PAGES 216 TO 231 OF
http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz ation.pdf, interspersed with pages between 239 and 253 and summary of material thereafter, which extend univariate concepts to generic spaces
Maximum and Minimum values of univariate functions
Let f be a function with domain \mathcal{D}. Then f has an absolute maximum (or global maximum) value at point $c \in \mathcal{D}$ if

$$
f(x) \leq f(c), \forall x \in \mathcal{D}
$$

and an absolute minimum (or global minimum) value at $c \in \mathcal{D}$ if

$$
f(x) \geq f(c), \forall x \in \mathcal{D}
$$

If there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x), \forall x \in \mathcal{I}$, then we say that $f(c)$ is a local maximum value of f. On the other hand, if there is an open interval \mathcal{I} containing c in which $f(c) \leq f(x), \forall x \in \mathcal{I}$, then we say that $f(c)$ is a local minimum value of f. If $f(c)$ is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$, the $f(c)$ is called a local extreme value of f.

Theorem 39 If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f^{\prime}(c)=0 . \rightarrow$ if all pods of f exist at $x=C C C D \subseteq R^{n}$ \& if $f(c)$ is local extiveme, $\nabla f(c)=0$
Theorem 40 A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

Note: $[a, \infty)$ is closed bat NoT bounded replace with set for k \mathbb{R}^{n} So both conditions are needed

For \mathbb{R}^{n}

Theorem 60 If $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \Re^{n}$ has a local maximum or minimum at \mathbf{x}^{*} and if the first-order partial derivatives exist at \mathbf{x}^{*}, then $f_{x_{i}}\left(\mathbf{x}^{*}\right)=0$ for all $1 \leq i \leq n$.

$$
\text { ic } \nabla f\left(x^{x}\right)=0
$$

Definition 27 [Critical point]: A point \mathbf{x}^{*} is called a critical point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^{n}$ if

1. If $f_{x_{i}}\left(\mathbf{x}^{*}\right)=0$, for $1 \leq i \leq n$.
2. OR $f_{x_{i}}\left(\mathbf{x}^{*}\right)$ fails to exist for any $1 \leq i \leq n$.

A procedure for computing all critical points of a function f is:

1. Compute $f_{x_{i}}$ for $1 \leq i \leq n$.
2. Determine if there are any points where any one of $f_{x_{i}}$ fails to exist. Add such points (if any) to the list of critical points.
3. Solve the system of equations $f_{x_{i}}=0$ simultaneously. Add the solution points to the list of saddle points.

Figure 4.17: The paraboloid $f\left(x_{1}, x_{2}\right)=9-x_{1}^{2}-x_{2}^{2}$ attains its maximum at $(0,0)$. The tanget plane to the surface at $(0,0, f(0,0))$ is also shown, and so is

Figure 4.18: Plot illustrating critical points where derivative fails to exist.

Definition 28 [Saddle point]: A point \mathbf{x}^{*} is called a saddle point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^{n}$ if \mathbf{x}^{*} is a critical point of f but \mathbf{x}^{*} does not correspond to a local maximum or minimum of the function.

Figure 4.19: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, which has a saddle point at $(0,0)$.

Figure 4.20: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, when viewed from the x_{1} axis is concave up.

Figure 4.21: The hyperbolic paraboloid $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$, when viewed from the x_{2} axis is concave down.

Note: For LP's, $A x \geqslant 6$ is closed and bounded $D \& f^{\prime}(x)=c^{T} x$ attains
global max / min on boy of D. : This the not applicable
Theorem 41 A continuous function $f(x)$ on a closed and bounded interval $a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. If $a<c<b$ and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$. If $a<d<b$ and $f^{\prime}(d)$ exists, then $f^{\prime}(d)=0$: If $D \subseteq \mathbb{R}^{n}$ is closed \& bounded \& f is cts on D \& if global max min is attained at $C E \ln \ell(D)$ \& f is differentiable at C then $\nabla f(c)=0$
Theorem 42 If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$ and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Figure 4.1 illustrates Rolle's theorem with an example function $f(x)=9-x^{2}$ on the interval $[-3,+3]$.

Figure 4.1: Illustration of Rolle's theorem with $f(x)=9-x^{2}$ on the interval $[-3,+3]$. We see that $f^{\prime}(0)=0$.
Q: What is a more general version of Rile's the?
Ans. Mean value thu

Theorem 43 If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$, then there is some $c \in(a, b)$ such that, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. If $D \subset \mathbb{R}^{n}$ is closed \& bounded \& fisc cts on D \& diff cm
 int (D) then: Turn to neat page

Figure 4.2: Illustration of mean value theorem with $f(x)=9-x^{2}$ on the interval $[-3,1]$. We see that $f^{\prime}(-1)=\frac{f(1)-f(-3)}{4}$.

Figure 4.4: The mean value theorem can be violated if $f(x)$ is not differentiable at even a single point of the interval. Illustration on $f(x)=x^{2 / 3}$ with the

The mean value theorem in one variable generalizes to several variables by applying the theorem in one variable via parametrization. Let G be an open subset of \mathbf{R}^{n}, and let $f: G \rightarrow \mathbf{R}$ be a differentiable function. Fix points $x, y \in G$ such that the interval $x y$ lies in G, and define $g(t)=f((1-t) x+t y)$. Since g is a differentiable function in one variable, the mean value theorem gives:

$$
g(1)-g(0)=g^{\prime}(c)
$$

for some c between 0 and 1 . But since $g(1)=f(y)$ and $g(0)=f(x)$, computing $g^{\prime}(c)$ explicitly we have:

$$
f(y)-f(x)=\nabla f((1-c) x+c y) \cdot(y-x)
$$

Converaty of the domain is fundamental
since $\forall t \in[0,1], \frac{x(1-k)+t y \in D \text { amain }]}{d}$
That is, we require convexity of set in some sense

Corollary 44 Let f be continuous on $[a, b]$ and differentiable on (a, b) with $m \leq f^{\prime}(x) \leq M, \forall x \in(a, b)$. Then, $m(x-t) \leq f(x)-f(t) \leq M(x-t)$, if $a \leq t \leq x \leq b$. Applying mean. value the
\quad Let \mathcal{D} be the domain of function f. We define

Let \mathcal{D} be the domain of function f. We define 4 substituting inequality

1. the linear approximation of a differentiable function $f(x)$ as $L_{a}(x)=$ $f(a)+f^{\prime}(a)(x-a)$ for some $a \in \mathcal{D}$. We note that $L_{a}(x)$ and its first derivative at a agree with $f(a)$ and $f^{\prime}(a)$ respectively.

$$
\rightarrow f(a)+f^{\prime}(c)(x-a) \text { for }(c-a) \text { is MVi }
$$

2. the quadratic approximation of a twice differentiable function $f(x)$ as the parabola $Q_{a}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$. We note that $Q_{a}(x)$ and its first and second derivatives at a agree with $f(a), f^{\prime}(a)$ and $f^{\prime \prime}(a)$ respectively. $P_{a}(x)=C_{1}+c_{2} x+c_{3} x^{2}$ sot $P_{a}(a) \leq f(a) P_{a}^{\prime}(a) \leq f^{\prime}(a)$ $x)^{\prime \prime} \stackrel{a}{a}(a)=f^{\prime}(a)$
3. the cubic approximation of a thrice differentiable function $f(x)$ is $C_{a}(x) \stackrel{a(a)}{=}$
$f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{6} f^{\prime \prime \prime}(a)(x-a)^{3} . C_{a}(x)$ and its first, second and third derivatives at a agree with $f(a), f^{\prime}(a), f^{\prime \prime}(a)$ and $f^{\prime \prime \prime}(a)$

$$
\begin{aligned}
& R^{\prime \prime}(a)=f^{\prime \prime}(a) \\
& R^{\prime \prime \prime}(a)=f^{\prime \prime}(a)
\end{aligned}
$$

Figure 4.3: Plot of $f(x)=\frac{1}{x}$, and its linear, quadratic and cubic approximations.
can be thought of as general $n^{\text {in }}$ order representation of Theorem 45 The Taylor's theorem states that if f and its first n aerivatives $f(b)$
$f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on the closed interval $[a, b]$, and differentiable on (a, b), then there exists a number $c \in(a, b)$ such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2!} f^{\prime \prime}(a)(b-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(b-a)^{n}+\frac{1}{(n+1)!} f^{(n+1)}(c)(b-
$$

\downarrow MUT is special case
MVT: ヨ $C \in(a, b)$ sit $f(b)=f(a)+f^{\prime}(c)(b-a)$ Ho c in $^{\circ}$ in the Tor prove use MIT successively on $f(\cdot), f^{\prime}(0), \ldots f^{n}(\cdot)$

Consider the function $\phi(t)=f(\mathrm{x}+t \mathrm{~h})$ considered in theorem 71, defined on the domain $\mathcal{D}_{\phi}=[0,1]$. Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continuous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem (45) with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives second order approx
\left.${\underset{\sim}{x}}_{f(t \mathrm{~h}}^{\mathrm{x}}\right)=f(\mathrm{x})+t \mathrm{~h}^{T} \nabla f(\mathrm{x})+t^{2} \frac{1}{2} h^{T} \nabla^{2} f(\mathrm{x}) \mathbf{h}+O\left(t^{3}\right)$
replace $\nabla^{2} f(x) \leq y \nabla^{2} f(x+c h)$ for $C E(0, t)$

We discussed in class, derivation of the second order Taylor expression.
We piso discussed that the matrix $\nabla^{2} f$ of mixed partial derivatives is symmetric if f has continuous mixed partial derivatives

We will introduce some definitions at this point:
strictly

- A function f is said to be increasing on an interval \mathcal{I} in its domain \mathcal{D} if $f(t)<f(x)$ whenever $t<\hat{x}$.
strictly
- The function f is said to be decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if $f(t)>f(x)$ whenever $t<x$.

These definitions help us derive the following theorem:

Theorem 46 Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and diferentiable on $\operatorname{int}(\mathcal{I})$. Then:

1. if $f^{\prime}(x)>0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is increasing on \mathcal{I}; \rightarrow Sufficient
2. if $f^{\prime}(x)<0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is decreasing on \mathcal{I};
3. if $f^{\prime}(x)=0$ for all $x \in \operatorname{int}(\mathcal{I})$, iff, f is constant on \mathcal{I}. \rightarrow Necessary \& sufficient

Figure 4.5: Illustration of the increasing and decreasing regions of a function $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$

Theorem 47 Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $\operatorname{int}(\mathcal{I})$. Then:

1. if $f^{\prime}(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f^{\prime}(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is increasing on \mathcal{I}; Necessary
2. if $f^{\prime}(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f^{\prime}(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is decreasing on \mathcal{I}. Necessary

Theorem 48 Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and di. ferentiable in int (\mathcal{I}). Then:

1. if f is increasing on \mathcal{I}, then $f^{\prime}(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$;
2. if f is decreasing on \mathcal{I}, then $f^{\prime}(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$.

Figure 4.6: Plot of $f(x)=x^{5}$, illustrating that though the function is increasing on $(-\infty, \infty), f^{\prime}(0)=0$.
In summary: $f^{\prime}(x) \geqslant 0 \Longleftrightarrow f$ is increasing
$f^{\prime}(x) \geqslant 0 \& f^{\prime}(x)=0$ at countable \# pto $\Longleftrightarrow f$ is strictly

Analogous to the definition of increasing functions introduced on page numbber 220 , we next introduce the concept of monotonic functions. This concept is very useful for characterization of a convex function.
Definition 39 Let $\mathrm{f}: \mathcal{D} \rightarrow \Re^{n}$ and $\mathcal{D} \subseteq \Re^{n}$. Then

1. f is monotone on \mathcal{D} if for any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$, 1
Extension of increasing

in to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(f\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)\right)^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \geq 0$
2. f is strictly monotone on \mathcal{D} if for any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$ with $\mathrm{x}_{1} \neq \mathrm{x}_{2}$,

$$
\begin{equation*}
\left(\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)\right)^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)>0 \tag{4.42}
\end{equation*}
$$

3. f is uniformly or strongly monotone on \mathcal{D} if for any $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$, there is a constant $c>0$ such that

$$
\begin{gather*}
\text { i. } f\left(x_{1}\right)-j\left(x_{2}\right) \| \tag{4.43}\\
\left\|x_{1}-x_{2}\right\|
\end{gather*} \geqslant\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)^{T}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \geq c\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|^{2}
$$

For $n=1$, and $D=(a, b)$, this implies (by mean value that $f^{\prime}(t) \geqslant c \quad \forall \quad t \in(a, b) \ldots$ Theorem) For $n>1$, norm of even g row of the Jacobian ($n \times n$ matrix) should be $\geqslant C$ (verify)

Figure 4.7: Example illustrating the derivative test for function $f(x)=3 x^{5}-$ $5 x^{3}$.

Procedure 1 [First derivative test]: Let c be an isolated critical number of f. Then,

1. $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, or (but not equivalently), the sign of $f^{\prime}(x)$ changes from negative in $\left[c-\epsilon_{1}, c\right]$ to positive in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
2. $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, or but not equivalently), the sign of $f^{\prime}(x)$ changes from positive in $\left[c-\epsilon_{1}, c\right]$ to negative in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
3. If $f^{\prime}(x)$ is positive in an interval $\left[c-\epsilon_{1}, c\right]$ and also positive in to clans interval $\left[c, c-\epsilon_{2}\right]$, or $f^{\prime}(x)$ is negative in an interval $\left[c-\epsilon_{1}, c\right]$ and r) n also negative in an interval $\left[c, c-\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, then $f(c)$ is not baton a local extremum.
As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f^{\prime}(x)=f^{\prime}(x)$ $15 x^{2}(x+1)(x-1)$. The critical points are 0,1 and -1 . Of the three, the sign of $f^{\prime}(x)$ changes at 1 and -1 , which are local minimum and maximum respectively.

Convexity of a function $f: R \rightarrow R$
(1) f is strictly ${ }_{\wedge}^{\text {convex }}$ if $f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$ $\forall x_{1}, x_{2}$ in domain $D \leqslant R$ for $\theta x_{1}+(1-\theta) x_{2} \in D, \quad \forall \theta \in[0,1]$ D should be convex

(2) f is, slickly convex if $f^{\prime}(x)$ strictly?

$$
\left(f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{2}\right)\right)\left(x_{1}-x_{2}\right) \geq 0
$$

(3)

$$
f(y)>\underbrace{f(x)+f^{\prime}(x)(y-x)}_{\text {Linear approximation to } y \text { using } x}
$$

(4) $\because f^{\prime}(x)$ is mereasing, $f^{\prime \prime}(x) \geqslant 0$

1. A differentiable function f is strictly convex (or strictly concave $u p)$ on an open interval \mathcal{I}, iff, $f^{\prime}(x)$ is increasing on \mathcal{I}. Recall from theorem 46, the graphical interpretation of the first derivative $f^{\prime}(x) ; f^{\prime}(x)>0$ implies that $f(x)$ is increasing at x. Similarly, $f^{\prime}(x)$ is increasing when $f^{\prime \prime}(x)>0$. This gives us a sufficient condition for the strict convexity of a function:

Theorem 50 If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime \prime}(x)>0, \forall x \in \mathcal{I}$, then the slope of the function is always increasing with x and the graph is strictly convex. This is illustrated in Figure 4.8.

On the other hand, if the function is strictly convex and doubly differentable in \mathcal{I}, then $f^{\prime \prime}(x) \geq 0, \forall x \in \mathcal{I}$.
There is also a slopeless interpretation of strict convexity as stated in the following theorem:

Theorem 51 A differentiable function f is(strictly) convex on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{4.2}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.
is equivalent to saying. That
A differentiable function f is (trrictly) convex on I if' f^{\prime} is strictly increasing on I

Proof: First we will prove the necessity. Suppose f^{\prime} is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that $x_{1}<x_{2}^{3}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that $f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=$ $f^{\prime}(s)\left(x_{2}-x_{1}\right)(1-a)$ and $f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f^{\prime}(t)\left(x_{2}-x_{1}\right) a$. Therefore,

$$
\begin{aligned}
(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right) & = \\
a\left[f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)\right]-(1-a)\left[f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)\right] & = \\
a(1-a)\left(x_{2}-x_{1}\right)\left[f^{\prime}(t)-f^{\prime}(s)\right] &
\end{aligned}
$$

Since $f(x)$ is strictly convex on $\mathcal{I}, f^{\prime}(x)$ is increasing \mathcal{I} and therefore, $f^{\prime}(t)-f^{\prime}(s)>0$. Moreover, $x_{2}-x_{1}>0$ and $0<a<1$. This implies that $(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)>0$, or equivalently, $f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)$, which is what we wanted to prove in 4.2 .
Next, we prove the sufficiency. Suppose the inequality in 4.2 holds. Therefore,

$$
\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)
$$

that is,

$$
\begin{equation*}
f^{\prime}\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right) \tag{4.3}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{4.4}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (4.3) and (4.4), and multiplying the resultant inequality by -1 gives us

$$
\begin{equation*}
\left(f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right) \geq 0 \tag{4.5}
\end{equation*}
$$

Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(z)\left(x_{2}-x_{1}\right) \tag{4.6}
\end{equation*}
$$

Since 4.5 holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f^{\prime}(z)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f^{\prime}(z)-f^{\prime}\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using 4.6, we get

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=\left(f^{\prime}(z)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \geq f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{4.7}
\end{equation*}
$$

Suppose equality holds in 4.5 for some $x_{1} \neq x_{2}$. Then equality holds in 4.7 for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{4.8}
\end{equation*}
$$

Applying 4.7 we can conclude that

$$
\begin{equation*}
f\left(x_{1}\right)+a f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{4.9}
\end{equation*}
$$

From 4.2 and 4.8 , we can derive that

$$
\begin{equation*}
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{4.10}
\end{equation*}
$$

However, equations 4.9 and 4.10 contradict each other. Therefore, equality in 4.5 cannot hold for any $x_{1} \neq x_{2}$, implying that

$$
\left(f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)>0
$$

that is, $f^{\prime}(x)$ is increasing and therefore f is convex on \mathcal{I}.

Figure 4.9: Plot for the strictly convex function $f(x)=-x^{2}$ which has $f^{\prime \prime}(x)=$ $-2<0, \forall x$.

A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f^{\prime}(x)$ is decreasing on \mathcal{I}. Recall from theorem 46, the graphical interpretation of the first derivative $f^{\prime}(x) ; f^{\prime}(x)<0$ implies that $f(x)$ is decreasing at x. Similarly, $f^{\prime}(x)$ is monotonically decreasing when $f^{\prime \prime}(x)>$ 0 . This gives us a sufficient condition for the concavity of a function:

Theorem 52 If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime \prime}(x)<0, \forall x \in \mathcal{I}$, then the slope of the function is always decreasing with x and the graph is strictly concave. This is illustrated in Figure 4.9.

On the other hand, if the function is strictly concave and doubly differentiable in \mathcal{I}, then $f^{\prime \prime}(x) \leq 0, \forall x \in \mathcal{I}$.

There is also a slopeless interpretation of concavity as stated in the following theorem:

Theorem 53 A differentiable function f is strictly concave on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)>a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{4.11}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.

Figure 4.10: Plot for $f(x)=x^{3}+x+2$, which has an inflection point $x=0$, along with plots for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Procedure 2 [First derivative test in terms of strict convexity]: Let c be a critical number of f and $f^{\prime}(c)=0$. Then,

1. $f(c)$ is a local minimum if the graph of $f(x)$ is strictly convex on an open interval containing c.
2. $f(c)$ is a local maximum if the graph of $f(x)$ is strictly concave on an open interval containing c.

3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

Definition 35 [Convex Function]: A function $f: \mathcal{D} \rightarrow \Re$ is convex if \mathcal{D} is a convex set and

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad 0 \leq \theta \leq 1 \tag{4.31}
\end{equation*}
$$

Figure 4.37 illustrates an example convex function. A function $f: \mathcal{D} \rightarrow \Re$ is strictly convex if \mathcal{D} is convex and

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y})<\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad 0 \leq \theta \leq 1(4.32)
$$

A function $f: \mathcal{D} \rightarrow \Re$ is called uniformly or strongly convex if \mathcal{D} is convex and there exists a constant $c>0$ such that

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}))-\frac{1}{2} c \theta(1-\theta)\|\mathbf{x}-\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad 0 \leq \theta \leq 1(
$$

Theorem 69 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function on a convex domain \mathcal{D}. Any point of locally minimum solution for f is also a point of its globally minimum solution.

Theorem 70 Let $f: \mathcal{D} \rightarrow \Re$ be a strictly convex function on a convex domain \mathcal{D}. Then f has a unique point corresponding to its global minimum.

Theorem 71 A function $f: \mathcal{D} \rightarrow \Re$ is (strictly) convex if and only if the function $\phi: \mathcal{D}_{\phi} \rightarrow \Re$ defined below, is (strictly) convex in t for every $\mathbf{x} \in \Re^{n}$ and for every $\mathbf{h} \in \Re^{n}$

$$
\phi(t)=f(\mathbf{x}+t \mathbf{h})
$$

with the domain of ϕ given by $\mathcal{D}_{\phi}=\{t \mid \mathbf{x}+t \mathbf{h} \in \mathcal{D}\}$.

Examples on \mathbf{R}

convex:

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbf{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}
concave:
- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i-1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$
examples on $\mathbf{R}^{m \times n}$ ($m \times n$ matrices)
- affine function

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- spectral (maximum singular value) norm

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Restriction of a convex function to a line

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$
can check convexity of f by checking convexity of functions of one variable
example. $f: \mathbf{S}^{n} \rightarrow \mathbf{R}$ with $f(X)=\log \operatorname{det} X, \operatorname{dom} X=\mathbf{S}_{++}^{n}$

$$
\begin{aligned}
g(t)=\log \operatorname{det}(X+i V) & =\log \operatorname{det} X+\log \operatorname{det}\left(I+i X^{-1 / 2} V X^{-1 / 2}\right) \\
& =\log \operatorname{det} X+\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)
\end{aligned}
$$

where λ_{i} are the eigenvalues of $X^{-1 / 2} V X^{-1 / 2}$
g is concave in t (for any choice of $X \succ 0, V$); hence f is concave

Extended-value extension

extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbf{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

$$
f(y)
$$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

Theorem 75 Let $f: \mathcal{D} \rightarrow \Re$ be a differentiable convex function on an open convex set \mathcal{D}. Then:

1. f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.44}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
f(\mathbf{y})>f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.45}
\end{equation*}
$$

3. f is strongly convex on \mathcal{D} if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.46}
\end{equation*}
$$

for some constant $c>0$.

Theorem 78 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \subseteq \Re^{n}$ be differentiable on the convex set D. Then,

1. f is convex on \mathcal{D} if and only if is its gradient ∇f is monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \tag{4.53}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if is its gradient ∇f is strictly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$ with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})>0 \tag{4.54}
\end{equation*}
$$

3. f is uniformly or strongly convex on \mathcal{D} if and only if is its gradient ∇f is uniformly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq c\|\mathbf{x}-\mathbf{y}\|^{2} \tag{4.55}
\end{equation*}
$$

for some constant $c>0$.

Procedure 3 [Second derivative test]: Let c be a critical number of f where $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ exists.

1. If $f^{\prime \prime}(c)>0$ then $f(c)$ is a local minimum.
2. If $f^{\prime \prime}(c)<0$ then $f(c)$ is a local maximum.
3. If $f^{\prime \prime}(c)=0$ then $f(c)$ could be a local maximum, a local minimum, neither or both. That is, the test fails.

For example,

- If $f(x)=x^{4}$, then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ and we can see that $f(0)$ is a local minimum.
- If $f(x)=-x^{4}$, then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ and we can see that $f(0)$ is a local maximum.
- If $f(x)=x^{3}$, then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ and we can see that $f(0)$ is neither a local minimum nor a local maximum. $(0,0)$ is an inflection point in this case.
- If $f(x)=x+2 \sin x$, then $f^{\prime}(x)=1+2 \cos x . f^{\prime}(x)=0$ for $x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$, which are the critical numbers. $f^{\prime \prime}\left(\frac{2 \pi}{3}\right)=-2 \sin \frac{2 \pi}{3}=-\sqrt{3}<0 \Rightarrow$ $f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum value. On the other hand, $f^{\prime \prime}\left(\frac{4 \pi}{3}\right)=$ $\sqrt{3}>0 \Rightarrow f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum value.
- If $f(x)=x+\frac{1}{x}$, then $f^{\prime}(x)=1-\frac{1}{x^{2}}$. The critical numbers are $x= \pm 1$. Note that $x=0$ is not a critical number, even though $f^{\prime}(0)$ does not exist, because 0 is not in the domain of $f . f^{\prime \prime}(x)=\frac{2}{x^{3}} . f^{\prime \prime}(-1)=-2<0$ and therefore $f(-1)=-2$ is a local maximum. $f^{\prime \prime}(1)=2>0$ and therefore $f(1)=2$ is a local minimum.

Theorem 79 A twice differential function $f: \mathcal{D} \rightarrow \Re$ for a nonempty open convex set \mathcal{D}

1. is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite at each point in \mathcal{D}. That is

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \forall \mathbf{x} \in \mathcal{D} \tag{4.62}
\end{equation*}
$$

2. is strictly convex if its domain is convex and its Hessian matrix is positive definite at each point in \mathcal{D}. That is

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x}) \succ 0 \quad \forall \mathbf{x} \in \mathcal{D} \tag{4.63}
\end{equation*}
$$

3. is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly positive definite at each point in \mathcal{D}. That is, for any $\mathbf{v} \in \Re^{n}$ and any $\mathbf{x} \in \mathcal{D}$, there exists a $c>0$ such that

$$
\begin{equation*}
\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v} \geq c\|\mathbf{v}\|^{2} \tag{4.64}
\end{equation*}
$$

In other words

$$
\nabla^{2} f(\mathbf{x}) \succeq c I_{n \times n}
$$

where $I_{n \times n}$ is the $n \times n$ identity matrix and \succeq corresponds to the positive semidefinite inequality. That is, the function f is strongly convex iff $\nabla^{2} f(\mathbf{x})-c I_{n \times n}$ is positive semidefinite, for all $\mathbf{x} \in \mathcal{D}$ and for some constant $c>0$, which corresponds to the positive minimum curvature of f.

Global Extrema on Closed Intervals

Procedure 4 [Finding extreme values on closed, bounded intervals]:

 Find the critical points in int (\mathcal{I}).2. Compute the values of f at the critical points and at the endpoints of the interval.
3. Select the least and greatest of the computed values.

For example, to compute the maximum and minimum values of $f(x)=$ $4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$, we first compute $f^{\prime}(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$. Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$. The values at the end points are $f(0)=0$ and $f(1)=1$. Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.

Definition 21 [One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval $[a, b]$. The (right-sided) derivative of f at $x=a$ is defined as

$$
f^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

Similarly, the (left-sided) derivative of f at $x=b$ is defined as

$$
f^{\prime}(b)=\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}
$$

Theorem 54 If f is continuous on $[a, b]$ and $f^{\prime}(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f^{\prime}(a) \leq 0$ or $f^{\prime}(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f^{\prime}(a) \geq 0$ or $f^{\prime}(a)=\infty$.

If f is continuous on $[a, b]$ and $f^{\prime}(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b.

- If $f(b)$ is the maximum value of f on $[a, b]$, then $f^{\prime}(b) \geq 0$ or $f^{\prime}(b)=\infty$.
- If $f(b)$ is the minimum value of f on $[a, b]$, then $f^{\prime}(b) \leq 0$ or $f^{\prime}(b)=-\infty$.

The following theorem gives a useful procedure for finding extrema on closed intervals.

Theorem 55 If f is continuous on $[a, b]$ and $f^{\prime \prime}(x)$ exists for all $x \in(a, b)$. Then,

- If $f^{\prime \prime}(x) \leq 0, \forall x \in(a, b)$, then the minimum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical number $c \in(a, b)$, then $f(c)$ is the maximum value of f on $[a, b]$.
- If $f^{\prime \prime}(x) \geq 0, \forall x \in(a, b)$, then the maximum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical number $c \in(a, b)$, then $f(c)$ is the minimum value of f on $[a, b]$.

Theorem 56 Let \mathcal{I} be an open interval and let $f^{\prime \prime}(x)$ exist $\forall x \in \mathcal{I}$.

- If $f^{\prime \prime}(x) \geq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f^{\prime}(c)=0$, then $f(c)$ is the global minimum value of f on \mathcal{I}.
- If $f^{\prime \prime}(x) \leq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f^{\prime}(c)=0$, then $f(c)$ is the global maximum value of f on \mathcal{I}.

For example, let $f(x)=\frac{2}{3} x-\sec x$ and $\mathcal{I}=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) . f^{\prime}(x)=\frac{2}{3}-\sec x \tan x=$ $\frac{2}{3}-\frac{\sin x}{\cos ^{2} x}=0 \Rightarrow x=\frac{\pi}{6}$. Further, $f^{\prime \prime}(x)=-\sec x\left(\tan ^{2} x+\sec ^{2} x\right)<0$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Therefore, f attains the maximum value $f\left(\frac{\pi}{6}\right)=\frac{\pi}{9}-\frac{2}{\sqrt{3}}$ on \mathcal{I}.

Figure 4.11: Illustrating the constraints for the optimization problem of finding the cone with minimum volume that can contain a sphere of radius R.

Theorem 61 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open ball \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Let $\nabla^{2} f(\mathbf{x})$ denote an $n \times n$ matrix of mixed partial derivatives of f evaluated at the point \mathbf{x}, such that the $i j^{\text {th }}$ entry of the matrix is $f_{x_{i} x_{j}}$. The matrix $\nabla^{2} f(\mathbf{x})$ is called the Hessian matrix. The Hessian matrix is symmetric ${ }^{6}$. Then,

- If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, \mathbf{x}^{*} is a local minimum.
- If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is negative definite (that is if $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite), \mathbf{x}^{*} is a local maximum.

Theorem 62 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open region \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Then,

- If \mathbf{x}^{*} is a point of local minimum, $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be positive semi-definite.
- If \mathbf{x}^{*} is a point of local maximum, $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be negative semi-definite (that is, $-\nabla^{2} f\left(\mathbf{x}^{*}\right)$ must be positive semi-definite).

Corollary 63 Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open region \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is neither positive semidefinite nor negative semi-definite (that is, some of its eigenvalues are positive and some negative), then \mathbf{x}^{*} is a saddle point.

Theorem 64 Let the partial and second partial derivatives of $f\left(x_{1}, x_{2}\right)$ be continuous on a disk with center (a, b) and suppose $f_{x_{1}}(a, b)=0$ and $f_{x_{2}}(a, b)=0$ so that (a, b) is a critical point of f. Let $D(a, b)=f_{x_{1} x_{1}}(a, b) f_{x_{2} x_{2}}(a, b)-$ $\left[f_{x_{1} x_{2}}(a, b)\right]^{2}$. Then ${ }^{7}$,

- If $D>0$ and $f_{x_{1} x_{1}}(a, b)>0$, then $f(a, b)$ is a local minimum.
- Else if $D>0$ and $f_{x_{1} x_{1}}(a, b)<0$, then $f(a, b)$ is a local maximum.
- Else if $D<0$ then (a, b) is a saddle point.

Figure 4.22: Plot of the function $2 x_{1}^{3}+x_{1} x_{2}^{2}+5 x_{1}^{2}+x_{2}^{2}$ showing the four critical points.

We saw earlier that the critical points for $f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+x_{1} x_{2}^{2}+5 x_{1}^{2}+x_{2}^{2}$ are $(0,0),\left(-\frac{5}{3}, 0\right),(-1,2)$ and $(-1,-2)$. To determine which of these correspond to local extrema and which are saddle, we first compute compute the partial derivatives of f :
$f_{x_{1} x_{1}}\left(x_{1}, x_{2}\right)=12 x_{1}+10$
$f_{x_{2} x_{2}}\left(x_{1}, x_{2}\right)=2 x_{1}+2$
$f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right)=2 x_{2}$
Using theorem 64 , we can verify that $(0,0)$ corresponds to a local minimum, $\left(-\frac{5}{2}, 0\right)$ corresponds to a local maximum while $(-1,2)$ and $(-1,-2)$ correspond
to saddle points. Figure 4.22 shows the plot of the function while pointing outhe four critical points.

Figure 4.23: Plot of the function $10 x^{2} y-5 x^{2}-4 y^{2}-x^{4}-2 y^{4}$ showing the four critical points.
Consider a significantly harder function $f(x, y)=10 x^{2} y-5 x^{2}-4 y^{2}-$ $x^{4}-2 y^{4}$. Let us find and classify its critical points. The gradient vector is $\nabla f(x, y)=\left[20 x y-10 x-4 x^{3}, \quad 10 x^{2}-8 y-8 y^{3}\right]$. The critical points correspond to solutions of the simultaneous set of equations

$$
\begin{align*}
& 20 x y-10 x-4 x^{3}=0 \tag{4.15}\\
& 10 x^{2}-8 y-8 y^{3}=0
\end{align*}
$$

One of the solutions corresponds to solving the system $-8 y^{3}+42 y-$ $25=0^{8}$ and $10 x^{2}=50 y-25$, which have four real solutions ${ }^{9}$, viz. , $(0.8567,0.646772),(-0.8567,0.646772),(2.6442,1.898384)$, and ($-2.6442,1.898384$). Another real solution is $(0,0)$. The mixed partial derivatives of the function are

$$
\begin{align*}
f_{x x} & =20 y-10-12 x^{2} \\
f_{x y} & =20 x \tag{4.16}\\
f_{y y} & =-8-24 y^{2}
\end{align*}
$$

Using theorem 64 , we can verify that $(2.6442,1.898384)$ and $(-2.6442,1.898384)$ correspond to local maxima whereas $(0.8567,0.646772)$ and $(-0.8567,0.646772)$ corresnond to saddle noints This is illustrated in Figure 492

