Constrained Minimization • Algos & • Theory

The general inequality constrained convex minimization problem is

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq \mathbf{0}$, $i = 1, ..., m$ (4.105)
 $A\mathbf{x} = b$
where f as well as the g_i 's are convex and twice continuously differentiable. .
Constraints above g_i ve a convex set
 $f(f) = f(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if both
 $h_{ij}(\mathbf{x}) = 0$ then $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{j}(\mathbf{x}) \leq 0 \Rightarrow$ if $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{ij}(\mathbf{x}) \leq 0 \Rightarrow$ if $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{ij}(\mathbf{x}) \leq 0 \Rightarrow$ if $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{ij}(\mathbf{x}) \leq 0 \Rightarrow$ if $h_{ij}(\mathbf{x}) \leq 0 \leq -h_{ij}(\mathbf{x}) \leq 0 \leq -h_{ij}(\mathbf{x}) \leq 0 = -h_{ij}(\mathbf{x}) \leq 0 = -h_{ij}(\mathbf{x}) \leq 0 = -h_{ij}(\mathbf{x}) = -h_{ij}(\mathbf{x$

HOMEWORK: IDENTIFY NON-AFFINE hj(x)=0 that yields a convex domain.

general: 5 f(x)min $g_i(x) \leq 0$ 5.2 1=1. · n $h_{1}(x) = 0$ j=1..m For a while no convexity assumptions on gig f will be considered. (α) min $\frac{1}{2}$ Z X ZER

More generally, a convex program can be written as minimization of a linear function C^Tx (XCR and C=1 above) overs a convex feasible region Fc min CZ Subject to REF Recall definition of a conic program min CTX sit Ax-bek where k is a proper cone. Claim: Any convex program can be willen as a conic program

Proof: Cuven a convex optimisation problem min Cx XEIRⁿ subject to XEFC Embed (Rⁿ into IRⁿ⁺¹ as the hyperplane H=SIZX (Rⁿ C Rⁿ⁺¹) and define a proper cone $K=c!\left(\{(t,x)\in \mathbb{R}^{n+1}: t>0\}$ $t\in E\}\right)$ Let d= (°). We can write the above convet program as the following conic program: min $d^{T}x$ $(t,x)\in \mathbb{R}^{n+1}$ Neededa Note that xEFCISS (1,2)EK J problem i.e. XEKOH

Proof that Kis a cone: Let (t_1, x_1) if $(t_2, x_2) \in k$. and $\partial_{1,2} \partial_2 > O$ Consider $\theta_1(t_1, 2_1) + \theta_2(t_2, 2_2)$ Ð12,+0222 $\frac{\vartheta_{1}\chi_{1}+\vartheta_{2}\chi_{2}}{\vartheta_{1}\xi_{1}+\vartheta_{2}\xi_{2}} = \begin{pmatrix} \chi_{1} \\ \xi_{1} \end{pmatrix} \begin{pmatrix} \frac{\vartheta_{1}\xi_{1}}{\vartheta_{1}\xi_{1}+\vartheta_{2}\xi_{2}} \end{pmatrix} + \begin{pmatrix} \chi_{2} \\ \xi_{2} \end{pmatrix} \begin{pmatrix} \frac{\vartheta_{2}\xi_{2}}{\vartheta_{1}\xi_{1}} \end{pmatrix} \begin{pmatrix} \frac{\vartheta_{2}\xi_{2}}{\vartheta_{1}\xi_{1}} \end{pmatrix}$ e [o, i] Sum to 1 convex combination of (24) and € therefore € Fr. $\Theta_1(t_1, x_1) + \Theta_2(t_2, x_2) \in K.$

Let us recall our discussion on linear programs (LP), dual of LP, conic programs à their duals Ref page 5 of http://www2.isye du/~ nem irovs/IC LP Affine objective Conic Program (CP) $\mathbf{c}^T \mathbf{x}$ $\mathbf{c}^T \mathbf{x}$ min \min $\mathbf{x} \in \Re^n$ $\mathbf{x} \in \Re^n$ subject to $-A\mathbf{x} + \mathbf{b} \le 0$ subject to $-Ax + b \leq 0$ Kis a regular proper cae Let 770 (i.e NERT) Generalised cone program Then 7 (-Ax+b) <0 $\min_{x \in S} \langle c, x \rangle_{S}$ $\Rightarrow c' x = c' x + \lambda' (-Ax + b)$ $= \lambda^T b + (c - A^T \lambda)^T x$ subject to Ax-bEK >min 210+(C-K1)/2 Ywe need an equivalent λek^{*} s∙t <7, Az-6>>0 independent L-00 15 ATX #C This Kast independent of x K={= {= {= { x, x = b > > 0 min CX max bt) xGRn > 77,0 YAZ-PEKS is called the DUAL CONE 5.6 Az>b 5.8 AZ of K (ie element that Primat LP Dual LP have the inner prod with each element of K) (lower bounded (upper bo

by primal) by dual) $K_* = \{\lambda : \lambda^T \xi \ge 0 \forall \xi \in K\}$ is the cone dual to Kacfn on page 7 of http://www2.isye.gatech edu/~nemirovs/ICMNem Called the weak duality theorem for Linear Program with this prove the following weak duality theorem for CONIC PROGRAM min (c,z) > max (b,7) zg S > 7 REK 5·1: A2>b St A7>=C Reimal CP (nower bounded (upperbounded by dual) by partial) Notes: Note Both LP & CP dealt 1] If K=IRT, the CP is an LP with affine objective (2) CP dealt with the generalised conic in equalities If K=St, the clis an SDP Set of all nxn semi-definite Symmetric positive program 3 Later, in Convex programs, we will semi definite matrices deal with the 2) Any generic convex program more general convex can be cupressed as a Cone program (CP/HW) functions in the objective

HOW ABOUT STRONG DUALITY FOR LPS?

age 21 Mttp://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf

Theorem 1.2.2 [Duality Theorem in Linear Programming] Consider a linear programming program

$$\min_{x} \left\{ c^T x \middle| Ax \ge b \right\} \tag{LP}$$

along with its dual

$$\max_{y} \left\{ b^{T} y \, \middle| \, A^{T} y = c, y \ge 0 \right\} \tag{LP*}$$

Then

The duality is symmetric: the problem dual to dual is equivalent to the primal;

Proof. 1) is quite straightforward: writing the dual problem (LP*) in our standard form, we get

$$\min_{y} \left\{ -b^{T}y \left| \begin{bmatrix} I_{m} \\ A^{T} \\ -A^{T} \end{bmatrix} y - \begin{pmatrix} 0 \\ -c \\ c \end{pmatrix} \ge 0 \right\},\$$

where I_m is the *m*-dimensional unit matrix. Applying the duality transformation to the latter problem, we come to the problem

$$\max_{\xi,\eta,\zeta} \begin{cases} \xi \geq 0 \\ \eta \geq 0 \\ \zeta \geq 0 \\ \zeta \geq 0 \\ \xi - A\eta + A\zeta = -b \end{cases}$$

which is clearly equivalent to (LP) (set $x = \eta - \zeta$).

Similar Duality theorem for CP:
[page 7 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf]
Note dual(dual (K)) = K if K is a closed

$$min_{x} \left\{ c^{T}x : Ax - b \ge_{K} 0 \right\}$$
 (CP)
 $max \left\{ b^{T}\lambda : A^{T}\lambda = c, \lambda \ge_{K} 0 \right\}$, (D)

Theorem 2.1. Assuming A in (CP) is of full column rank, the following is true: (i) The duality is symmetric: (D) is a conic problem, and the conic dual to (D)

- is (equivalent to) (CP):
- (ii) [weak duality] $Opt(D) \le Opt(CP)$; Already proved (iii) lateration of the second second

(iii) [strong duality] If one of the programs (CP), (D) is bounded and strictly feasible (i.e., the corresponding affine plane intersects the interior of the associated cone), then the other is solvable and Opt(CP) = Opt(D). If both (CP), (D) are strictly feasible, then both programs are solvable and Opt(CP) = Opt(D);

(iv) [optimality conditions] Assume that both (CP), (D) are strictly feasible. Then a pair (x, λ) of feasible solutions to the problem is comprised of optimal solutions iff $c^T x = b^T \lambda$ ("zero duality gap"), same as iff $\lambda^T [Ax - b] = 0$ ("complementary slackness").

From dual of LP to dual of a general Optimisation problem

LP	Affine objective
$\min_{\mathbf{x}\in\Re^n}$	$\mathbf{c}^T \mathbf{x}$
subject to	$-A\mathbf{x} + \mathbf{b} \le 0$

Let: 270 (i.e NER") Then $\mathcal{N}^{\mathsf{T}}(-A\mathbf{x}+\mathbf{b}) \leq 0$ $\Rightarrow c' x z c' x + \lambda' (-Ax+b)$ $= \lambda^{T}b + (c - A^{T}\lambda)'x$ >min 7 b+ (C- K) x $\int = \begin{cases} \chi T b & i \int A^T \lambda = C \\ = \begin{cases} \chi b & i \\ \end{cases}$ independent -00 if ATZ #C min CX max br x C Rⁿ > 77,0 S.L AZZO S.L ATZ=C Primat LP Duat LP (lower bounded (upper bounded

min $f_o(x)$ x EIRn rsweet to $f_i(x) \leq 0$ islam h;(x)=0 j=1...p Let 7,70 (1e NERP) and ze be feasible. Then ⇒fo(x) Zfo(x)+ 芝ハ;fiの +ŽM; hj(x) i=1 $\gamma = \min \left(f_0(x) + \sum_{j=1}^{\infty} \lambda_j f_i(x) + \sum_{j=1}^{\infty} \lambda_j f_j(x) \right)$ Not justi Seasible 2 L (26,7,M) L*(7,M) min $f(x) \ge \max_{\lambda, M} L^{\bullet}(\lambda, u)$ 5.2 f: (x) < 0 $h_j(x) = 0$

5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

5–1

Lagrangian

standard form problem (not necessarily convex)

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^{\star}

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function $L(x, \lambda, \mu) \leq f_o(x)$ Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, $\mathcal{L}^{\mathbf{F}}(\mathbf{\lambda}, \mathbf{v})$ of $g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$ $(Y [(Y, M) \leq p]$ $= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$ g is concave, can be $-\infty$ for some λ , ν **lower bound property:** if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then $f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$ minimizing over all feasible \tilde{x} gives $p^* \geq q(\lambda, \nu)$ on page a Duality Concave L(X,V) or g(X,V) is love! $g\left(\frac{\partial \lambda_{1} + (1-\theta)\lambda_{2}}{\theta \sqrt{1} + (1-\theta)\sqrt{2}}\right)$ $= \inf \left[f_{0}(x) \cdot (\frac{\partial + 1-\theta}{\theta}) + \sum_{i=1}^{\infty} (\frac{\partial \lambda_{i} + (1-\theta)}{\theta \sqrt{2}}) f_{i}(x) + \sum_{i=1}^{i=1} (\frac{\partial \nu_{i}}{\theta \sqrt{2}} + (1-\theta)\sqrt{2}) h_{i}(x)\right]$ $= \inf_{x \in D} \left\{ \begin{array}{l} \Theta[f_0(x) + \tilde{z}_1^n]_{i=1}^n \gamma_{i} f_i(\alpha) + \tilde{z}_1^n]_{i=1} \\ + (r - \theta) \left[f_0(\alpha) + \tilde{z}_1^n z_1 f_1(\alpha) + \tilde{z}_1^n z_1 h_1(\alpha) \right] \end{array} \right\}$

 $\sum_{x \in D} \left(f_0(x) + \sum_{i=1}^{n} f_i(x) + \sum_{i=1}^{n} f_i(x) \right)$ + (1-0) $\int \inf_{x \in D} (f_0(x) + \sum_{i=1}^{m} \chi_{2i} f_i(x) + \sum_{i=1}^{p} \chi_{2i} h_i(x))$ $= \theta g(\pi, M) + (f - \theta) g(\pi_2, M_2) \Rightarrow g(\pi, M) = L^{\bullet}(\pi, M)$ is concave

Least-norm solution of linear equations

Duality

minimize
$$x^T x$$

subject to $Ax = b$
dual function $[ar(An) \in f_{1} + \nu^{T}(Ax - b)]$
• Lagrangian is $L(x, \nu) = x^T x + \nu^{T}(Ax - b)$
• to minimize L over x , set gradient equal to zero:
 $\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -(1/2)A^T \nu$
• plug in in L to obtain g :
 $g(\nu) = L((-1/2)A^T \nu, \nu) = -\frac{1}{4}\nu^T AA^T \nu - b^T \nu$
a concave function of ν
lower bound property: $p^* \ge -(1/4)\nu^T AA^T \nu - b^T \nu$ for all ν
 p_{uality}
 $p_$

Soln to Hlw.

<u>06/11/2013</u>. For the problem of least norm solution of linear equations (page no 13), show that A is an m x n matrix with m < n and if A has full row rank, strong duality holds, that is, there exists a point x satisfying the primal constraints such that the lower bound obtained using weak duality is actually attained. Hint: Refer to <u>this</u>. **Deadline:** 8th November.

Standard form LP

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax = b, \quad x \succeq 0 \end{array}$

dual function

• Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• L is linear in x, hence

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda,\nu)\mid A^T\nu-\lambda+c=0\},$ hence concave

lower bound property: $p^{\star} \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Duality

Equality constrained norm minimization

 $\begin{array}{ll} \text{minimize} & \|x\|\\ \text{subject to} & Ax = b \end{array}$

dual function

$$g(\nu) = \inf_{x} (\|x\| - \nu^{T}Ax + b^{T}\nu) = \begin{cases} b^{T}\nu & \|A^{T}\nu\|_{*} \leq 1\\ -\infty & \text{otherwise} \end{cases}$$

where $\|v\|_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

proof: follows from $\inf_x(\|x\| - y^T x) = 0$ if $\|y\|_* \le 1$, $-\infty$ otherwise

- if $||y||_* \leq 1$, then $||x|| y^T x \geq 0$ for all x, with equality if x = 0
- if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$\|x\| - y^T x = t(\|u\| - \|y\|_*) \to -\infty \quad \text{as } t \to \infty$$

lower bound property: $p^{\star} \geq b^T \nu$ if $||A^T \nu||_* \leq 1$

Duality

5–5

Two-way partitioning

 $\begin{array}{ll} \mbox{minimize} & x^T W x \\ \mbox{subject to} & x_i^2 = 1, \quad i = 1, \dots, n \end{array}$

wij

- a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$\begin{split} g(\nu) &= \inf_x (x^T W x + \sum_i \nu_i (x_i^2 - 1)) &= \inf_x x^T (W + \mathbf{diag}(\nu)) x - \mathbf{1}^T \nu \\ &= \begin{cases} -\mathbf{1}^T \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

lower bound property: $p^* \ge -\mathbf{1}^T \nu$ if $W + \operatorname{diag}(\nu) \succeq 0$

example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $p^{\star} \geq n\lambda_{\min}(W)$

Duality

Shidy the connection between W & Timin for diff choice Lagrange dual and conjugate function

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & Ax \preceq b, \quad Cx = d \end{array}$

dual function

$$g(\lambda,\nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is kown

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \succeq 0$

- finds best lower bound on p^{\star} , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5–5)

maximize $-b^T \nu$ $c^T x$ minimize subject to $A^T \nu + c \succeq 0$ subject to Ax = b $x \succeq 0$

Duality

For Li?: Feasib

5–9

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize $-\mathbf{1}^T \nu$ subject to $W + \operatorname{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: $d^{\star} = p^{\star}$

- does not hold in general
- (usually) holds for convex problems

rimal & dual

 conditions that guarantee strong duality in convex problems are called constraint qualifications For conic frog: Strict feasibility ie 3 x G ut (K) 5-10

Slater's constraint gualification

strong duality holds for a convex problem

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \end{array}$ TED Ar = b

if it is strictly feasible, *i.e.*,

$$\exists x \in \operatorname{int} \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

• also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)

• can be sharpened: e.q., can replace $int \mathcal{D}$ with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .

• there exist many other types of constraint qualifications

[Ivoif of strong duality under constraint qualifications in section 5.3.2 gg 234 onwards of (vx book]

Inequality form LP

primal problem

minimize $c^T x$ subject to $Ax \preceq b$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T\lambda \\ \text{subject to} & A^T\lambda + c = 0, \quad \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in S^n_{++}$)

minimize
$$x^T P x$$

subject to $Ax \leq b$ convex polyhedror

dual function

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (A x - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

dual problem

$$\begin{array}{ll} \mbox{maximize} & -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda \\ \mbox{subject to} & \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star} = d^{\star}$ always

Duality

5–13

A nonconvex problem with strong duality

 $\begin{array}{ll} \mbox{minimize} & x^TAx + 2b^Tx \\ \mbox{subject to} & x^Tx \leq 1 \end{array}$

 $A \not\succeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_x (x^T (A + \lambda I) x + 2b^T x - \lambda)$$

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- minimized by $x = -(A + \lambda I)^{\dagger}b$ otherwise: $g(\lambda) = -b^T(A + \lambda I)^{\dagger}b \lambda$

dual problem and equivalent SDP:

 $\begin{array}{ll} \text{maximize} & -b^T (A + \lambda I)^\dagger b - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 & \\ & b \in \mathcal{R}(A + \lambda I) & \text{subject to} & \left[\begin{array}{cc} A + \lambda I & b \\ & b^T & t \end{array} \right] \succeq 0 \end{array}$

strong duality although primal problem is not convex (not easy to show)

Geometry of the dual [7age 292 onwards Section 4.4.3 of http://www.cse.iitb.ac.in/~ CS709/notes/BasicsOf Conv ex Ontimization off Let Primal be exOptimization.pdf

So : Example of the set \mathcal{I} for a single constraint (*i.e.*, for n = 1).

If f(x) is convex and each of gi(x) are convex, then I will be convex
Feasible region of primal problem (4.80) corresponds to subset of I with 5150
Solution to primal problem corresponds to point in I with lowest value of z such that size ... in the figure it is (0,5)

4

Let us define a hyperplane $\mathcal{H}_{\lambda,\alpha}$, parametrized by $\lambda \in \Re^m$ and $\alpha \in \Re$

$$\mathcal{H}_{\lambda,\alpha}^{+} = \left\{ (\mathbf{s}, z) \left| \lambda^{T} \cdot \mathbf{s} + z \ge \alpha \right. \right\}$$

By definitions of $\mathcal{I}, \mathcal{H}^+_{\lambda,\alpha}$ and the subset relation

max
$$\alpha$$

subject to $\lambda^T \cdot s + z \ge \alpha \ \forall (s, z) \in I$
 $\lambda \ge 0$
(a) Using the fact that every point on
boundary $(I) = \partial I$ must be of the form
 $(s', z') = (g_1(z') g_2(z') \cdots g_n(z'), f(z'))$
we get the following equivalent optimisation
problem:

 $\begin{array}{ll} \max & \alpha \\ \text{subject to} & \lambda^T.\mathbf{g}(\mathbf{x}) + f(\mathbf{x}) \geq \alpha \ \forall \mathbf{x} \in \mathcal{D} \\ & \lambda \geq \mathbf{0} \\ \end{array}$ Recalling that $L(\mathbf{x}, \lambda) = \lambda \mathbf{g}(\mathbf{x}) + f(\mathbf{x})$, we obtain

Since, $L^*(\lambda) = \min_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda)$, we can deal with (equivalently)

$$\begin{array}{ll} \max & \alpha \\ \text{subject to} & L^*(\lambda) \geq \alpha \\ & \lambda \geq \mathbf{0} \end{array}$$

This problem can be restated as

$$\begin{array}{ccc} \max & L^*(\lambda) \\ \text{subject to} & \lambda \geq \end{array}$$

This is precisely the dual problem.

2 What is effect of convexity of I on gap between primal & dual?

Figure 4.39: At any non-optimal and non-saddle point of the equality constrained problem, the gradient of the constraint will not be parallel to that of the function.

Figure 4.40: At the equality constrained optimum, the gradient of the constraint must be parallel to that of the function.

The necessary condition for an optimum at \mathbf{x}^* for the optimization problem in (4.75) with m = 1 can be stated as in (4.76), where the gradient is now n + 1dimensional with its last component being a partial derivative with respect to λ .

$$\nabla L(\mathbf{x}^*, \lambda^*) = \nabla f(\mathbf{x}^*) + \lambda^* \nabla g_1(\mathbf{x}^*) = 0$$
(4.76)

Q: what about multiple equality constraints $g_1(x), g_2(x) \cdot g_m(x)$? We will extend the necessary condition for optimality of a minimization problem with single constraint to minimization problems with multiple equality constraints (*i.e.*, m > 1. in (4.75)). Let S be the subspace spanned by $\nabla g_i(\mathbf{x})$ at any point \mathbf{x} and let S_{\perp} be its orthogonal complement. Let $(\nabla f)_{\perp}$ be the component of ∇f in the subspace S_{\perp} . At any solution \mathbf{x}^* , it must be true that the gradient of f has $(\nabla f)_{\perp} = 0$ (*i.e.*, no components that are perpendicular to all of the ∇g_i), because otherwise you could move \mathbf{x}^* a little in that direction (or in the opposite direction) to increase (decrease) f without changing any of the g_i , *i.e.* without violating any constraints. Hence for multiple equality constraints, it must be true that at the solution \mathbf{x}^* , the space S contains the vector ∇f , *i.e.*, there are some constants λ_i such that $\nabla f(\mathbf{x}^*) = \lambda_i \nabla g_i(\mathbf{x}^*)$. We also need to impose that the solution is on the correct constraint surface (*i.e.*, $g_i = 0$, $\forall i$). In the same manner as in the case of m = 1, this can be encapsulated by introducing the Lagrangian $L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i=1}^m \lambda_i g_i(\mathbf{x})$, whose gradient with respect to both \mathbf{x} , and λ vanishes at the solution.

This gives us the following necessary condition for optimality of (4.75):

$$\nabla L(\mathbf{x}^*, \lambda^*) = \nabla \left(f(\mathbf{x}) - \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) \right) = 0$$
(4.77)

hrrespecture of convexity of f(x) or g:(x)

Q:what about inequality constraints?

Now consider the general inequality constrained minimization problem

Figure 4.41: At the inequality constrained optimum, the gradient of the constraint must be parallel to that of the function.

Consider L= f+ 79, $if g_{i}(x^{*}) = O$ 1f g,(x*) ₹0 we have case of then $\nabla f(x^*) = D$ equality constrained minimization & therefore and $\nabla L(x^*)=0$ $\nabla L(x^*) = \nabla f(x^*) - \lambda^* \nabla g(x^*)$ by setting 77-0 In either case: 4 xg,(x*)=0 $\nabla L(x^*) = 0$ Q:what abaet multiple inequally constraints?

With multiple inequality constraints, for constraints that are active, as in the case of multiple equality constraints, ∇f must lie in the space spanned by the ∇g_i 's, and if the Lagrangian is $L = f + \sum_{i=1}^{m} \lambda_i g_i$, then we must additionally have $\lambda_i \geq 0$, $\forall i$ (since otherwise f could be reduced by moving into the feasible region). As for an inactive constraint g_j ($g_j < 0$), removing g_j from L makes no difference and we can drop ∇g_j from $\nabla f = -\sum_{i=1}^{m} \lambda_i \nabla g_i$ or equivalently set $\lambda_j = 0$. Thus, the above KKT condition generalizes to $\lambda_i g_i(\mathbf{x}^*) = 0$, $\forall i$. The necessary condition for optimality of (4.78) is summarily given as

$$\nabla L(\mathbf{x}^*, \lambda^*) = \nabla \left(f(\mathbf{x}) - \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) \right) = 0$$

$$\forall i \ \lambda_i g_i(\mathbf{x}) = 0$$
(4.79)

Putting together the cases for equality and inequality constraints, we get necessary optimality conditions for any constrained optimization problem [summarized on the next page]

$$\begin{array}{ll} \min_{\mathbf{x}\in\mathcal{D}} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & h_j(\mathbf{x}) = 0, \quad j = 1, \dots, p \end{array}$$
(4.85)
$$\begin{array}{l} \text{variable } \mathbf{x} = (x_1, \dots, x_n) \end{array}$$

Suppose that the primal and dual optimal values for the above problem are attained and equal, that is, strong duality holds. Let $\hat{\mathbf{x}}$ be a primal optimal and $(\hat{\lambda}, \hat{\mu})$ be a dual optimal point $(\hat{\lambda} \in \Re^m, \hat{\mu} \in \Re^p)$. Thus,

$$\begin{aligned} f(\widehat{\mathbf{x}}) &= L^*(\widehat{\lambda}, \widehat{\mu}) \\ &= \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) + \widehat{\lambda}^T \mathbf{g}(\mathbf{x}) + \widehat{\mu}^T \mathbf{h}(\mathbf{x}) \\ &\leq f(\widehat{\mathbf{x}}) + \widehat{\lambda}^T \mathbf{g}(\widehat{\mathbf{x}}) + \widehat{\mu}^T \mathbf{h}(\widehat{\mathbf{x}}) \\ &\leq f(\widehat{\mathbf{x}}) \end{aligned}$$

The last inequality follows from the fact that $\widehat{\lambda} \geq 0$, $\mathbf{g}(\widehat{\mathbf{x}}) \leq 0$, and $\mathbf{h}(\widehat{\mathbf{x}}) = \mathbf{0}$. We can therefore conclude that the two inequalities in this chain must hold with equality. Some of the conclusions that we can draw from this chain of equalities are

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and $x,\,\lambda,\,\nu$ are optimal, then they must satisfy the KKT conditions

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$
$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$
$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^{\star} minimizes $L(x, \lambda^{\star}, \nu^{\star})$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$ (known as complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

if **Slater's condition** is satisfied:

x is optimal if and only if there exist $\lambda,\,\nu$ that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Duality

5–19

example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0, \quad \mathbf{1}^T x = 1$

x is optimal iff $x\succeq 0,~\mathbf{1}^Tx=1,$ and there exist $\lambda\in\mathbf{R}^n,~\nu\in\mathbf{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- if $\nu \ge 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

- n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^{\star}$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

 $\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m & \text{subject to} & \lambda \succeq 0 \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$

perturbed problem and its dual

- $\begin{array}{ll} \min & f_0(x) & \max & g(\lambda,\nu) u^T \lambda v^T \nu \\ \text{s.t.} & f_i(x) \leq u_i, \quad i = 1, \dots, m & \text{s.t.} \quad \lambda \succeq 0 \\ & h_i(x) = v_i, \quad i = 1, \dots, p \end{array}$
- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

Duality

global sensitivity result

assume strong duality holds for unperturbed problem, and that $\lambda^\star,\,\nu^\star$ are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star},\nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$
$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

sensitivity interpretation

- if λ_i^{\star} large: p^{\star} increases greatly if we tighten constraint $i \ (u_i < 0)$
- if λ_i^* small: p^* does not decrease much if we loosen constraint i $(u_i > 0)$
- if ν_i^{*} large and positive: p^{*} increases greatly if we take v_i < 0;
 if ν_i^{*} large and negative: p^{*} increases greatly if we take v_i > 0
- if ν_i^{*} small and positive: p^{*} does not decrease much if we take v_i > 0;
 if ν_i^{*} small and negative: p^{*} does not decrease much if we take v_i < 0

local sensitivity: if (in addition) $p^{\star}(u, v)$ is differentiable at (0, 0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for λ_i^{\star}): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \ge -\lambda_i^{\star}$$
$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \le -\lambda_i^{\star}$$

hence, equality

 $p^{\star}(u)$ for a problem with one (inequality) constraint: u = 0 $p^{\star}(0) - \lambda^{\star} u$ 5-23

Duality

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

minimize $f_0(Ax+b)$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

 $\begin{array}{ll} \mbox{minimize} & f_0(y) & \mbox{maximize} & b^T\nu - f_0^*(\nu) \\ \mbox{subject to} & Ax + b - y = 0 & \mbox{subject to} & A^T\nu = 0 \end{array}$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$
$$= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$

Duality

norm approximation problem: minimize ||Ax - b||

minimize
$$||y||$$

subject to $y = Ax - b$

can look up conjugate of $\|\cdot\|,$ or derive dual directly

$$\begin{split} g(\nu) &= \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu) \\ &= \begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases} \\ &= \begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

(see page 5-4)

dual of norm approximation problem

$$\begin{array}{ll} \text{maximize} & b^T \nu \\ \text{subject to} & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \end{array}$$

Duality

Implicit constraints

LP with box constraints: primal and dual problem

$$\begin{array}{lll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -\mathbf{1} \leq x \leq \mathbf{1} \\ \infty & \text{otherwise} \end{cases}$$

subject to $Ax = b$

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$

= $-b^T \nu - ||A^T \nu + c||_1$

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Duality

Problems with generalized inequalities

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$

 \preceq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \preceq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbf{R}^n \times \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$L(x,\lambda_1,\cdots,\lambda_m,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

Duality

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_i^*} 0$, then

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda_1, \ldots, \lambda_m, \nu)$

dual problem

$$\begin{array}{ll} \text{maximize} & g(\lambda_1,\ldots,\lambda_m,\nu) \\ \text{subject to} & \lambda_i \succeq_{K_i^*} 0, \quad i=1,\ldots,m \end{array}$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Duality

5–29

Semidefinite program

primal SDP $(F_i, G \in \mathbf{S}^k)$

minimize $c^T x$ subject to $x_1F_1 + \dots + x_nF_n \preceq G$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^k$
- Lagrangian $L(x, Z) = c^T x + \operatorname{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^{\star} = d^{\star}$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)

12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities

12–1

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- $\bullet\,$ we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \operatorname{\mathbf{dom}} f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \leq g$
 $Ax = b$

with $\operatorname{dom} f_0 = \mathbf{R}_{++}^n$

- differentiability may require reformulating the problem, *e.g.*, piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Interior-point methods

Logarithmic barrier

reformulation of (1) via indicator function:

minimize $f_0(x) + \sum_{i=1}^m I_-(f_i(x))$ subject to Ax = b

where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of **R**₋)

approximation via logarithmic barrier

minimize $f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$ subject to Ax = b

- an equality constrained problem
- for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_-
- approximation improves as $t \to \infty$

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \,\phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Interior-point methods

12–5

http://www.cse.iitb.ac.in/~CS7 09/notes/eNotes/basicsOfUniv ariateOptAndltsGeneralisation

-withHighlights.pdf

Central path

• for t > 0, define $x^{\star}(t)$ as the solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$ gives $\mathcal{R} = \mathcal{X}$ and \mathcal{R} and \mathcal{R}

(for now, assume $x^{\star}(t)$ exists and is unique for each t > 0)

• central path is $\{x^{\star}(t) \mid t > 0\}$

example: central path for an LP

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,6 \end{array}$

hyperplane $c^Tx=c^Tx^\star(t)$ is tangent to level curve of ϕ through $x^\star(t)$

Dual points on central path

 $x = x^{\star}(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

• therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$L(x, \lambda^{\star}(t), \nu^{\star}(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^{\star}(t) f_i(x) + \nu^{\star}(t)^T (Ax - b)$$

where we define $\lambda_i^\star(t) = 1/(-tf_i(x^\star(t)) \text{ and } \nu^\star(t) = w/t$

• this confirms the intuitive idea that $f_0(x^{\star}(t)) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t))$$

$$= L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$$

$$= f_0(x^{\star}(t)) - m/t$$

12–7

Interior-point methods

Interpretation via KKT conditions

- $x=x^{\star}(t)$, $\lambda=\lambda^{\star}(t)$, $\nu=\nu^{\star}(t)$ satisfy
- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x)=0$

Barrier method

given strictly feasible $x, t := t^{(0)} > 0, \mu > 1$, tolerance $\epsilon > 0$. repeat 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b. 2. Update. $x := x^*(t)$. 3. Stopping criterion. quit if $m/t < \epsilon$. 4. Increase $t. t := \mu t$. Dually gap check for convergence • terminates with $f_0(x) - p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) - p^* \le m/t)$ • centering usually done using Newton's method, starting at current x• choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10-20$ • several heuristics for choice of $t^{(0)}$

Convergence analysis

number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^{\star}(t^{(0)})$)

minimize $tf_0(x) + \phi(x)$ G of Newton's method Toptimiscation algo

see convergence analysis of Newton's method

- $tf_0 + \phi$ must have closed sublevel sets for $t \ge t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of $tf_0 + \phi$

centering problem

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

Interior-point methods

12–13

geometric program (m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$

Interior-point methods

family of standard LPs ($A \in \mathbb{R}^{m \times 2m}$)

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \quad x \succeq 0 \end{array}$

 $m = 10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Interior-point methods

Feasibility and phase I methods

feasibility problem: find x such that

 $f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$ (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) ssubject to $f_i(x) \le s, \quad i = 1, \dots, m$ Ax = b

- if x, s feasible, with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$

subject to $s \succeq 0$, $f_i(x) \leq s_i$, $i = 1, \dots, m$
 $Ax = b$

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 solutions

Interior-point methods

example: family of linear inequalities $Ax \preceq b + \gamma \Delta b$

- data chosen to be strictly feasible for $\gamma>0,$ infeasible for $\gamma\leq 0$
- use basic phase I, terminate when s < 0 or dual objective is positive

number of iterations roughly proportional to $\log(1/|\gamma|)$

Complexity analysis via self-concordance (Like in case of unconstrained optimization sumptions as on page 12-2, plus: using Newton method

same assumptions as on page 12-2, plus:

- sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, *e.g.*,

 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Interior-point methods

Newton iterations per centering step: from self-concordance theory

$$\# \text{Newton iterations} \leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

- bound on effort of computing $x^+ = x^{\star}(\mu t)$ starting at $x = x^{\star}(t)$
- γ , c are constants (depend only on Newton algorithm parameters)
- from duality (with $\lambda = \lambda^{\star}(t)$, $\nu = \nu^{\star}(t)$):

$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

$$= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$

$$= m(\mu - 1 - \log \mu)$$

total number of Newton iterations (excluding first centering step)

$$\# \text{Newton iterations} \le N = \left\lceil \frac{\log(m/(t^{(0)}\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

- confirms trade-off in choice of μ
- in practice, #iterations is in the tens; not very sensitive for $\mu \ge 10$

Interior-point methods

polynomial-time complexity of barrier method

• for
$$\mu = 1 + 1/\sqrt{m}$$
:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu = 10, \ldots, 20$)

Generalized inequalities

minimize $f_0(x)$ $f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, m$ Ax = bsubject to

- f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}$, i = 1, ..., m, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP

Interior-point methods

12 - 23

Generalized logarithm for proper cone

- $\psi : \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subset \mathbf{R}^q$ if:
- dom $\psi = \operatorname{int} K$ and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y \succeq_K 0, s > 0$ (θ is the degree of ψ)

- examples nonnegative orthant $K = \mathbb{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$ positive semidefinite cone $K = \mathbb{S}^n_+$: $\psi(Y) = \log \det Y$ $(\theta = n)$ http://www.cse.iitb.ac.in/~CS709/notes/e Notes/basicsOfUnivariateOptAndItsGene ralisation-withHighlights.pdf

- second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)$$

properties (without proof): for $y \succ_K 0$,

$$\nabla \psi(y) \succeq_{K^*} 0, \qquad y^T \nabla \psi(y) = \theta$$

• nonnegative orthant \mathbf{R}^n_+ : $\psi(y) = \sum_{i=1}^n \log y_i$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

• positive semidefinite cone \mathbf{S}^n_+ : $\psi(Y) = \log \det Y$

$$\nabla \psi(Y) = Y^{-1}, \qquad \mathbf{tr}(Y \nabla \psi(Y)) = n$$

• second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2$$

Interior-point methods

12-25

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \preceq_{K_1} 0, \ldots, f_m(x) \preceq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom}\,\phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i
- ϕ is convex, twice continuously differentiable

central path: $\{x^{\star}(t) \mid t > 0\}$ where $x^{\star}(t)$ solves

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

Dual points on central path

 $x = x^{\star}(t)$ if there exists $w \in \mathbf{R}^p$,

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

• therefore, $x^{\star}(t)$ minimizes Lagrangian $L(x, \lambda^{\star}(t), \nu^{\star}(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad \nu^{\star}(t) = \frac{w}{t}$$

• from properties of ψ_i : $\lambda_i^\star(t) \succ_{K_i^\star} 0$, with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

Interior-point methods

example: semidefinite programming (with $F_i \in \mathbf{S}^p$)

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & F(x) = \sum_{i=1}^n x_i F_i + G \preceq 0 \end{array}$$

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- central path: $x^{\star}(t)$ minimizes $tc^{T}x \log \det(-F(x))$; hence

$$tc_i - \mathbf{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n$$

• dual point on central path: $Z^{\star}(t) = -(1/t)F(x^{\star}(t))^{-1}$ is feasible for

maximize
$$\mathbf{tr}(GZ)$$

subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z \succeq 0$

• duality gap on central path: $c^T x^*(t) - \mathbf{tr}(GZ^*(t)) = p/t$

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

ullet only difference is duality gap m/t on central path is replaced by $\sum_i heta_i/t$.

• number of outer iterations:

$$\left[\frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu}\right]$$

• complexity analysis via self-concordance applies to SDP, SOCP

Interior-point methods

12-29

Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbf{R}^6)

family of SDPs ($A \in \mathbf{S}^n$, $x \in \mathbf{R}^n$)

minimize $\mathbf{1}^T x$ subject to $A + \mathbf{diag}(x) \succeq 0$

 $n = 10, \ldots, 1000$, for each n solve 100 randomly generated instances

Interior-point methods

12-31

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method