Constrained Minimization

- Algos \& a Theory

The general inequality constrained convex minimization problem is
minimize $\quad f(\mathbf{x})$
subject to $\quad g_{i}(\mathbf{x}) \leq \mathbf{0}, \quad i=1, \ldots, m$
where f as well as the g_{i} 's are convex and twice continuously differentiable.
Constraints above give a convex set [if $h_{j}(x)=0$ then $h_{j}(x) \leqslant 0 \&-h_{j}(x) \leqslant 0 \Longrightarrow$ if both $L_{\alpha}\left(g_{i}\right):\left\{x / g_{i}(x) \leq \alpha_{i}^{\prime}\right\} \ldots$ sublevel set copes then h_{j} shit if if $g_{i}(x)$ is convex $L_{K_{i}}\left(g_{i}\right)$ will be be offing convex \& so will be $\bigcap_{i} L_{\alpha_{i}}\left(g_{i}\right) \cap\{x \mid A x=b\}$
Introducing the auxiliary variable $t \in R$, we can rewrite (4.105) equivalently as $\min t \longrightarrow A$ in ear objective? \}Convex? subject to a convex domain.

In general:

$$
\begin{array}{ll}
\min _{l} & f(x) \\
\text { s.l } & g_{i}(x) \leq 0 \\
& h_{j}(x)=0 \quad i \leq 1 \cdot n \\
& j=1 \ldots m
\end{array}
$$

For a while no convexity ass umptions on $g_{i} \& f$ will
be considered.

$$
\begin{aligned}
& z \in \mathbb{R} \&^{x} S_{(z, x)}\left\{R \times S_{x}\right\} \cap\left\{(z, x)\left(f(x) \leq z^{5 i q}\right\}\right.
\end{aligned}
$$

Move generally, a convex program can be written as minimization of a linear function $c^{\top} x(x \in \mathbb{R}$ and $c=1$ above) over a convex feasible region F_{C}
$\min c^{\top} x$
subject to $x \in F_{c}$
Recall definition of a conic program

$$
\begin{aligned}
& \min C^{\top} x \\
& \operatorname{set} A x-b \in K
\end{aligned}
$$

where K is a proper cone.
Claim:
Any convex program can be wrillien as a conic program

Proof:
Given a convex optimisation problem

$$
\min _{x \in \mathbb{R}^{n}} c^{\top} x
$$

subject to $x \in F_{c}$
Embed \mathbb{R}^{n} into \mathbb{R}^{n+1} as the hyperplane $H=\{1\} \times \mathbb{R}^{n} \subset \mathbb{R}^{n+1}$ and define a proper cone

$$
K=c)\left(\left\{(t, x) \in \mathbb{R}^{n+1}: \frac{x}{t} \in F_{c}\right\}\right)
$$

Let $d=\binom{0}{c}$. We can write the above convex program as the following conic program:

$$
\min _{(t, x) \in \mathbb{R}^{n+1}} d^{x} x
$$

subject to $x \in H \cap K$
Note that $x \in F_{c}$ iff $(1, x) \in K$

$$
\text { ie } x \in K O H
$$

Proof that K is a cone:
Let $\left(t_{1}, x_{1}\right) \&\left(t_{2}, x_{2}\right) \in K$ and $\theta_{1,}, \theta_{2} \geqslant 0$
Consider $\theta_{1}\left(t_{1}, x_{1}\right)+\theta_{2}\left(t_{2}, x_{2}\right)$

$$
\frac{\theta_{1} x_{1}+\theta_{2} x_{2}}{\theta_{1} t_{1}+\theta_{2} t_{2}}=\left(\frac{x_{1}}{t_{1}}\right) \underbrace{\left(\frac{\theta_{1} t_{1}}{\theta_{1}+\theta_{2} t_{2}}\right)}_{\in[0,1]}+\left(\frac{x_{2}}{t_{2}}\right)(\underbrace{\left.\frac{\theta_{2} t_{2}}{\theta_{1} t_{1}+\theta_{2} t_{2}}\right)}_{\in[0,1]}
$$

seen to 1
$=$ convex combination of $\left(\frac{x_{1}}{t_{1}}\right)$ and $\left(\frac{x_{2}}{\delta_{2}}\right)$
\& therefore $\in \frac{\frac{1}{c}_{2}^{c}}{F_{C}}$

$$
\Rightarrow \quad \theta_{1}\left(t_{1}, x_{1}\right)+\theta_{2}\left(t_{2}, x_{2}\right) \in K .
$$

Let us recall our discussion on linear programs (LP) dual of $L P$, conic
programs \& their duals

[Ref page 5 of
LP Af sine objective

$\lambda \in K^{*}$ st

This $K^{\circ} s \cdot t$

$$
\begin{array}{r}
k^{*}=\left\{\lambda \mid\left\langle\lambda_{1} A x-b\right\rangle \geq 0\right. \\
\forall A x-b \in K\}
\end{array}
$$

is called the DUAL CONE of K (ie element that hare tree inner prod hare ore inner of
with each element of K)
by dual) by primal)
Called the weak
Quality theorem for
$K_{*}=\left\{\lambda: \lambda^{T} \xi \geq 0 \forall \xi \in K\right\}$ is the cone dual to K
 With this, prove the following weak duality theorem for CONIC PROCRRM

Primal CP
(lower bounded (upperbounded
by dual) by primal)

Note Both LP \& CP dealt with affine objective
(2) CP dealt with the generalised conic in equalities
(3) Later, in convex programs, we will deal with the more general convex functions in the objective
(1) If $K=\mathbb{R}_{t}^{n}$, the $C P$ is an $L P$

If $K=S^{n}$, the $C P$ is an SDP
set of all $n \times n$ semi-definite syanmetric positive program
suomi definite matrices
(2) Any generic convex program can be expressed as a cone program (CP) $H[\omega]$

HOW ABOUT STRONG OVAL IT
Theorem 1．2．2［Duality Theorem in Linear Programming］Consider a linear programming program

$$
\begin{equation*}
\min _{x}\left\{c^{T} x \mid A x \geq b\right\} \tag{LP}
\end{equation*}
$$

along with its dual

$$
\begin{equation*}
\max _{y}\left\{b^{T} y \mid A^{T} y=c, y \geq 0\right\} \tag{*}
\end{equation*}
$$

Then
1）The duality is symmetric：the problem dual to dual is equivalent to the primal；
2）The value of the dual objective at every dual feasible solution is \leq the value of the primal objective at every primal feasible solution

3）The following 5 properties are equivalent to each other：
（i）The primal is feasible and bounded below．
（ii）The dual is feasible and bounded above．

（iii）The primal is solvable．
（iv）The dual is solvable．
（v）Both primal and dual are feasible．
 has a sold
a join

Whenever $(\mathrm{i}) \equiv(\mathrm{ii}) \equiv(\mathrm{iii}) \equiv$（iv）$\equiv$（v）is the case，the optimal values of the primal and the dual problems are equal t
proof of
：S
（1）from

2）of
http：／／www2．isye．gatech．edu／～new irovs／L ect＿ModConvOpt．pdf

Proof．1）is quite straightforward：writing the dual problem（ LP^{*} ）in our standard form，we get

$$
\min _{y}\left\{-b^{T} y \left\lvert\,\left[\begin{array}{c}
I_{m} \\
A^{T} \\
-A^{T}
\end{array}\right] y-\left(\begin{array}{c}
0 \\
-c \\
c
\end{array}\right) \geq 0\right.\right\}
$$

where I_{m} is the m－dimensional unit matrix．Applying the duality transformation to the latten problem，we come to the problem

$$
\max _{\xi, \eta, \zeta}\left\{0^{T} \xi+c^{T} \eta+(-c)^{T} \zeta \left\lvert\, \begin{array}{rl}
\xi & \geq 0 \\
\eta & \geq 0 \\
\zeta & \geq 0 \\
\xi-A \eta+A \zeta & =-b
\end{array}\right.\right\}
$$

which is clearly equivalent to（LP）（set $x=\eta-\zeta$ ）．

Similar Duality theorem for CP:

Note dual(dual $(k))=k$ if k is a closed dual(K) is ALways

$$
\min _{x}\{c^{T} x: \underbrace{A x-b \geq_{K} 0}_{\Leftrightarrow A x-b \in K}\}
$$

a closed
cone

Theorem 2.1. Assuming A in (CP) is of full column rank, the following is true:
(i) The duality is symmetric: (D) is a conic problem, and the conic dual to (D) is (equivalent to) (CP);
(ii) [weak duality] $\operatorname{Opt}(\mathrm{D}) \leq \operatorname{Opt}(\mathrm{CP})$; \rightarrow Already proved
(iii) [strong duality] If one of the programs (CP), ($(\overline{\mathrm{D})}$ is bounded and strictly feasible (i.e., the corresponding affine plane intersects the interior of the associated cone), then the other is solvable and $\mathrm{Opt}(\mathrm{CP})=\mathrm{Opt}(\mathrm{D})$. If both $(\mathrm{CP}),(\mathrm{D})$ are strictly feasible, then both programs are solvable and $\mathrm{Opt}(\mathrm{CP})=\mathrm{Opt}(\mathrm{D})$;
(iv) [optimality conditions] Assume that both (CP), (D) are strictly feasible. Then a pair (x, λ) of feasible solutions to the problem is comprised of optimal solutions of $c^{T} x=b^{T} \lambda$ ("zero duality gap"), same as of $\lambda^{T}[A x-b]=0$ (complementary slackness").
$H \mid \omega$: Prove these in a manner similar to the duality theorem for LP
Note: Duality theorems for $L P$ and $C P$ are special cases of Lagrange duality that we will discuss later in the course

From dual of LP to dual of a general optimisation problem

Let $\lambda \geqslant 0\left(i \cdot e \lambda \in \mathbb{R}_{+}^{n}\right)$
Then $\lambda^{\top}(-A x+b) \leq 0$

$$
\begin{aligned}
\Rightarrow c^{\top} x & \geqslant c^{\top} x+\lambda^{\top}(-A x+b) \\
& =\lambda^{\top} b+\left(c-A^{\top} \lambda\right)^{\top} x
\end{aligned}
$$

(lower bounded. Duper bounded
$\min _{x \in R^{n}} f_{0}(x)$
$x \in \mathbb{R}^{n}$
s,imject to $F_{i}(x) \leq 0 \quad i=1 . . m$

$$
h_{j}(x)=0 \quad j=1 \ldots p
$$

Let $\lambda \geqslant 0$ (le $\lambda \in \mathbb{R} P_{+}$) and x be feasible. Then

$$
\begin{aligned}
& \Rightarrow f_{0}(x) \geqslant f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) \\
& +\sum_{i=1}^{p} a_{j} h_{j}(x)^{i=1} \\
& \geqslant-\min _{x}^{j=1}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)\right. \\
& \left.+\sum_{j=1}^{p} \mu_{j} h_{j}^{i=1}(\pi)\right) \\
& L\left(x, \lambda_{1}, y\right)^{\prime} \\
& L^{*}(\lambda, \mu) \\
& \begin{array}{l}
\min _{x \in \mid R^{n}} f(x) \geqslant \max L(\lambda, u) \\
\operatorname{s\cdot t} f_{i}(x) \leq 0 \\
h_{j}(x)=0
\end{array}
\end{aligned}
$$

5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function $L(x, \lambda, \mu) \leqslant f_{0}(x)$
Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathrm{R}$, (y)

$$
L^{\boldsymbol{\phi}}(\boldsymbol{\lambda}, \boldsymbol{V}) \text { or } \underbrace{g(\lambda, \nu)}=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)
$$

$$
\begin{aligned}
& \left(y L^{*}(\lambda, \mu) \leq f_{0}(x)\right. \\
& \left(y L^{*}(\lambda, \mu) \leq p^{m}\right.
\end{aligned}
$$

$$
=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
$$

g is concave, can be $-\infty$ for some λ, ν
\qquad
minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$ derivation

Duality on page 9)
Prove: $\quad L^{k}(\lambda, v)$ or $g(\lambda, v)$ is concave

$$
\begin{aligned}
& g\left(\theta \lambda_{1}+(1-\theta) \lambda_{2}, \theta v_{1}+(1-\theta) v_{2}\right) \\
&= \inf _{x \in D}\left[f_{0}(x) \cdot(\theta+1-\theta)+\sum_{i=1}^{m}\left(\partial \lambda_{1 i}+(1-\theta) \lambda_{2 i}\right) f_{i}(x)\right. \\
&\left.+\sum_{i=1}^{p}\left(\theta \nu_{1 i}+(1-\theta) v_{2 i}\right) h_{i}(x)\right] \\
&= \inf _{x \in D}\left[\begin{array}{l}
\theta\left[f_{0}(x)+\sum_{i=1}^{m} \lambda_{1} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(-x)\right] \\
\end{array}+(1-\theta)\left[f_{0}(x)+\sum_{i=1}^{n} \lambda_{2 i} f_{i}(x)+\sum_{i=1}^{p} \nu_{2 i} h_{i}(x)\right]\right]
\end{aligned}
$$

Least-norm solution of linear equations

$$
\operatorname{minimize} \quad x^{T} x
$$

$$
\text { subject to } A x=b
$$

dual function Lagrange on substitute

Hint in general: find primal vars

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$ $刀=f$ (dual vav)
- to minimize L over x, set gradient equal to zero: 1/2) $A^{T} \nu$
- plug in in L to obtain g :
pt of min on $\nabla_{x}^{2} L(x, y)$

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu \quad=\mathbf{2} \geq 0
$$

$$
\begin{aligned}
& \text { Lagrange dual } \\
& \text { function of } \nu
\end{aligned}
$$

lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν
In fact $\quad \beta^{\alpha} \geqslant \max _{\omega} g(\nu)=b^{\top}\left(A A^{\top}\right)^{-1} b$
(can show that lower be be attained)

$$
\begin{aligned}
& \geqslant \theta\left\{\operatorname{linf}_{x \in D}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{D} \nu_{i} h_{i}(x)\right)\right\} \\
& +(1-\theta)\left\{\inf _{x \in D}\left(f_{0}(x)+\sum_{i=1}^{m} x_{2 i} f_{i}(x)+\sum_{i=1}^{p} \nu_{2 i} h_{i}(x)\right)\right\} \\
& =\theta g\left(\lambda, \mu_{1}\right)+(\tau-\theta) g\left(\lambda_{2}, \mu_{2}\right) \Rightarrow g(\lambda, \mu) \equiv L^{*}(\lambda, \mu) \\
& \text { is concave }
\end{aligned}
$$

Sole to Hew:

- $\underline{06 / 11 / 2013}$. For the problem of least norm solution of linear equations (page no 13), show that A is an mxn matrix with $\mathrm{m}<\mathrm{n}$ and if A has full row rank, strong duality holds, that is, there exists a point x satisfying the primal constraints such that the lower bound obtained using weak duality is actually attained. Hint: Refer to this. Deadline: 8th November.
Ans:- One way is to express soln to $A_{2 x}=b$ as sum of a particular solution to $A x=b$
(x particular) and a vector from null space of $A\left(x_{\text {null space }}\right)$ [see $p g 172$ of
http://www.cse.iitb.ac.in/~ CS709/notes/LinearAlge]
bra.pdf

$$
\begin{equation*}
\mathbf{x}_{\text {complete }}=\mathbf{x}_{\text {particular }}+\mathbf{x}_{\text {null space }} \tag{3.35}
\end{equation*}
$$

- Another way is to find some value for x sot $A x=b$ and $x^{\top} x=b^{\top}\left(A A^{\top}\right)^{-1} b$ since this will mean a feasible point exists at which primal objective = lower bound on the minimisation problem
Which will mean that primal optimal Solution $=$ dual optimal solution
Verify that for $x=A^{\top}\left(A A^{1}\right)^{-1} b$

$$
\begin{aligned}
& \text { that for } x=A \\
& A x=b \quad \& x^{\top} x=b^{\top}\left(A A^{\top}\right)^{-1} b
\end{aligned}
$$

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

dual function

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- L is linear in x, hence

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu & A^{T} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Equality constrained norm minimization

```
minimize |x|
subject to }Ax=
```

dual function

$$
g(\nu)=\inf _{x}\left(\|x\|-\nu^{T} A x+b^{T} \nu\right)= \begin{cases}b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$
proof: follows from $\inf _{x}\left(\|x\|-y^{T} x\right)=0$ if $\|y\|_{*} \leq 1,-\infty$ otherwise

- if $\|y\|_{*} \leq 1$, then $\|x\|-y^{T} x \geq 0$ for all x, with equality if $x=0$
- if $\|y\|_{*}>1$, choose $x=t u$ where $\|u\| \leq 1, u^{T} y=\|y\|_{*}>1$:

$$
\|x\|-y^{T} x=t\left(\|u\|-\|y\|_{*}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

lower bound property: $p^{\star} \geq b^{T} \nu$ if $\left\|A^{T} \nu\right\|_{*} \leq 1$

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points

- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets

$$
\sim
$$

dual function

$$
\begin{aligned}
g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-\mathbf{1}^{T} \nu \\
& = \begin{cases}-\mathbf{1}^{T} \nu & W+\boldsymbol{\operatorname { d i a g }}(\nu) \succeq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

lower bound property: $p^{\star} \geq-\mathbf{1}^{T} \nu$ if $W+\operatorname{diag}(\nu) \succeq 0$ example: $\nu=-\lambda_{\min }(W) \mathbf{1}$ gives bound $p^{\star} \geq n \lambda_{\min }(W)$

Study the connection between ω $\& x_{\text {min }}$ for diff of ω

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b, \quad C x=d
\end{array}
$$

dual function

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x-b^{T} \lambda-d^{T} \nu\right) \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} \nu\right)-b^{T} \lambda-d^{T} \nu
\end{aligned}
$$

- recall definition of conjugate $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$
- simplifies derivation of dual if conjugate of f_{0} is kown
example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ, ν are dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit
example: standard form LP and its dual (page 5-5)

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} \nu \\
\text { subject to } & A x=b & \text { subject to } & A^{T} \nu+c \succeq 0 \\
& x \succeq 0 &
\end{array}
$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 5-7
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification
strong duality holds for a convex problem

$$
\begin{aligned}
& \text { LED } \quad \text { minimize } f_{0}(x) \\
& A x=b
\end{aligned}
$$

if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened: eeg., can replace int \mathcal{D} with relink \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications
[Proof of strong duality under constraint qualification in section $5 \cdot 3.2$ ip 234 onwards of [vex book]

Inequality form LP
primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)
minimize
subject to $A x \preceq b$$\rightarrow$ convex polyhedron
dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ always

A nonconvex problem with strong duality

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+2 b^{T} x \\
\text { subject to } & x^{T} x \leq 1
\end{array}
$$

$A \nsucceq 0$, hence nonconvex
dual function: $g(\lambda)=\inf _{x}\left(x^{T}(A+\lambda I) x+2 b^{T} x-\lambda\right)$

- unbounded below if $A+\lambda I \nsucceq 0$ or if $A+\lambda I \succeq 0$ and $b \notin \mathcal{R}(A+\lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger} b$ otherwise: $g(\lambda)=-b^{T}(A+\lambda I)^{\dagger} b-\lambda$
dual problem and equivalent SDP:

$$
\begin{array}{lll}
\text { maximize } & -b^{T}(A+\lambda I)^{\dagger} b-\lambda & \text { maximize }
\end{array} \begin{aligned}
& -t-\lambda \\
& \text { subject to }
\end{aligned} A^{2+\lambda I \succeq 0} \begin{array}{cc}
A+\lambda I & b \\
& b \in \mathcal{R}(A+\lambda I)
\end{array}
$$

strong duality although primal problem is not convex (not easy to show)

Geometry of the dual [page 292 onwards, section $4 \cdot 4 \cdot 3$ of

 exOptimization.pdf

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathcal{D}} & f(\mathbf{x}) \tag{4.80}\\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m
\end{array}
$$

The dual is $\quad\left[h_{j}(x)=0\right.$ can be expressed

$$
\begin{array}{ll}
\max _{\lambda \in \Re^{m}} & L^{*}(\lambda) \tag{4.81}\\
\text { subject to } & \lambda \geq \mathbf{0}
\end{array}
$$

where: $L^{*}(\lambda)=\min _{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda)=\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})+\lambda^{T} \mathbf{g}(\mathbf{x})$

Let
Deceptively similar to 7. epigraph

$$
\mathcal{I}=\left\{(\mathbf{s}, z) \mid \mathbf{s} \in \Re^{m}, z \in \Re, \exists \mathbf{x} \in \mathcal{D} \text { with } g_{i}(\mathbf{x}) \leq s_{i} \forall 1 \leq i \leq m, f(\mathbf{x}) \leq z\right\}
$$

Note: $I \subseteq \mathbb{R}^{m+1}$
Plot:- Example of the set \mathcal{I} for a single constraint (ie., for $n=1$). Plot with S, on x-axis and z on y-axis

(1) If $f(x)$ is convex and each of $g_{i}(x)$ are Convex, then I will be convex
(2) Feasible region of primal problem (4.80) Corresponds to subset of I with $5, \leq 0$
(3) Solution to primal problem Corresponds to point in I with lowest value of 2 such that $S_{s}=0 \ldots$ in the figure it is $\left(0, \delta_{1}\right)$
(4)

Let us define a hyerplane $\mathcal{H}_{\lambda, \alpha}$, parametrized by $\lambda \in \Re^{m}$ and $\alpha \in \Re$

$$
\mathcal{H}_{\lambda, \alpha}=\left\{(\mathbf{s}, z) \mid \lambda^{T} . \mathbf{s}+z=\alpha\right\}
$$

(5) Of all $H_{\lambda, \alpha}$ that lie below $I_{\text {, consider }}$ the one which has as high a value of z.interuttas possible. This must be a supporting hyperplane some os α

(6) The problem in (5) can be specified as the following optimization problem:

\max	α
subject to	$\mathcal{H}_{\lambda, \alpha}^{+} \supseteq \mathcal{I}$

where $H_{\lambda, \alpha}^{+}$is the half space ABOVE

$$
H_{\lambda}, \alpha
$$

$$
\mathcal{H}_{\lambda, \alpha}^{+}=\left\{(\mathbf{s}, z) \mid \lambda^{T} \cdot \mathbf{s}+z \geq \alpha\right\}
$$

By definitions of $\mathcal{I}, \mathcal{H}_{\lambda, \alpha}^{+}$and the subset relation,

(7) If $(5,2) \in I$ then for all $s^{\prime} \geqslant r s$ we will have $\left(s^{\prime}, z\right) \in I$
(8) Therefore we cannot afford to have any component λ_{i} to be negative
(9) Thus we can add the constant $\lambda \geqslant 0$ to the above problem who changing soon.
$\max \quad \alpha$
subject to

$$
\begin{aligned}
& \lambda^{T} \cdot \mathbf{s}+z \geq \alpha \forall(\mathbf{s}, z) \in \mathcal{I} \\
& \lambda \geq \mathbf{0}
\end{aligned}
$$

(10) Using the fact that every point on boundary (I) $=0 I$ must be of the form

$$
\left(s^{\prime}, z^{\prime}\right)=\left(g_{1}\left(x^{\prime}\right) g_{2}\left(x^{\prime}\right) \ldots g_{n}\left(x^{\prime}\right), f\left(x^{\prime}\right)\right)
$$

we get the following equivalent optimisation problem:
$\max \quad \alpha$
subject to $\quad \lambda^{T} \cdot \mathbf{g}(\mathbf{x})+f(\mathbf{x}) \geq \alpha \forall \mathbf{x} \in \mathcal{D}$
(11)

$$
\lambda \geq \mathbf{0}
$$

Recalling that $L(x, \lambda)=\lambda^{\prime} g(x)+f(x)$, we obtain

$$
\begin{array}{ll}
\max _{(\alpha, \lambda)}^{(\lambda)} & \alpha \\
\text { subject to } & L(\mathbf{x}, \lambda) \geq \alpha \forall \mathbf{x} \in \mathcal{D} \\
& \lambda \geq \mathbf{0}
\end{array}
$$

Since, $L^{*}(\lambda)=\min _{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda)$, we can deal with (equivalently)

$$
\begin{array}{ll}
\max _{(\alpha, \lambda)} & \alpha \\
\text { subject to } & L^{*}(\lambda) \geq \alpha \\
& \lambda \geq \mathbf{0}
\end{array}
$$

This problem can be restated as

$$
\begin{array}{ll}
\max _{\lambda} & L^{*}(\lambda) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

This is precisely the dual problem.
(12) What is effect of convexity of I on gap between primal \& dual?

Nor-convex $I \Rightarrow$ There COULD BE a gap between $\left(0, \delta_{1}\right)$ and

$\left(0, \alpha_{1}\right)$
[we can NGYER prove that a gap WONT exist]

Well behaved convex $I \Rightarrow$ No duality gap

Not well-behaved convex I (as in the case of semi-definite programs \Rightarrow Gap might exist

Necessary conditions for constrained optimality: [page 284 onwards of

Figure 4.39: At any non-optimal and non-saddle point of the equality constrained problem, the gradient of the constraint will not be parallel to that of the function.

Figure 4.40: At the equality constrained optimum, the gradient of the constraint must be parallel to that of the function.

The necessary condition for an optimum at \mathbf{x}^{*} for the optimization problem in (4.75) with $m=1$ can be stated as in (4.76), where the gradient is now $n+1$ dimensional with its last component being a partial derivative with respect to λ.

$$
\begin{equation*}
\nabla L\left(\mathbf{x}^{*}, \lambda^{*}\right)=\nabla f\left(\mathbf{x}^{*}\right)+\lambda^{*} \nabla g_{1}\left(\mathbf{x}^{*}\right)=0 \tag{4.76}
\end{equation*}
$$

We will extend the necessary condition for optimality of a minimization problem with single constraint to minimization problems with multiple equality constraints (i.e., $m>1$. in (4.75)). Let \mathcal{S} be the subspace spanned by $\nabla g_{i}(\mathbf{x})$ at any point \mathbf{x} and let \mathcal{S}_{\perp} be its orthogonal complement. Let $(\nabla f)_{\perp}$ be the component of ∇f in the subspace \mathcal{S}_{\perp}. At any solution \mathbf{x}^{*}, it must be true that the gradient of f has $(\nabla f)_{\perp}=0$ (i.e., no components that are perpendicular to all of the ∇g_{i}), because otherwise you could move \mathbf{x}^{*} a little in that direction (or in the opposite direction) to increase (decrease) f without changing any of the g_{i}, i.e. without violating any constraints. Hence for multiple equality constraints, it must be true that at the solution \mathbf{x}^{*}, the space \mathcal{S} contains the vector ∇f, i.e., there are some constants λ_{i} such that $\nabla f\left(\mathbf{x}^{*}\right)=\lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)$. We also need to impose that the solution is on the correct constraint surface (i.e., $\left.g_{i}=0, \forall i\right)$. In the same manner as in the case of $m=1$, this can be encapsulated by introducing the Lagrangian $L(\mathbf{x}, \lambda)=f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$, whose gradient with respect to both \mathbf{x}. and λ vanishes at the solution.

This gives us the following necessary condition for optimality of (4.75):

$$
\begin{equation*}
\nabla L\left(\mathbf{x}^{*}, \lambda^{*}\right)=\nabla\left(f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})\right)=0 \tag{4.77}
\end{equation*}
$$

Wrespechin of converity of $f(x)$ or $g_{i}(x)$

Q: What about inequality constraints?
$\min _{\mathbf{x} \in \mathcal{D}} \quad f(\mathbf{x})$
subject to $\quad g_{i}(\mathbf{x}) \leq 0 \quad i=1,2, \ldots, m$
See figure below for the case of $m=1$

Figure 4.41: At the inequality constrained optimum, the gradient of the constrain must be parallel to that of the function.

Consider

then $\nabla f\left(x^{*}\right)=0$ we have case of equality constrained
and $\nabla L\left(x^{*}\right)=0 \quad$ minimization \& therefore
by setting $\lambda_{i}^{*}=0$

$$
\begin{aligned}
\nabla L\left(x^{*}\right) & =\nabla f\left(x^{n}\right)-\lambda^{*}, \nabla g\left(x_{1}^{*}\right) \\
& =0
\end{aligned}
$$

In ether case:

$$
\nabla L\left(x^{2}\right)=0 \quad \& \quad \lambda^{\top} g_{1}\left(x^{*}\right)=0
$$

Q: What about multiple inequalls constraints?

With multiple inequality constraints, for constraints that are active, as in the case of multiple equality constraints, ∇f must lie in the space spanned by the ∇g_{i} 's, and if the Lagrangian is $L=f+\sum_{i=1}^{m} \lambda_{i} g_{i}$, then we must additionally have $\lambda_{i} \geq 0, \forall i$ (since otherwise f could be reduced by moving into the feasible region). As for an inactive constraint $g_{j}\left(g_{j}<0\right)$, removing g_{j} from L makes no difference and we can drop ∇g_{j} from $\nabla f=-\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}$ or equivalently set $\lambda_{j}=0$. Thus, the above KKT condition generalizes to $\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)=0, \forall i$. The necessary condition for optimality of (4.78) is summarily given as

$$
\begin{align*}
\nabla L\left(\mathbf{x}^{*}, \lambda^{*}\right)=\nabla\left(f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})\right) & =0 \tag{4.79}\\
\forall i & \lambda_{i} g_{i}(\mathbf{x})
\end{align*}=0
$$

Putting together the cases for equality and inequality constraints, we get necessary optimality conditions for any constrained optimization problem [summarized on the next page]

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathcal{D}} & f(\mathbf{x}) \\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p \tag{4.85}
\end{array}
$$

variable $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
Suppose that the primal and dual optimal values for the above problem are attained and equal, that is, strong duality holds. Let $\hat{\mathbf{x}}$ be a primal optimal and $(\widehat{\lambda}, \widehat{\mu})$ be a dual optimal point $\left(\widehat{\lambda} \in \Re^{m}, \widehat{\mu} \in \Re^{p}\right)$. Thus,

$$
\begin{aligned}
f(\widehat{\mathbf{x}}) & =L^{*}(\widehat{\lambda}, \widehat{\mu}) \\
& =\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})+\widehat{\lambda}^{T} \mathbf{g}(\mathbf{x})+\widehat{\mu}^{T} \mathbf{h}(\mathbf{x}) \\
& \leq f(\widehat{\mathbf{x}})+\widehat{\lambda}^{T} \mathbf{g}(\widehat{\mathbf{x}})+\widehat{\mu}^{T} \mathbf{h}(\widehat{\mathbf{x}}) \\
& \leq f(\widehat{\mathbf{x}})
\end{aligned}
$$

The last inequality follows from the fact that $\widehat{\lambda} \geq \mathbf{0}, \mathbf{g}(\widehat{\mathbf{x}}) \leq \mathbf{0}$, and $\mathbf{h}(\widehat{\mathbf{x}})=\mathbf{0}$. We can therefore conclude that the two inequalities in this chain must hold with equality. Some of the conclusions that we can draw from this chain of equalities are

Karush-Kuhn-Tucker (KKT) conditions
the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. dual constraints: $\lambda \succeq 0$
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

from page 5-17: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) & =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

hence, the two inequalities hold with equality

- x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$
- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Dualivecessany conditions

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. dual constraints: $\lambda \succeq 0$
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

from page 5-17: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions
if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu}) \Rightarrow$

if Slater's condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem
example: water-filling (assume $\alpha_{i}>0$)

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

x is optimal iff $x \succeq 0, \mathbf{1}^{T} x=1$, and there exist $\lambda \in \mathbf{R}^{n}, \nu \in \mathbf{R}$ such that

$$
\lambda \succeq 0, \quad \lambda_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu
$$

- if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$
- if $\nu \geq 1 / \alpha_{i}: \lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0$
- determine ν from $\mathbf{1}^{T} x=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$

interpretation

- n patches; level of patch i is at height α_{i}
- flood area with unit amount of water
- resulting level is $1 / \nu^{\star}$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

| $\operatorname{minimize}$ | $f_{0}(x)$ | | maximize |
| :--- | :--- | :--- | :--- |$g(\lambda, \nu)$

perturbed problem and its dual

$$
\begin{array}{llll}
\min . & f_{0}(x) & \max & g(\lambda, \nu)-u^{T} \lambda-v^{T} \nu \\
\text { s.t. } & f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m & \text { s.t. } & \lambda \succeq 0 \\
& h_{i}(x)=v_{i}, \quad i=1, \ldots, p & &
\end{array}
$$

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that $\lambda^{\star}, \nu^{\star}$ are dual optimal for unperturbed problem
apply weak duality to perturbed problem:

$$
\begin{aligned}
p^{\star}(u, v) & \geq g\left(\lambda^{\star}, \nu^{\star}\right)-u^{T} \lambda^{\star}-v^{T} \nu^{\star} \\
& =p^{\star}(0,0)-u^{T} \lambda^{\star}-v^{T} \nu^{\star}
\end{aligned}
$$

sensitivity interpretation

- if λ_{i}^{\star} large: p^{\star} increases greatly if we tighten constraint $i\left(u_{i}<0\right)$
- if λ_{i}^{\star} small: p^{\star} does not decrease much if we loosen constraint $i\left(u_{i}>0\right)$
- if ν_{i}^{\star} large and positive: p^{\star} increases greatly if we take $v_{i}<0$;
if ν_{i}^{\star} large and negative: p^{\star} increases greatly if we take $v_{i}>0$
- if ν_{i}^{\star} small and positive: p^{\star} does not decrease much if we take $v_{i}>0$; if ν_{i}^{\star} small and negative: p^{\star} does not decrease much if we take $v_{i}<0$
local sensitivity: if (in addition) $p^{\star}(u, v)$ is differentiable at $(0,0)$, then

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad \nu_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

proof (for λ_{i}^{\star}): from global sensitivity result,

$$
\begin{aligned}
& \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t \searrow 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \geq-\lambda_{i}^{\star} \\
& \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t / 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \leq-\lambda_{i}^{\star}
\end{aligned}
$$

hence, equality
$p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$
\operatorname{minimize} \quad f_{0}(A x+b)
$$

- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless
reformulated problem and its dual

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(y) & \text { maximize } \\
b^{T} \nu-f_{0}^{*}(\nu) \\
\text { subject to } & A x+b-y=0 & \text { subject to } \\
A^{T} \nu=0
\end{array}
$$

dual function follows from

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(f_{0}(y)-\nu^{T} y+\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}-f_{0}^{*}(\nu)+b^{T} \nu & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

norm approximation problem: minimize $\|A x-b\|$

$$
\begin{array}{ll}
\operatorname{minimize} & \|y\| \\
\text { subject to } & y=A x-b
\end{array}
$$

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(\|y\|+\nu^{T} y-\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}b^{T} \nu+\inf _{y}\left(\|y\|+\nu^{T} y\right) & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}b^{T} \nu & A^{T} \nu=0, \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

(see page 5-4)
dual of norm approximation problem
maximize $b^{T} \nu$
subject to $\quad A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1$

Implicit constraints

LP with box constraints: primal and dual problem

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} \nu-\mathbf{1}^{T} \lambda_{1}-\mathbf{1}^{T} \lambda_{2} \\
\text { subject to } & A x=b & \text { subject to } & c+A^{T} \nu+\lambda_{1}-\lambda_{2}=0 \\
& -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_{1} \succeq 0, \quad \lambda_{2} \succeq 0
\end{array}
$$

reformulation with box constraints made implicit

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x)= \begin{cases}c^{T} x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\
\infty & \text { otherwise } \\
\text { subject to } & A x=b\end{cases}
\end{array}
$$

dual function

$$
\begin{aligned}
g(\nu) & =\inf _{-1 \preceq x \preceq 1}\left(c^{T} x+\nu^{T}(A x-b)\right) \\
& =-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}
\end{aligned}
$$

dual problem: maximize $-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}$

Problems with generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

$\preceq_{K_{i}}$ is generalized inequality on $\mathbf{R}^{k_{i}}$
definitions are parallel to scalar case:

- Lagrange multiplier for $f_{i}(x) \preceq_{K_{i}} 0$ is vector $\lambda_{i} \in \mathbf{R}^{k_{i}}$
- Lagrangian $L: \mathbf{R}^{n} \times \mathbf{R}^{k_{1}} \times \cdots \times \mathbf{R}^{k_{m}} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, is defined as

$$
L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- dual function $g: \mathbf{R}^{k_{1}} \times \cdots \times \mathbf{R}^{k_{m}} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, is defined as

$$
g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)=\inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)
$$

lower bound property: if $\lambda_{i} \succeq_{K_{i}^{*}} 0$, then $g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \leq p^{\star}$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_{i}^{*}} 0$, then

$$
\begin{aligned}
f_{0}(\tilde{x}) & \geq f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x}) \\
& \geq \inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
& =g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)
\end{aligned}
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)$
dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
\text { subject to } & \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^{\star}=d^{\star}$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $\left(F_{i}, G \in \mathbf{S}^{k}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\cdots+x_{n} F_{n} \preceq G
\end{array}
$$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^{k}$
- Lagrangian $L(x, Z)=c^{T} x+\operatorname{tr}\left(Z\left(x_{1} F_{1}+\cdots+x_{n} F_{n}-G\right)\right)$
- dual function

$$
g(Z)=\inf _{x} L(x, Z)= \begin{cases}-\operatorname{tr}(G Z) & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

dual SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{tr}(G Z) \\
\text { subject to } & Z \succeq 0, \quad \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n
\end{array}
$$

$p^{\star}=d^{\star}$ if primal SDP is strictly feasible ($\exists x$ with $x_{1} F_{1}+\cdots+x_{n} F_{n} \prec G$)

12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities

Inequality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& A x=b
\end{array}
$$

- f_{i} convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0}, \quad f_{i}(\tilde{x})<0, \quad i=1, \ldots, m, \quad A \tilde{x}=b
$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & F x \preceq g \\
& A x=b
\end{array}
$$

with $\operatorname{dom} f_{0}=\mathbf{R}_{++}^{n}$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞}-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

where $I_{-}(u)=0$ if $u \leq 0, I_{-}(u)=\infty$ otherwise (indicator function of \mathbf{R}_{-}) approximation via logarithmic barrier

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-(1 / t) \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

- an equality constrained problem
- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}
$$

- convex (follows from composition rules) [page 48 of
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central path

- for $t>0$, define $x^{\star}(t)$ as the solution of

$$
\begin{aligned}
& \operatorname{minimize} \quad t f_{0}(x)+\phi(x) \\
& \text { subject to } A x=b \longrightarrow \text { gives } \boldsymbol{X}=\boldsymbol{X} \text { particular }
\end{aligned}
$$

(for now, assume $x^{\star}(t)$ exists and is unique for each $t>0$)

- central path is $\left\{x^{\star}(t) \mid t>0\right\}$
example: central path for an LP
minimize $\quad c^{T} x$
subject to $\quad a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6$
hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Dual points on central path

$x=x^{\star}(t)$ if there exists a w such that

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x)+A^{T} w=0, \quad A x=b
$$

- therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$
L\left(x, \lambda^{\star}(t), \nu^{\star}(t)\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) f_{i}(x)+\nu^{\star}(t)^{T}(A x-b)
$$

where we define $\lambda_{i}^{\star}(t)=1 /\left(-t f_{i}\left(x^{\star}(t)\right)\right.$ and $\nu^{\star}(t)=w / t$

- this confirms the intuitive idea that $f_{0}\left(x^{\star}(t)\right) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$
\begin{aligned}
p^{\star} & \geq g\left(\lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =L\left(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =f_{0}\left(x^{\star}(t)\right)-m / t
\end{aligned}
$$

Interpretation via KKT conditions

$x=x^{\star}(t), \lambda=\lambda^{\star}(t), \nu=\nu^{\star}(t)$ satisfy

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$
2. dual constraints: $\lambda \succeq 0$
3. approximate complementary slackness: $-\lambda_{i} f_{i}(x)=1 / t, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} \nu=0
$$

difference with KKT is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.
repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $m / t<\epsilon$.
4. Increase t. $t:=\mu t$.

Duality gap check for convergence

- terminates with $f_{0}(x)-p^{\star} \leq \epsilon$ (stopping criterion follows from $\left.f_{0}\left(x^{\star}(t)\right)-p^{\star} \leq m / t\right)$
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10-20$
- several heuristics for choice of $t^{(0)}$

Convergence analysis

number of outer (centering) iterations: exactly

$$
\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

plus the initial centering step (to compute $x^{\star}\left(t^{(0)}\right)$)

centering problem

see convergence analysis of Newton's method

$$
\rightarrow 0 \text { optimisation algo }
$$

- $t f_{0}+\phi$ must have closed sublevel sets for $t \geq t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of $t f_{0}+\phi$

Examples

inequality form LP ($m=100$ inequalities, $n=50$ variables)

- starts with x on central path $\left(t^{(0)}=1\right.$, duality gap 100)
- terminates when $t=10^{8}$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$
geometric program ($m=100$ inequalities and $n=50$ variables)

$$
\begin{array}{ll}
\operatorname{minimize} & \log \left(\sum_{k=1}^{5} \exp \left(a_{0 k}^{T} x+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{5} \exp \left(a_{i k}^{T} x+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

family of standard RPs $\left(A \in \mathbf{R}^{m \times 2 m}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

$m=10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a $100: 1$ ratio

Feasibility and phase I methods

feasibility problem: find x such that

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{2}
\end{equation*}
$$

phase I: computes strictly feasible starting point for barrier method basic phase I method

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & s \\
\text { subject to } & f_{i}(x) \leq s, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- if x, s feasible, with $s<0$, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star}=0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star}=0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase I method

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} s \\
\text { subject to } & s \succeq 0, \quad f_{i}(x) \leq s_{i}, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method
example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 solutions
example: family of linear inequalities $A x \preceq b+\gamma \Delta b$

- data chosen to be strictly feasible for $\gamma>0$, infeasible for $\gamma \leq 0$
- use basic phase I, terminate when $s<0$ or dual objective is positive

number of iterations roughly proportional to $\log (1 /|\gamma|)$

Complexity analysis via self-concordance

(Like in case of unconstrained optimization
same assumptions as on page $12-2$, plus:

- sublevel sets (of f_{0}, on the feasible set) are bounded
- $t f_{0}+\phi$ is self-concordant with closed sublevel sets
second condition
- holds for LP, QP, QCQP
- may require reformulating the problem, egg.,

- needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Newton iterations per centering step: from self-concordance theory

$$
\# \text { Newton iterations } \leq \frac{\mu t f_{0}(x)+\phi(x)-\mu t f_{0}\left(x^{+}\right)-\phi\left(x^{+}\right)}{\gamma}+c
$$

- bound on effort of computing $x^{+}=x^{\star}(\mu t)$ starting at $x=x^{\star}(t)$
- γ, c are constants (depend only on Newton algorithm parameters)
- from duality (with $\lambda=\lambda^{\star}(t), \nu=\nu^{\star}(t)$):

$$
\begin{aligned}
& \mu t f_{0}(x)+\phi(x)-\mu t f_{0}\left(x^{+}\right)-\phi\left(x^{+}\right) \\
& \quad=\mu t f_{0}(x)-\mu t f_{0}\left(x^{+}\right)+\sum_{i=1}^{m} \log \left(-\mu t \lambda_{i} f_{i}\left(x^{+}\right)\right)-m \log \mu \\
& \quad \leq \mu t f_{0}(x)-\mu t f_{0}\left(x^{+}\right)-\mu t \sum_{i=1}^{m} \lambda_{i} f_{i}\left(x^{+}\right)-m-m \log \mu \\
& \quad \leq \mu t f_{0}(x)-\mu t g(\lambda, \nu)-m-m \log \mu \\
& \quad=m(\mu-1-\log \mu)
\end{aligned}
$$

total number of Newton iterations (excluding first centering step)
\#Newton iterations $\leq N=\left\lceil\frac{\log \left(m /\left(t^{(0)} \epsilon\right)\right)}{\log \mu}\right\rceil\left(\frac{m(\mu-1-\log \mu)}{\gamma}+c\right)$

- confirms trade-off in choice of μ
- in practice, \#iterations is in the tens; not very sensitive for $\mu \geq 10$
polynomial-time complexity of barrier method
- for $\mu=1+1 / \sqrt{m}$:

$$
N=O\left(\sqrt{m} \log \left(\frac{m / t^{(0)}}{\epsilon}\right)\right)
$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops
this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu=10, \ldots, 20$)

Generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq K_{i} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- f_{0} convex, $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}}, i=1, \ldots, m$, convex with respect to proper cones $K_{i} \in \mathbf{R}^{k_{i}}$
- f_{i} twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained
examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

$\psi: \mathbf{R}^{q} \rightarrow \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^{q}$ if:

- $\operatorname{dom} \psi=\operatorname{int} K$ and $\nabla^{2} \psi(y) \prec 0$ for $y \succ_{K} 0$
- $\psi(s y)=\psi(y)+\theta \log s$ for $y \succ_{K} 0, s>0(\theta$ is the degree of $\psi)$

examples

- nonnegative orthant $K=\mathbf{R}_{+}^{n}: \psi(y)=\sum_{i=1}^{n} \log y_{i}$, with degree $\theta=n$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$:

$$
\psi(Y)=\log \operatorname{det} Y \quad(\theta=n)
$$

$$
\begin{aligned}
& \text { i, with degree } \theta=n \\
& \left\{\begin{array}{l}
\text { For convexity analysis, } \\
\text { ref page } 42 \text { of }
\end{array}\right.
\end{aligned}
$$

- second-order cone $K=\left\{y \in \mathbf{R}^{n+1} \mid\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)^{1 / 2} \leq y_{n+1}\right\}$:

$$
\psi(y)=\log \left(y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}\right) \quad(\theta=2)
$$

properties (without proof): for $y \succ_{K} 0$,

$$
\nabla \psi(y) \succeq_{K^{*}} 0, \quad y^{T} \nabla \psi(y)=\theta
$$

- nonnegative orthant $\mathbf{R}_{+}^{n}: \psi(y)=\sum_{i=1}^{n} \log y_{i}$

$$
\nabla \psi(y)=\left(1 / y_{1}, \ldots, 1 / y_{n}\right), \quad y^{T} \nabla \psi(y)=n
$$

- positive semidefinite cone $\mathbf{S}_{+}^{n}: \psi(Y)=\log \operatorname{det} Y$

$$
\nabla \psi(Y)=Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y))=n
$$

- second-order cone $K=\left\{y \in \mathbf{R}^{n+1} \mid\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)^{1 / 2} \leq y_{n+1}\right\}$:

$$
\psi(y)=\frac{2}{y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}}\left[\begin{array}{c}
-y_{1} \\
\vdots \\
-y_{n} \\
y_{n+1}
\end{array}\right], \quad y^{T} \nabla \psi(y)=2
$$

Logarithmic barrier and central path

logarithmic barrier for $f_{1}(x) \preceq_{K_{1}} 0, \ldots, f_{m}(x) \preceq_{K_{m}} 0$:

$$
\phi(x)=-\sum_{i=1}^{m} \psi_{i}\left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{i}(x) \prec_{K_{i}} 0, i=1, \ldots, m\right\}
$$

- ψ_{i} is generalized logarithm for K_{i}, with degree θ_{i}
- ϕ is convex, twice continuously differentiable
central path: $\left\{x^{\star}(t) \mid t>0\right\}$ where $x^{\star}(t)$ solves

$$
\begin{array}{ll}
\text { minimize } & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

Dual points on central path

$x=x^{\star}(t)$ if there exists $w \in \mathbf{R}^{p}$,

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} D f_{i}(x)^{T} \nabla \psi_{i}\left(-f_{i}(x)\right)+A^{T} w=0
$$

$\left(D f_{i}(x) \in \mathbf{R}^{k_{i} \times n}\right.$ is derivative matrix of $\left.f_{i}\right)$

- therefore, $x^{\star}(t)$ minimizes Lagrangian $L\left(x, \lambda^{\star}(t), \nu^{\star}(t)\right)$, where

$$
\lambda_{i}^{\star}(t)=\frac{1}{t} \nabla \psi_{i}\left(-f_{i}\left(x^{\star}(t)\right)\right), \quad \nu^{\star}(t)=\frac{w}{t}
$$

- from properties of $\psi_{i}: \lambda_{i}^{\star}(t) \succ_{K_{i}^{*}} 0$, with duality gap

$$
f_{0}\left(x^{\star}(t)\right)-g\left(\lambda^{\star}(t), \nu^{\star}(t)\right)=(1 / t) \sum_{i=1}^{m} \theta_{i}
$$

example: semidefinite programming (with $F_{i} \in \mathbf{S}^{p}$)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F(x)=\sum_{i=1}^{n} x_{i} F_{i}+G \preceq 0
\end{array}
$$

- logarithmic barrier: $\phi(x)=\log \operatorname{det}\left(-F(x)^{-1}\right)$
- central path: $x^{\star}(t)$ minimizes $t c^{T} x-\log \operatorname{det}(-F(x))$; hence

$$
t c_{i}-\operatorname{tr}\left(F_{i} F\left(x^{\star}(t)\right)^{-1}\right)=0, \quad i=1, \ldots, n
$$

- dual point on central path: $Z^{\star}(t)=-(1 / t) F\left(x^{\star}(t)\right)^{-1}$ is feasible for

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{tr}(G Z) \\
\text { subject to } & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\
& Z \succeq 0
\end{array}
$$

- duality gap on central path: $c^{T} x^{\star}(t)-\operatorname{tr}\left(G Z^{\star}(t)\right)=p / t$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.
repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $\left(\sum_{i} \theta_{i}\right) / t<\epsilon$.
4. Increase t. $t:=\mu t$.

- only difference is duality gap m / t on central path is replaced by $\sum_{i} \theta_{i} / t$
- number of outer iterations:

$$
\left\lceil\frac{\log \left(\left(\sum_{i} \theta_{i}\right) /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

- complexity analysis via self-concordance applies to SDP, SOCP

Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbf{R}^{6})

semidefinite program (100 variables, LMI constraint in \mathbf{S}^{100})

family of SDPs $\left(A \in \mathbf{S}^{n}, x \in \mathbf{R}^{n}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} x \\
\text { subject to } & A+\boldsymbol{\operatorname { d i a g }}(x) \succeq 0
\end{array}
$$

$n=10, \ldots, 1000$, for each n solve 100 randomly generated instances

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method

