \& f^{\prime}(x)=0$ at countable \# pto $\Longleftrightarrow f$ is strictly

Analogous to the definition of increasing functions introduced on page numbber 220 , we next introduce the concept of monotonic functions. This concept is very useful for characterization of a convex function.
Definition 39 Let $\mathrm{f}: \mathcal{D} \rightarrow \Re^{n}$ and $\mathcal{D} \subseteq \Re^{n}$. Then

1. f is monotone on \mathcal{D} if for any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$, 1
Extension of increasing

in to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(f\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)\right)^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \geq 0$
2. f is strictly monotone on \mathcal{D} if for any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$ with $\mathrm{x}_{1} \neq \mathrm{x}_{2}$,

$$
\begin{equation*}
\left(\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)\right)^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)>0 \tag{4.42}
\end{equation*}
$$

3. f is uniformly or strongly monotone on \mathcal{D} if for any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$, there is a constant $c>0$ such that

$$
\begin{gather*}
\text { i. } f\left(x_{1}\right)-j\left(x_{2}\right) \| \tag{4.43}\\
\left\|x_{1}-x_{2}\right\|
\end{gather*} \geqslant\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \geq c\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}
$$

For $n=1$, and $D=(a, b)$, this implies (by mean value that $f^{\prime}(t) \geqslant c \quad \forall \quad t \in(a, b) \ldots$ Theorem) For $n>1$, norm of even g row of the Jacobian ($n \times n$ matrix) should be $\geqslant C$ (verify)

Figure 4.7: Example illustrating the derivative test for function $f(x)=3 x^{5}-$ $5 x^{3}$.

Procedure 1 [First derivative test]: Let c be an isolated critical number of f. Then,

1. $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, or (but not equivalently), the sign of $f^{\prime}(x)$ changes from negative in $\left[c-\epsilon_{1}, c\right]$ to positive in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
2. $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, or but not equivalently), the sign of $f^{\prime}(x)$ changes from positive in $\left[c-\epsilon_{1}, c\right]$ to negative in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
3. If $f^{\prime}(x)$ is positive in an interval $\left[c-\epsilon_{1}, c\right]$ and also positive in to clans interval $\left[c, c-\epsilon_{2}\right]$, or $f^{\prime}(x)$ is negative in an interval $\left[c-\epsilon_{1}, c\right]$ and r) n also negative in an interval $\left[c, c-\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, then $f(c)$ is not baton a local extremum.
As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f^{\prime}(x)=f^{\prime}(x)$ $15 x^{2}(x+1)(x-1)$. The critical points are 0,1 and -1 . Of the three, the sign of $f^{\prime}(x)$ changes at 1 and -1 , which are local minimum and maximum respectively.

Procedure 3 [Second derivative test]: Let c be a critical number of f where $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ exists.

1. If $f^{\prime \prime}(c)>0$ then $f(c)$ is a local minimum.
2. If $f^{\prime \prime}(c)<0$ then $f(c)$ is a local maximum.
3. If $f^{\prime \prime}(c)=0$ then $f(c)$ could be a local maximum, a local minimum, neither or both. That is, the test fails.

For example,

- If $f(x)=x^{4}$, then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ and we can see that $f(0)$ is a local minimum.
- If $f(x)=-x^{4}$, then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ and we can see that $f(0)$ is a local maximum.
- If $f(x)=x^{3}$, then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ and we can see that $f(0)$ is neither a local minimum nor a local maximum. $(0,0)$ is an inflection point in this case.
- If $f(x)=x+2 \sin x$, then $f^{\prime}(x)=1+2 \cos x . f^{\prime}(x)=0$ for $x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$, which are the critical numbers. $f^{\prime \prime}\left(\frac{2 \pi}{3}\right)=-2 \sin \frac{2 \pi}{3}=-\sqrt{3}<0 \Rightarrow$ $f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum value. On the other hand, $f^{\prime \prime}\left(\frac{4 \pi}{3}\right)=$ $\sqrt{3}>0 \Rightarrow f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum value.
- If $f(x)=x+\frac{1}{x}$, then $f^{\prime}(x)=1-\frac{1}{x^{2}}$. The critical numbers are $x= \pm 1$. Note that $x=0$ is not a critical number, even though $f^{\prime}(0)$ does not exist, because 0 is not in the domain of $f . f^{\prime \prime}(x)=\frac{2}{x^{3}} . f^{\prime \prime}(-1)=-2<0$ and therefore $f(-1)=-2$ is a local maximum. $f^{\prime \prime}(1)=2>0$ and therefore $f(1)=2$ is a local minimum.

Convexity of a function $f: R \rightarrow R$
(I) f is sixty ${ }_{\wedge}^{\text {convex }}$ if $f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(i-\theta) f\left(x_{2}\right)$ $\forall x_{1}, x_{2}$ in domain $D \leqslant R$ for $\theta x_{1}+(1-\theta) x_{2} \in D, \quad \forall \theta \in[0,1]$ D should be convex

(1) f is sticky strictly?
$f^{\prime}(x)$ mereaing in D

$$
\left(f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{2}\right)\right)\left(x_{1}-x_{2}\right) \geq 0
$$

(II) $f(y) \geqslant \underbrace{f(x)+f^{\prime}(x)(y-x)}$

Linear approximation to y ing x
(11) : $: f^{\prime}(x)$ is increasing $\Rightarrow f^{\prime \prime}(x) \geqslant 0$

Need to prove that (I) \equiv II \equiv (II) 三 (V)

I] Ex. erring these equivalences for a general $f: D \rightarrow R$ where D is a convex set

$$
\begin{aligned}
& \text { - [I] } \forall x_{1}, x_{2} \in D \& \forall \theta \in[0,1] \\
& f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leqslant \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)
\end{aligned}
$$

[II] ∇f is monotone in D ie $\forall x_{1}, x_{2} \in D$

$$
\begin{aligned}
& \left\langle\nabla f\left(x_{1}\right)--\nabla f\left(x_{2}\right), x_{1}-x_{2}\right\rangle \geqslant 0 \\
& \forall x_{1}, x_{2} \in D \\
& f\left(x_{2}\right) \geqslant f\left(x_{1}\right)+\left\langle\nabla f\left(x_{1}\right), x_{2}-x_{1}\right\rangle \\
& (>)
\end{aligned}
$$

$$
\forall x \in D
$$

$$
\begin{array}{cc}
\nabla^{2} f(x) & \geqslant 0 \\
(\succ) & \text { ie } \left.\quad \nabla^{2} f(x) \text { is } p s d\right] \\
0 r .
\end{array}
$$

Another way of looking at extension of concept of convexity $y_{0} f: D \rightarrow R$ yo to look at convexity of $\phi(t)=f(x+R t)$ for a pt $x \&$ any din $R=t \in P$

1. A differentiable function f is strictly convex (or strictly concave $u p)$ on an open interval \mathcal{I}, iff, $f^{\prime}(x)$ is increasing on \mathcal{I}. Recall from theorem 46, the graphical interpretation of the first derivative $f^{\prime}(x) ; f^{\prime}(x)>0$ implies that $f(x)$ is increasing at x. Similarly, $f^{\prime}(x)$ is increasing when $f^{\prime \prime}(x)>0$. This gives us a sufficient condition for the strict convexity of a function:

Theorem 50 If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime \prime}(x)>0, \forall x \in \mathcal{I}$, then the slope of the function is always increasing with x and the graph is strictly convex. This is illustrated in Figure 4.8.

On the other hand, if the function is strictly convex and doubly differentable in \mathcal{I}, then $f^{\prime \prime}(x) \geq 0, \forall x \in \mathcal{I}$.
There is also a slopeless interpretation of strict convexity as stated in the following theorem:

Theorem 51 A differentiable function f is(strictly) convex on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{4.2}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.
is equivalent to saying. That
A differentiable function f is (trrictly) convex on I if' f^{\prime} is strictly increasing on I

Proof: First we will prove the necessity. Suppose f^{\prime} is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that $x_{1}<x_{2}^{3}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that $f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=$ $f^{\prime}(s)\left(x_{2}-x_{1}\right)(1-a)$ and $f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f^{\prime}(t)\left(x_{2}-x_{1}\right) a$. Therefore,

$$
\begin{aligned}
(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right) & = \\
a\left[f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)\right]-(1-a)\left[f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)\right] & = \\
a(1-a)\left(x_{2}-x_{1}\right)\left[f^{\prime}(t)-f^{\prime}(s)\right] &
\end{aligned}
$$

Since $f(x)$ is strictly convex on $\mathcal{I}, f^{\prime}(x)$ is increasing \mathcal{I} and therefore, $f^{\prime}(t)-f^{\prime}(s)>0$. Moreover, $x_{2}-x_{1}>0$ and $0<a<1$. This implies that $(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)>0$, or equivalently, $f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)$, which is what we wanted to prove in 4.2 .
Next, we prove the sufficiency. Suppose the inequality in 4.2 holds. Therefore,

$$
\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)
$$

that is,

$$
\begin{equation*}
f^{\prime}\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right) \tag{4.3}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{4.4}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (4.3) and (4.4), and multiplying the resultant inequality by -1 gives us

$$
\begin{equation*}
\left(f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right) \geq 0 \tag{4.5}
\end{equation*}
$$

Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(z)\left(x_{2}-x_{1}\right) \tag{4.6}
\end{equation*}
$$

Since 4.5 holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f^{\prime}(z)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f^{\prime}(z)-f^{\prime}\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using 4.6, we get

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\left(f^{\prime}(z)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \geq f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \text { Proves }
$$

Suppose equality holds in 4.5 for some $x_{1} \neq x_{2}$. Then equality holds in 4.7 for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{4.8}
\end{equation*}
$$

Applying 4.7 we can conclude that

$$
\begin{equation*}
f\left(x_{1}\right)+a f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{4.9}
\end{equation*}
$$

From 4.2 and 4.8 , we can derive that

$$
\begin{equation*}
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{4.10}
\end{equation*}
$$

However, equations 4.9 and 4.10 contradict each other. Therefore, equality in 4.5 cannot hold for any $x_{1} \neq x_{2}$, implying that

$$
\left(f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)>0
$$

that is, $f^{\prime}(x)$ is increasing and therefore f is convex on \mathcal{I}.

Figure 4.9: Plot for the strictly concave function $f(x)=-x^{2}$ which has $f^{\prime \prime}(x)=$ $-2<0, \forall x$.

A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f^{\prime}(x)$ is decreasing on \mathcal{I}. Recall from theorem 46, the graphical interpretation of the first derivative $f^{\prime}(x) ; f^{\prime}(x)<0$ implies that $f(x)$ is decreasing at x. Similarly, $f^{\prime}(x)$ is monotonically decreasing when $f^{\prime \prime}(x)>$ 0 . This gives us a sufficient condition for the concavity of a function:

Theorem 52 If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime \prime}(x)<0, \forall x \in \mathcal{I}$, then the slope of the function is always decreasing with x and the graph is strictly concave. This is illustrated in Figure 4.9.

On the other hand, if the function is strictly concave and doubly differentiable in \mathcal{I}, then $f^{\prime \prime}(x) \leq 0, \forall x \in \mathcal{I}$.

There is also a slopeless interpretation of concavity as stated in the following theorem:

Theorem 53 A differentiable function f is strictly concave on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)>a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{4.11}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.

Concave region convex region
Figure 4.10: Plot for $f(x)=x^{3}+x+2$, which has an inflection point $x=0$, along with plots for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Procedure 2 [First derivative test in terms of strict convexity]: Let c be a critical number of f and $f^{\prime}(c)=0$. Then,

1. $f(c)$ is a local minimum if the graph of $f(x)$ is strictly convex on an open interval containing c.
2. $f(c)$ is a local maximum if the graph of $f(x)$ is strictly concave on an open interval containing c.

3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities Definition

Footnill: in the
for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and of

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- f is concave if $-f$ is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

Definition 35 [Convex Function]: A function $f: \mathcal{D} \rightarrow \Re$ is convex if \mathcal{D} is a convex set and

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad 0 \leq \theta \leq 1(4.31)
$$

Figure 4.37 illustrates an example convex function. A function $f: \mathcal{D} \rightarrow \Re$ is strictly convex if \mathcal{D} is convex and
$f(\theta \mathbf{x}+(1-\theta) \mathbf{y})<\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad \mathbf{0}<\boldsymbol{\theta}<\mathbf{l}$

A function $f: \mathcal{D} \rightarrow \Re$ is called uniformly or strongly convex if \mathcal{D} is convex and there exists a constant $c>0$ such that
$\rightarrow>0 \quad\}^{-\{ }>{ }^{2} \quad$ An inner norm
if $\theta \in(0,1) \& x \neq y$
Prove
Theorem 69 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function on a convex domain \mathcal{D}. Any point of locally minimum solution for f is also a point of its globally minimum solution.

Prove

Theorem 70 Let $f: \mathcal{D} \rightarrow \Re$ be a strictly convex function on a convex domain \mathcal{D}. Then f has a unique point corresponding to its global minimum.

Theorem 71 A function $f: \mathcal{D} \rightarrow \Re$ is (strictly) convex if and only if the function $\phi: \mathcal{D}_{\phi} \rightarrow \Re$ defined below, is (strictly) convex in for every $\mathbf{x} \in \boldsymbol{D}$

[^0]Theorem 69 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function on a convex domain \mathcal{D}. Any point of locally minimum solution for f is also a point of its globally minimum solution.

Proof: Suppose $\mathbf{x} \in \mathcal{D}$ is a point of local minimum and let $\mathbf{y} \in \mathcal{D}$ be a point of global minimum. Thus, $f(\mathbf{y})<f(\mathbf{x})$. Since \mathbf{x} corresponds to a local minimum, there exists an $\epsilon>0$ such that

Consider a point $\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}$ with $\theta=\frac{\epsilon}{2\|\mathbf{y}-\mathbf{x}\|}$. Since \mathbf{x} is a point of local minimum (in a ball of radius ϵ), and since $f(\mathbf{y})<f(\mathbf{x})$, it must be that $\|\mathbf{y}-\mathbf{x}\|>\epsilon$. Thus, $0<\theta<\frac{1}{2}$ and $\mathbf{z} \in \mathcal{D}$. Furthermore, $\|\mathbf{z}-\mathbf{x}\|=\frac{\epsilon}{2}$. Since f is a convex function

$$
f(\mathbf{z}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

Since $f(\mathbf{y})<f(\mathbf{x})$, we also have

$$
\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})<f(\mathbf{x})
$$

The two equations imply that $f(\mathbf{z})<f(\mathbf{x})$, which contradicts our assumption that \mathbf{x} corresponds to a point of local minimum. That is f cannot have a point of local minimum, which does not coincide with the point \mathbf{y} of global minimum.

Theorem 70 Let $f: \mathcal{D} \rightarrow \Re$ be a strictly convex function on a convex domain \mathcal{D}. Then f has a unique point corresponding to its global minimum.

Proof: Suppose $\mathbf{x} \in \mathcal{D}$ and $\mathbf{y} \in \mathcal{D}$ with $\mathbf{y} \neq \mathbf{x}$ are two points of global minimum. That is $f(\mathbf{x})=f(\mathbf{y})$ for $\mathbf{y} \neq \mathbf{x}$. The point $\frac{\mathbf{x}+\mathbf{y}}{2}$ also belongs to the convex set \mathcal{D} and since f is strictly convex, we must have

$$
f\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right)<\frac{1}{2} f(\mathbf{x})+\frac{1}{2} f(\mathbf{y})=f(\mathbf{x})
$$

which is a contradiction. Thus, the point corresponding to the minimum of f must be unique.

Theorem 71 A function $f: \mathcal{D} \rightarrow \Re$ is (strictly) convex if and only if the function $\phi: \mathcal{D}_{\phi} \rightarrow \Re$ defined below, is (strictly) convex in t for every $\mathbf{x} \in \Re^{n}$ and for every $\mathbf{h} \in \Re^{n}$

$$
\phi(t)=f(\mathbf{x}+t \mathbf{h})
$$

with the domain of ϕ given by $\mathcal{D}_{\phi}=\{t \mid \mathbf{x}+t \mathbf{h} \in \mathcal{D}\}$.
Proof: We will prove the necessity and sufficiency of the convexity of ϕ for a convex function f. The proof for necessity and sufficiency of the strict convexity of ϕ for a strictly convex f is very similar and is left as an exercise.

Proof of Necessity: Assume that f is convex. And we need to prove that $\phi(t)=f(\mathbf{x}+\mathrm{th})$ is also convex. Let $t_{1}, t_{2} \in \mathcal{D}_{\phi}$ and $\theta \in[0,1]$. Then,

$$
\begin{array}{r}
\phi\left(\theta t_{1}+(1-\theta) t_{2}\right)=f\left(\theta\left(\mathbf{x}+t_{1} \mathbf{h}\right)+(1-\theta)\left(\mathbf{x}+t_{2} \mathbf{h}\right)\right) \\
\leq \theta f\left(\left(\mathbf{x}+t_{1} \mathbf{h}\right)\right)+(1-\theta) f\left(\left(\mathbf{x}+t_{2} \mathbf{h}\right)\right)=\theta \phi\left(t_{1}\right)+(1-\theta) \phi\left(t_{2}\right) \tag{4.35}
\end{array}
$$

Thus, ϕ is convex.
Proof of Sufficiency: Assume that for every $\mathbf{h} \in \Re^{n}$ and every $\mathbf{x} \in \Re^{n}$, $\phi(t)=f(\mathbf{x}+t \mathbf{h})$ is convex. We will prove that f is convex. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$. Take, $\mathbf{x}=\mathbf{x}_{1}$ and $\mathbf{h}=\mathbf{x}_{2}-\mathbf{x}_{1}$. We know that $\phi(t)=f\left(\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)$ is convex, with $\phi(1)=f\left(\mathbf{x}_{2}\right)$ and $\phi(0)=f\left(\mathbf{x}_{1}\right)$. Therefore, for any $\theta \in[0,1]$

$$
\begin{array}{r}
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right)=\phi(\theta) \\
\leq \theta \phi(1)+(1-\theta) \phi(0) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
\end{array}
$$

This implies that f is convex.

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad$ for all $x, y \in \operatorname{dom} f$
$f(y)$ Linear approx

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

$(x, f(x))$
first-order approximation of f is global underestimator

Theorem 75 Let $f: \mathcal{D} \rightarrow \Re$ be a differentiable convex function on an open convex set \mathcal{D}. Then:

1. f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.44}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
f(\mathbf{y})>f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.45}
\end{equation*}
$$

3. f is strongly convex on \mathcal{D} if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, for some constant $c>0$. Q: For a fizeal x what is misimum
value RHS can take?.

Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (4.44). Suppose (4.44) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{4.47}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (4.47) and it follows through. In the case of strong convexity, we need to additionally prove that

$$
\theta \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{1}\right\|^{2}+(1-\theta) \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{2}\right\|^{2}=\frac{1}{2} c \theta(1-\theta)\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|^{2}
$$

$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

$(x, f(x))$

Figure 4.38: Figure illustrating Theorem 75.

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\lim _{\theta \rightarrow 0} \frac{f \overbrace{\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)-f\left(\mathbf{x}_{1}\right)}}{\theta} \leq f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right)
$$

This proves necessity for (4.44). The necessity proofs for (4.45) and (4.46) are very similar, except for a small difference for the case of strict convexity; the strict inequality is not preserved when we take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly convex function f, let

$$
f\left(\mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}\right)+\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \text { Succinct representation for dir deriv }
$$

for some $\mathbf{x}_{2} \neq \mathbf{x}_{1}$. Because f is stricly convex, for any $\theta \in(0,1)$ we can write

$$
\begin{equation*}
f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{2}+\theta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)<\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \tag{4.49}
\end{equation*}
$$

Since (4.44) is already proved for convex functions, we use it in conjunction with (4.48), and (4.49), to get
$f\left(\mathbf{x}_{2}\right)+\theta \nabla^{T} f\left(\mathbf{x}_{2}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \leq f\left(\mathbf{x}_{2}+\theta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)<f\left(\mathbf{x}_{2}\right)+\theta \nabla^{T} f\left(\mathbf{x}_{2}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$
which is a contradiction. Thus, equality can never hold in (4.44) for any $\mathbf{x}_{1} \neq \mathbf{x}_{2}$. This proves the necessity of (4.45).

Definition 40 [Some corollaries of theorem 75 for strongly convex fun
For a fixed \mathbf{x}, the right hand side of the inequality (4.46) is a convex quadratic function of \mathbf{y}. Thus, the critical point of the RHS should correspond to the minimum value that the RHS could take. This yields another lower bound on $f(\mathbf{y})$.

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})-\frac{1}{2 c}\|\nabla f(\mathbf{x})\|_{2}^{2} \tag{4.50}
\end{equation*}
$$

Since this holds for any $\mathbf{y} \in \mathcal{D}$, we have

$$
\begin{equation*}
\min _{\mathbf{y} \in \mathcal{D}} f(\mathbf{y}) \geq f(\mathbf{x})-\frac{1}{2 c}\|\nabla f(\mathbf{x})\|_{2}^{2} \tag{4.51}
\end{equation*}
$$

which can be used to bound the suboptimality of a point \mathbf{x} in terms of $\|\nabla f(\mathbf{x})\|_{2}$. This bound comes handy in theoretically understanding the convergence of gradient methods. If $\widehat{\mathbf{y}}=\min _{\mathbf{y} \in \mathcal{D}} f(\mathbf{y})$, we can also derive a bound on the distance between any point $\mathbf{x} \in \mathcal{D}$ and the point of optimality $\widehat{\mathbf{y}}$.

$$
\begin{equation*}
\|\mathbf{x}-\widehat{\mathbf{y}}\|_{2} \leq \frac{2}{c}\|\nabla f(\mathrm{x})\|_{2} \text { should be perhaps } \tag{4.52}
\end{equation*}
$$

Theorem 78 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \subseteq \Re^{n}$ be differentiable on the convex set D. Then,

1. f is convex on \mathcal{D} if and only if is its gradient ∇f is monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \tag{4.53}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if is its gradient ∇f is strictly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$ with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})>0 \tag{4.54}
\end{equation*}
$$

3. f is uniformly or strongly convex on \mathcal{D} if and only if is its gradient ∇f is uniformly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq c\|\mathbf{x}-\mathbf{y}\|^{2} \tag{4.55}
\end{equation*}
$$

for some constant $c>0$.

Necessity: Suppose f is uniformly convex on \mathcal{D}. Then from theorem 75, we know that for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{aligned}
& f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})-\frac{1}{2} c\|\mathbf{y}+\mathbf{x}\|^{2} \\
& f(\mathbf{x}) \geq f(\mathbf{y})+\nabla^{T} f(\mathbf{y})(\mathbf{x}-\mathbf{y})-\frac{1}{2} c\|\mathbf{x}+\mathbf{y}\|^{2}
\end{aligned}
$$

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold with $c=0$, yielding (4.54). If f is strictly convex, the inequalities will be strict, yielding (4.54).

Sufficiency: Suppose ∇f is monotone. For any fixed $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, consider the function $\phi(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$. By the mean value theorem applied to $\phi(t)$, we should have for some $t \in(0,1)$,

$$
\begin{equation*}
\phi(1)-\phi(0)=\phi^{\prime}(t) \tag{4.56}
\end{equation*}
$$

Letting $\mathbf{z}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}),(4.56)$ translates to

$$
\begin{equation*}
f(\mathbf{y})-f(\mathbf{x})=\nabla^{T} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \tag{4.57}
\end{equation*}
$$

Also, by definition of monotonicity of ∇f, (from (4.53)),

$$
\begin{equation*}
(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})=\frac{1}{t}(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq 0 \tag{4.58}
\end{equation*}
$$

Combining (4.57) with (4.58), we get,

$$
\begin{align*}
f(\mathbf{y})-f(\mathbf{x})=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) & +\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \\
\geq & \nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.59}
\end{align*}
$$

By theorem 75, this inequality proves that f is convex. Strict convexity can be similarly proved by using the strict inequality in (4.58) inherited from strict monotonicity, and letting the strict inequality follow through to (4.59). For the case of strong convexity, from (4.55), we have

$$
\begin{array}{r}
\phi^{\prime}(t)-\phi^{\prime}(0)=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) \\
=\frac{1}{t}(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq \frac{1}{t} c\|\mathbf{z}-\mathbf{x}\|^{2}=c t\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.60}
\end{array}
$$

Therefore,

$$
\begin{equation*}
\phi(1)-\phi(0)-\phi^{\prime}(0)=\int_{0}^{1}\left[\phi^{\prime}(t)-\phi^{\prime}(0)\right] d t \geq \frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.61}
\end{equation*}
$$

which translates to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
$$

By theorem 75, f must be strongly convex.

Theorem 79 A twice differential function $f: \mathcal{D} \rightarrow \Re$ for a nonempty open convex set \mathcal{D}

1. is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite at each point in \mathcal{D}. That is

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \forall \mathbf{x} \in \mathcal{D} \tag{4.62}
\end{equation*}
$$

2. is strictly convex if its domain is convex and its Hessian matrix is positive definite at each point in \mathcal{D}. That is

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \succ 0 \quad \forall \mathbf{x} \in \mathcal{D} \tag{4.63}
\end{equation*}
$$

3. is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly positive definite at each point in \mathcal{D}. That is, for any $\mathbf{v} \in \Re^{n}$ and any $\mathbf{x} \in \mathcal{D}$, there exists a $c>0$ such that

From discus zions
where $I_{n \times n}$ is the $n \times n$ identity matrix and \succeq corresponds to the positive semidefinite inequality. That is, the function f is strongly convex iff $\nabla^{2} f(\mathbf{x})-c I_{n \times n}$ is positive semidefinite, for all $\mathrm{x} \in \mathcal{D}$ and for some constant $c>0$, which corresponds to the positive minimum curvature of f.

H/w problem:
04/10/2013. Make sure that you understand the proofs for local minimizer=global minimizer unique global minimizer for a strictly convex function, equivalence of different mathematic specifications (gradient free, first order, gradient monotonicity and Hessian) of convexity spanning pages 25 to 36 . Now solve following problems (i) Show that the sum of a convex and a strictly/strongly convex function is strictly/strongly convex. (ii) Suppose that $f(x)=x^{\prime} Q x$, where Q is an $n x n$ matrix. Show conditions under which $f(x)$ is (strictly/strongly) convex and show this using each of the 4 equivalent conditions for (strict/strong) convexity. Deadline: October 92013.

Rules for gradient (assuming gradient. is column vector)

$$
\begin{array}{ll}
f(x)=x^{\top} Q y & f(x)=x^{\top} Q x \\
\nabla f(x)=Q y \quad & \nabla f(x)=\underbrace{Q x+Q^{\top} x} \\
f^{\prime}(x)=y^{\top} Q x=x^{\top} Q^{\top} y & \frac{\partial g(x) h(x)}{d x}=g^{\prime}(x) h(x) \\
\nabla f^{\prime} f(x)=Q^{\top} y & +h^{\prime}(x) g(x)
\end{array}
$$

Rough high level plan for the course from hereon by Ganesh Ramakrishnan - Wednesday, 9 October 2013, 9:16 AM

Please give feedback (of course, I am not listing topics within each high level topic)

1] Further properties of convex functions, subgradients.
2] Algorithms for unconstrained optimisation, illustrations/comparisons, convergence analysis for some

3] Dealing with constraints: Lagrange multipliers, duality, conjugate functions, polars, etc

4] Algorithms for constrained optimisation
Ganesh

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$
affine functions are convex and concave; all norms are convex
examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$
examples on $\mathbf{R}^{m \times n}$ ($m \times n$ matrices)
- affine function

$$
f(X)=\underbrace{\operatorname{tr}\left(A^{T} X\right)}+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

often used Trepresentitation.

- spectral (maximum singular value) norm
$\left.f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}\right\}$ Recall:

$$
\|X\|_{\text {convex functions }}=\sup _{v} \underbrace{\|x v\|_{2}}_{\|y\|_{2}} \quad\|v\|_{2_{2}^{-4}} \text { norm for }
$$

Proof that spectral norm is convex
(in general any induced. matrix norms: Hew ereerc sse)

$$
\begin{aligned}
& \left\|\theta X_{1}+(1-\theta) X_{2}\right\|_{\text {spec }}=\sup \frac{\left\|\theta X_{1} v+(1-\theta) X_{2} v\right\|_{2}}{\|v\|_{2}} \\
& \quad \leq \sup _{v}\left[\frac{\theta\left\|x_{1} v\right\|_{2}}{\|v\|_{2}}+\frac{(1-\theta)\left\|X_{2} v\right\|_{2}}{\|v\|_{2}}\right]
\end{aligned}
$$

[rising Cauchy Schwartz 27

$$
\leq \sup _{v} \frac{\theta\left\|x_{v}\right\|_{2}}{\|v\|_{2}}+\sup _{v}(1-\theta) \frac{\left\|x_{2} v\right\|_{2}}{\| v_{1+2}}
$$

$\begin{aligned} & \text { [ouprememor } \\ & \text { max of sums }\end{aligned}=\theta\|x\|_{\text {spec }}$ $s \leq$ sum of supremerms/max $]+(1-\theta)\left\|X_{2}\right\|_{\text {spec }}$

For proof that $\|x\|_{\text {pec }}=\sup _{v} \frac{\|x v\|_{2}}{\|v\|_{2}}$
a) We can prove that $x^{\top} x$ is always postie definite $\left\{v^{\top} X^{\top} X_{v}=\left(X_{v}\right)^{\top}\left(X_{v}\right)=\left\|X_{v}\right\|^{2} \geqslant 0\right\}$ \& all it eigenvalues are therefore $\geqslant 0$
Let $\lambda_{1}^{2} \geqslant \lambda_{2}^{2} \cdots \geqslant \lambda_{n}^{n} \geqslant 0$ (they are called the singular values
Let $u_{1}, u_{2} \ldots u_{n}$ be n corresponding independent orthonormal eigenvectors of $x^{\top} x(H \mid \omega)$ \therefore They can be used as basis vectors and any $v \in R^{n}$ can be expressed as:

$$
\begin{aligned}
& v=\sum_{i=1}^{n} c_{i} u_{i} \\
& \therefore \mid f X X v \|_{2}^{2}=(X v)^{\top}(X v)=v^{\top}\left[X^{\top} X v \mid=\left(\sum_{i=1}^{n} c_{i} u_{i}\right)^{\top}\left(\sum_{i=1}^{n} c_{i} i_{i}^{2} u_{i}\right)\right. \\
& =\sum_{i=1}^{n} c_{i}^{2} \lambda_{i}^{2} \\
& \|v\|_{2}^{2}=\left(\sum_{i=1}^{n} c_{i} u_{i}\right)^{\top}\left(\sum_{i=1}^{n} c_{i} u_{i}\right)=\sum_{i=1}^{n} c_{i}^{2}
\end{aligned}
$$

Restriction of a convex function to a line
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \rightarrow \mathbf{R}$,

$$
\text { Restrichion of } \longleftarrow g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$ $f(\boldsymbol{x})$ in ans is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$ can check convexity of f by checking convexity of functions of one variable earliet Proved direction \checkmark gives yoㅅ convex

$$
g(t)=\log \operatorname{det}(X+l V)=\log \operatorname{det} X+\log \operatorname{det}\left(I+l X^{-1 / 2} V X^{-1 / 2}\right)
$$

$$
\begin{aligned}
& \text { on } \boldsymbol{y}(t) \quad=\log \operatorname{det} X, \sum_{i=1}^{n} \operatorname{ld} \\
& \text { where } \lambda_{i} \text { are the eigenvalues of } X^{-1 / 2} V X^{-1 / 2}
\end{aligned}
$$

g is concave in t (for any choice of $X \succ 0, V$); hence f is concave

Extended-value extension
extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbf{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Examples

quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r\left(\right.$ with $\left.P \in \mathbf{S}^{n}\right)$

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least-squares objective: $f(x)=\|A x-b\|_{2}^{2} \bullet$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex (for any A)
quadratic-over-linear: $f(x, y)=x^{2} / y$

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

convex for $y>0$

Convex functions
log-sum-exp: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

$$
\nabla^{2} f(x)=\frac{1}{\mathbf{1}^{T} z} \operatorname{diag}(z)-\frac{1}{\left(\mathbf{1}^{T} z\right)^{2}} z z^{T} \quad\left(z_{k}=\exp x_{k}\right)
$$

to show $\nabla^{2} f(x) \succeq 0$, we must verify that $v^{T} \nabla^{2} f(x) v \geq 0$ for all v :

$$
v^{T} \nabla^{2} f(x) v=\frac{\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)-\left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0
$$

since $\left(\sum_{k} v_{k} z_{k}\right)^{2} \leq\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)$ (from Cauchy-Schwarz inequality)
geometric mean: $f(x)=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}$ on \mathbf{R}_{++}^{n} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set α-sublevel set of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

Domain has to be convex Illustration

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

Jensen's inequality
basic inequality: if f is convex, then for $0 \leq 0 \leq 1$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

extension: if f is convex, then

$$
f(\mathbf{E} z) \leq \mathbf{E} f(z)
$$

for any random variable z
basic inequality is special case with discrete distribution

$$
\operatorname{prob}(z=x)=\theta, \quad \operatorname{prob}(z=y)=1-\theta
$$

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations \cap that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition 4

- minimization
- perspective

Positive weighted sum \& composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals)
composition with affine function: $f(A x+b)$ is convex if f is convex
examples

- log barrier for linear inequalities
$f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad$ dom $f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$
- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum
if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex
examples
Even if fit's are differentiable, f will not

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of $\left.x\right)$
proof:

$$
f(x)=\max \{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid \underbrace{\left.1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}}
$$

nc
if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex
examples

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

choices

Pointwise supremum
er

Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex

examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0, \quad C \succ 0
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$
g is convex, hence Schur complement $A-B C^{-1} B^{T} \succeq 0$

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

g is convex if f is convex
examples

- $f(x)=x^{T} x$ is convex; hence $g(x, t)=x^{T} x / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex on \mathbf{R}_{++}^{2}
- if f is convex, then

$$
g(x)=\left(c^{T} x+d\right) f\left((A x+b) /\left(c^{T} x+d\right)\right)
$$

is convex on $\left\{x \mid c^{T} x+d>0,(A x+b) /\left(c^{T} x+d\right) \in \operatorname{dom} f\right\}$

Subgradients

- subgradients

- strong and weak subgradient calculus
- optimality conditions via subgradients
- directional derivatives

Basic inequality

recall basic inequality for convex differentiable f :

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

- first-order approximation of f at x is global underestimator
- $(\nabla f(x),-1)$ supports epi f at $(x, f(x))$
what if f is not differentiable?

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

g_{2}, g_{3} are subgradients at $x_{2} ; g_{1}$ is a subgradient at x_{1}

- g is a subgradient of f at x iff $(g,-1)$ supports epi f at $(x, f(x))$ Equivalent
- g is a subgradient iff $f(x)+g^{T}(y-x)$ is a global (affine) underestimator of f
- if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x
subgradients come up in several contexts:
- algorithms for nondifferentiable convex optimization
- convex analysis, e.g., optimality conditions, duality for nondifferentiable problems
(if $f(y) \leq f(x)+g^{T}(y-x)$ for all y, then g is a supergradient)

Example

$f=\max \left\{f_{1}, f_{2}\right\}$, with f_{1}, f_{2} convex and differentiable

- $f_{1}\left(x_{0}\right)>f_{2}\left(x_{0}\right)$: unique subgradient $g=\nabla f_{1}\left(x_{0}\right)$
- $f_{2}\left(x_{0}\right)>f_{1}\left(x_{0}\right)$: unique subgradient $g=\nabla f_{2}\left(x_{0}\right)$
- $f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)$: subgradients form a line segment $\left[\nabla f_{1}\left(x_{0}\right), \nabla f_{2}\left(x_{0}\right)\right]$

Subdifferential

- set of all subgradients of f at x is called the subdifferential of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)
if f is convex,
- $\partial f(x)$ is nonempty, for $x \in \operatorname{relint} \operatorname{dom} f$
- $\partial f(x)=\{\nabla f(x)\}$, if f is differentiable at x
- if $\partial f(x)=\{g\}$, then f is differentiable at x and $g=\nabla f(x)$

Example

$$
f(x)=|x|
$$

righthand plot shows $\bigcup\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

Subgradient calculus

- weak subgradient calculus: formulas for finding one subgradient $g \in \partial f(x)$
- strong subgradient calculus: formulas for finding the whole subdifferential $\partial f(x)$, i.e., all subgradients of f at x
- many algorithms for nondifferentiable convex optimization require only one subgradient at each step, so weak calculus suffices
- some algorithms, optimality conditions, etc., need whole subdifferential
- roughly speaking: if you can compute $f(x)$, you can usually compute a $g \in \partial f(x)$
- we'll assume that f is convex, and $x \in \operatorname{relint} \operatorname{dom} f$

Some basic rules

- $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x
- scaling: $\partial(\alpha f)=\alpha \partial f($ if $\alpha>0)$
- addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$ (RHS is addition of sets)
- affine transformation of variables: if $g(x)=f(A x+b)$, then $\partial g(x)=A^{T} \partial f(A x+b)$
- finite pointwise maximum: if $f=\max _{i=1, \ldots, m} f_{i}$, then

$$
\partial f(x)=\mathbf{C o} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\},
$$

i.e., convex hull of union of subdifferentials of 'active' functions at x
$f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$, with f_{1}, \ldots, f_{m} differentiable

$$
\partial f(x)=\mathbf{C o}\left\{\nabla f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

exampie: $f(x)=\|x\|_{1}=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$

$\partial f(x)$ at $x=(0,0)$
at $x=(1,0)$
at $x=(1,1)$

Pointwise supremum

if $f=\sup _{\alpha \in \mathcal{A}} f_{\alpha}$,

$$
\operatorname{cl~Co} \bigcup\left\{\partial f_{\beta}(x) \mid f_{\beta}(x)=f(x)\right\} \subseteq \partial f(x)
$$

(usually get equality, but requires some technical conditions to hold, e.g., \mathcal{A} compact, f_{α} cts in x and α)
roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active functions

Weak rule for pointwise supremum

$$
f=\sup _{\alpha \in \mathcal{A}} f_{\alpha}
$$

- find any β for which $f_{\beta}(x)=f(x)$ (assuming supremum is achieved)
- choose any $g \in \partial f_{\beta}(x)$
- then, $g \in \partial f(x)$
example

$$
f(x)=\lambda_{\max }(A(x))=\sup _{\|y\|_{2}=1} y^{T} A(x) y
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}, A_{i} \in \mathbf{S}^{k}$

- f is pointwise supremum of $g_{y}(x)=y^{T} A(x) y$ over $\|y\|_{2}=1$
- g_{y} is affine in x, with $\nabla g_{y}(x)=\left(y^{T} A_{1} y, \ldots, y^{T} A_{n} y\right)$
- hence, $\partial f(x) \supseteq \operatorname{Co}\left\{\nabla g_{y} \mid A(x) y=\lambda_{\max }(A(x)) y,\|y\|_{2}=1\right\}$ (in fact equality holds here)
to find one subgradient at x, can choose any unit eigenvector y associated with $\lambda_{\max }(A(x))$; then

$$
\left(y^{T} A_{1} y, \ldots, y^{T} A_{n} y\right) \in \partial f(x)
$$

Expectation

- $f(x)=\mathbf{E} f(x, u)$, with f convex in x for each u, u a random variable
- for each u, choose any $g_{u} \in \partial_{f}(x, u)$ (so $u \mapsto g_{u}$ is a function)
- then, $g=\mathbf{E} g_{u} \in \partial f(x)$

Monte Carlo method for (approximately) computing $f(x)$ and a $g \in \partial f(x)$:

- generate independent samples u_{1}, \ldots, u_{K} from distribution of u
- $f(x) \approx(1 / K) \sum_{i=1}^{K} f\left(x, u_{i}\right)$
- for each i choose $g_{i} \in \partial_{x} f\left(x, u_{i}\right)$
- $g=(1 / K) \sum_{i=1}^{K} g_{i}$ is an (approximate) subgradient (more on this later)

Minimization

define $g(y)$ as the optimal value of

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq y_{i}, \quad i=1, \ldots, m
\end{array}
$$

(f_{i} convex; variable x)
with λ^{\star} an optimal dual variable, we have

$$
g(z) \geq g(y)-\sum_{i=1}^{m} \lambda_{i}^{\star}\left(z_{i}-y_{i}\right)
$$

i.e., $-\lambda^{\star}$ is a subgradient of g at y

Composition

- $f(x)=h\left(f_{1}(x), \ldots, f_{k}(x)\right)$, with h convex nondecreasing, f_{i} convex
- find $q \in \partial h\left(f_{1}(x), \ldots, f_{k}(x)\right), g_{i} \in \partial f_{i}(x)$
- then, $g=q_{1} g_{1}+\cdots+q_{k} g_{k} \in \partial f(x)$
- reduces to standard formula for differentiable h, f_{i} proof:

$$
\begin{aligned}
f(y) & =h\left(f_{1}(y), \ldots, f_{k}(y)\right) \\
& \geq h\left(f_{1}(x)+g_{1}^{T}(y-x), \ldots, f_{k}(x)+g_{k}^{T}(y-x)\right) \\
& \geq h\left(f_{1}(x), \ldots, f_{k}(x)\right)+q^{T}\left(g_{1}^{T}(y-x), \ldots, g_{k}^{T}(y-x)\right) \\
& =f(x)+g^{T}(y-x)
\end{aligned}
$$

Subgradients and sublevel sets

g is a subgradient at x means $f(y) \geq f(x)+g^{T}(y-x)$
hence $f(y) \leq f(x) \Longrightarrow g^{T}(y-x) \leq 0$

- f differentiable at $x_{0}: \nabla f\left(x_{0}\right)$ is normal to the sublevel set $\left\{x \mid f(x) \leq f\left(x_{0}\right)\right\}$
- f nondifferentiable at x_{0} : subgradient defines a supporting hyperplane to sublevel set through x_{0}

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

- f^{*} is convex (even if f is not)
- will be useful in chapter 5

examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

Quasiconvex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbf{R}_{1}^{2},
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

- distance ratio

$$
f(x)=\frac{\|x-a\|_{2}}{\|x-b\|_{2}}, \quad \operatorname{dom} f=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}
$$

is quasiconvex

internal rate of return

- cash flow $x=\left(x_{0}, \ldots, x_{n}\right) ; x_{i}$ is payment in period i (to us if $x_{i}>0$)
- we assume $x_{0}<0$ and $x_{0}+x_{1}+\cdots+x_{n}>0$
- present value of cash flow x, for interest rate r :

$$
\mathrm{PV}(x, r)=\sum_{i=0}^{n}(1+r)^{-i} x_{i}
$$

- internal rate of return is smallest interest rate for which $\operatorname{PV}(x, r)=0$:

$$
\operatorname{IRR}(x)=\inf \{r \geq 0 \mid \underline{P V}(x, r)=0\}
$$

IRR is quasiconcave: superlevel set is intersection of halfspaces

$$
\operatorname{IRR}(x) \geq \bar{R} \Longleftrightarrow \sum_{i=0}^{n}(1+r)^{i} x_{i} \geq 0 \text { for } 0 \leq r \leq R
$$

Properties

modified Jensen inequality: for quasiconvex f

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$
f(y) \leq f(x) \quad \Longrightarrow \quad \nabla f(x)^{T}(y-x) \leq 0
$$

sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function f is \log-concave if $\log f$ is concave:

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1
$$

f is log-convex if $\log f$ is convex

- powers: x^{a} on \mathbf{R}_{++}is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})}
$$

- cumulative Gaussian distribution function Φ is log-concave

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if

$$
f(x) \nabla^{2} f(x) \preceq \nabla f(x) \nabla f(x)^{T}
$$

for all $x \in \operatorname{dom} \int$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is log-concave, then

$$
g(x)=\int f(x, y) d y
$$

is log-concave (not easy to show)

consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
(f * g)(x)=\int f(x-y) g(y) d y
$$

- if $C \subseteq \mathbf{R}^{n}$ convex and y is a random variable with log-concave pdf then

$$
f(x)=\operatorname{prob}(x+y \in C)
$$

is log-concave
proof: write $f(x)$ as integral of product of log-concave functions

$$
f(x)=\int g(x+y) p(y) d y, \quad g(u)= \begin{cases}1 & u \in C \\ 0 & u \notin C\end{cases}
$$

p is pdf of y
example: yield function

$$
Y(x)=\operatorname{prob}(x+w \in S)
$$

- $x \in \mathbf{R}^{n}$: nominal parameter values for product
- $w \in \mathbf{R}^{n}$: random variations of parameters in manufactured product
- S : set of acceptable values
if S is convex and w has a log-concave pdf, then
- Y is log-concave
- yield regions $\{x \mid Y(x) \geq \alpha\}$ are convex

Convexity with respect to generalized inequalities
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is K-convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y) \preceq_{K} \theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$
example $f: \mathbf{S}^{m} \rightarrow \mathbf{S}^{m}, f(X)=X^{2}$ is \mathbf{S}_{+}^{m}-convex
proof: for fixed $z \in \mathbf{R}^{m}, z^{T} X^{2} z=\|X z\|_{2}^{2}$ is convex in X, i.e.,

$$
z^{T}(\theta X+(1-\theta) Y)^{2} z \leq \theta z^{T} X^{2} z+(1-\theta) z^{T} Y^{2} z
$$

for $X, Y \in \mathbf{S}^{m}, 0 \leq \theta \leq 1$
therefore $(\theta X+(1-\theta) Y)^{2} \preceq \theta X^{2}+(1-\theta) Y^{2}$

Global Extrema on Closed Intervals

Procedure 4 [Finding extreme values on closed, bounded intervals]:

 Find the critical points in int (\mathcal{I}).2. Compute the values of f at the critical points and at the endpoints of the interval.
3. Select the least and greatest of the computed values.

For example, to compute the maximum and minimum values of $f(x)=$ $4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$, we first compute $f^{\prime}(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$. Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$. The values at the end points are $f(0)=0$ and $f(1)=1$. Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.

Definition 21 [One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval $[a, b]$. The (right-sided) derivative of f at $x=a$ is defined as

$$
f^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

Similarly, the (left-sided) derivative of f at $x=b$ is defined as

$$
f^{\prime}(b)=\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}
$$

Theorem 54 If f is continuous on $[a, b]$ and $f^{\prime}(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f^{\prime}(a) \leq 0$ or $f^{\prime}(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f^{\prime}(a) \geq 0$ or $f^{\prime}(a)=\infty$.

If f is continuous on $[a, b]$ and $f^{\prime}(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b.

- If $f(b)$ is the maximum value of f on $[a, b]$, then $f^{\prime}(b) \geq 0$ or $f^{\prime}(b)=\infty$.
- If $f(b)$ is the minimum value of f on $[a, b]$, then $f^{\prime}(b) \leq 0$ or $f^{\prime}(b)=-\infty$.

The following theorem gives a useful procedure for finding extrema on closed intervals.

Theorem 55 If f is continuous on $[a, b]$ and $f^{\prime \prime}(x)$ exists for all $x \in(a, b)$. Then,

- If $f^{\prime \prime}(x) \leq 0, \forall x \in(a, b)$, then the minimum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical number $c \in(a, b)$, then $f(c)$ is the maximum value of f on $[a, b]$.
- If $f^{\prime \prime}(x) \geq 0, \forall x \in(a, b)$, then the maximum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical number $c \in(a, b)$, then $f(c)$ is the minimum value of f on $[a, b]$.

Theorem 56 Let \mathcal{I} be an open interval and let $f^{\prime \prime}(x)$ exist $\forall x \in \mathcal{I}$.

- If $f^{\prime \prime}(x) \geq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f^{\prime}(c)=0$, then $f(c)$ is the global minimum value of f on \mathcal{I}.
- If $f^{\prime \prime}(x) \leq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f^{\prime}(c)=0$, then $f(c)$ is the global maximum value of f on \mathcal{I}.

For example, let $f(x)=\frac{2}{3} x-\sec x$ and $\mathcal{I}=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) . f^{\prime}(x)=\frac{2}{3}-\sec x \tan x=$ $\frac{2}{3}-\frac{\sin x}{\cos ^{2} x}=0 \Rightarrow x=\frac{\pi}{6}$. Further, $f^{\prime \prime}(x)=-\sec x\left(\tan ^{2} x+\sec ^{2} x\right)<0$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Therefore, f attains the maximum value $f\left(\frac{\pi}{6}\right)=\frac{\pi}{9}-\frac{2}{\sqrt{3}}$ on \mathcal{I}.

Figure 4.11: Illustrating the constraints for the optimization problem of finding the cone with minimum volume that can contain a sphere of radius R.

Theorem 61 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open ball \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Let $\nabla^{2} f(\mathbf{x})$ denote an $n \times n$ matrix of mixed partial derivatives of f evaluated at the point \mathbf{x}, such that the $i j^{\text {th }}$ entry of the matrix is $f_{x_{i} x_{j}}$. The matrix $\nabla^{2} f(\mathbf{x})$ is called the Hessian matrix. The Hessian matrix is symmetric ${ }^{6}$. Then,

- If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, \mathbf{x}^{*} is a local minimum.
- If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is negative definite (that is if $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite), \mathbf{x}^{*} is a local maximum.

Theorem 62 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open region \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Then,

- If \mathbf{x}^{*} is a point of local minimum, $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be positive semi-definite.
- If \mathbf{x}^{*} is a point of local maximum, $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be negative semi-definite (that is, $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be positive semi-definite).

Corollary 63 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open region \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is neither positive semidefinite nor negative semi-definite (that is, some of its eigenvalues are positive and some negative), then \mathbf{x}^{*} is a saddle point.

Theorem 64 Let the partial and second partial derivatives of $f\left(x_{1}, x_{2}\right)$ be continuous on a disk with center (a, b) and suppose $f_{x_{1}}(a, b)=0$ and $f_{x_{2}}(a, b)=0$ so that (a, b) is a critical point of f. Let $D(a, b)=f_{x_{1} x_{1}}(a, b) f_{x_{2} x_{2}}(a, b)-$ $\left[f_{x_{1} x_{2}}(a, b)\right]^{2}$. Then ${ }^{7}$,

- If $D>0$ and $f_{x_{1} x_{1}}(a, b)>0$, then $f(a, b)$ is a local minimum.
- Else if $D>0$ and $f_{x_{1} x_{1}}(a, b)<0$, then $f(a, b)$ is a local maximum.
- Else if $D<0$ then (a, b) is a saddle point.

Figure 4.22: Plot of the function $2 x_{1}^{3}+x_{1} x_{2}^{2}+5 x_{1}^{2}+x_{2}^{2}$ showing the four critical points.

We saw earlier that the critical points for $f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+x_{1} x_{2}^{2}+5 x_{1}^{2}+x_{2}^{2}$ are $(0,0),\left(-\frac{5}{3}, 0\right),(-1,2)$ and $(-1,-2)$. To determine which of these correspond to local extrema and which are saddle, we first compute compute the partial derivatives of f :
$f_{x_{1} x_{1}}\left(x_{1}, x_{2}\right)=12 x_{1}+10$
$f_{x_{2} x_{2}}\left(x_{1}, x_{2}\right)=2 x_{1}+2$
$f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right)=2 x_{2}$
Using theorem 64 , we can verify that $(0,0)$ corresponds to a local minimum, $\left(-\frac{5}{2}, 0\right)$ corresponds to a local maximum while $(-1,2)$ and $(-1,-2)$ correspond
to saddle points. Figure 4.22 shows the plot of the function while pointing outhe four critical points.

Figure 4.23: Plot of the function $10 x^{2} y-5 x^{2}-4 y^{2}-x^{4}-2 y^{4}$ showing the four critical points.
Consider a significantly harder function $f(x, y)=10 x^{2} y-5 x^{2}-4 y^{2}-$ $x^{4}-2 y^{4}$. Let us find and classify its critical points. The gradient vector is $\nabla f(x, y)=\left[20 x y-10 x-4 x^{3}, \quad 10 x^{2}-8 y-8 y^{3}\right]$. The critical points correspond to solutions of the simultaneous set of equations

$$
\begin{align*}
& 20 x y-10 x-4 x^{3}=0 \tag{4.15}\\
& 10 x^{2}-8 y-8 y^{3}=0
\end{align*}
$$

One of the solutions corresponds to solving the system $-8 y^{3}+42 y-$ $25=0^{8}$ and $10 x^{2}=50 y-25$, which have four real solutions ${ }^{9}$, viz. , $(0.8567,0.646772),(-0.8567,0.646772),(2.6442,1.898384)$, and ($-2.6442,1.898384$). Another real solution is $(0,0)$. The mixed partial derivatives of the function are

$$
\begin{align*}
f_{x x} & =20 y-10-12 x^{2} \\
f_{x y} & =20 x \tag{4.16}\\
f_{y y} & =-8-24 y^{2}
\end{align*}
$$

Using theorem 64 , we can verify that $(2.6442,1.898384)$ and $(-2.6442,1.898384)$ correspond to local maxima whereas $(0.8567,0.646772)$ and $(-0.8567,0.646772)$ corresnond to saddle noints This is illustrated in Figure 492

[^0]: with the domain of ϕ given by $\mathcal{D}_{\phi}=\{t \mid \mathbf{x}+t \mathbf{h} \in \mathcal{D}\}$.

