Epi (f) is a convex set if f is a convex for
Dual characterization?
"A closed convex set is the intersection of all
half spaces containing it"
R: How to characterize the half spaces that contain
the epigraph of f?
Sun: Consider the conjugale for

$$f'(y) = \sup_{x \in drm} f(x, x) - f(x) \int \inf_{x \in drm} f(x)$$

 $f'(y) = \int f(x) + \int f(x) + x \in drm f$ young tenches
 $f'(y) = f(x) + f(x) \ge \langle y, x \rangle + x \in drm f$ inequality

Epi (f) is a convex set if f is a convex for
Dual characterization?
"A closed convex set is the intersection of all
half spaces containing it"
R: How to characterize the half spaces that contain
the epigraph of f?
SUN: Consider the conjugale for

$$f'(y) = \sup_{x \in dmn} f((y,x) - f(x))$$

It can be proved that if f is differentiable at
 $x \in Vf(x) = g_x$ is gradient at x then
 $f''(g_x) + f(x) = (g_x, x)$

Equi (f) is a convex set if f is a convex for
Dual characterization?
"A closed convex set is the intersection of all
half spaces containing it"
Q: How to characterize the half spaces that contain
the epigraph of f?
Soln: Consider the conjugale for

$$f'(y) = \sup_{x \in Amnf} (\langle y, x \rangle - f(x))$$

 $f''(y) = \sup_{x \in Amnf} (\langle y, x \rangle - f(x))$
We know: $f(x) \ge \langle y, x \rangle - f''(y)$ $\forall y \in R''$
 $if_{x}(x) \ge \sup_{y \in R} \{\langle y, x \rangle - f''(y)\} = (f'')(x)$
 $f(x) \ge \sup_{y \in R} \{\langle y, x \rangle - f''(y)\} = (f'')(x)$
 $if_{x}(f) \approx closed$ if f is proper f lover semictod
then $f(x) = (f'')(x)$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Convex functions

3–13

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Convex functions

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

3–15

 $f^{*}(y) = \sup_{x \in \text{dom } f} (y^{T}x - f(x)) \qquad \text{or an a property of } f(x)$ the **conjugate** of a function f is conjt U er λxy conjugat - CONV epi (ff », $f^{*}(y))$ f^* is convex (even if f is not) Ę(Y • will be useful in chapter 5 Conjugate Convex functions 3-21 R f (y) is supremum if affine from $f(x) \ge \langle x, \tilde{y} \rangle - f(\tilde{y}) \forall x \in dmn f$ $f^{*}(\tilde{y}) = \langle x, \tilde{y} \rangle - f(x^{*})$ f, Then $\langle x, \overline{y} \rangle - f^*(\overline{y}) = h(x)$ supporting hyperplane to $(\mathcal{F}, \mathbf{X}) = \langle \mathbf{X}, \mathbf{Y} \rangle$ (supporting hyperplane to convex hull of epi(f) at x (onv/epi <u>je</u> supporting hyperplane to epigraph of convex envelope of f epigraph of at

• ·

The conjugate function

the **conjugate** of a function f is

examples

• negative logarithm $f(x) = -\log x$

 $f^*(y) =$

The conjugate function

the **conjugate** of a function f is

- f^* is convex (even if f is not)
- will be useful in chapter 5

Convex functions

3–21

examples

• negative logarithm $f(x) = -\log x$

$$\begin{array}{rcl} f^*(y) &=& \sup_{x>0} (xy + \log x) \\ &=& \left\{ \begin{array}{ll} -1 - \log(-y) & y < 0 \\ \infty & & \text{otherwise} \end{array} \right. \end{array}$$

• strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}_{++}^n$

$$f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)$$
$$= \frac{1}{2} y^T Q^{-1} y$$

Next question: When is epi(f) closed?

Closed epigraph of convex f Dual characterization off function f is lower-semi-

continuous f:X-71R is called lower (upper) semi-continuous at XEXY f(z) ≤ lim inf f(zk) (≥ lim supfax k→00 for every sequence {zk} < x that convergés to x for X=R sub-level set {x | f(x) < a} is closed for any aER 2

in terms uf Fenchel conjugate (Legendre transform) of f Results in an alternative

(to Lagrange) form of duality, called Fenchel duality Application: flolps relate Lagrange dual function with primal function

• A fin is clo at xo 1/2 it is upper & lower semi cts at 20

epigrap(f) is closed (3)

lutich is generally stated as

"f is closed")

Prof: 2 > D > 3 > 2 (2)⇒ (1): Suppose {x} f(x) ≤ a? is closed
H a∈R & for proving by controdiction, say, ∃ x 5. £ f(2)> lim inf f(2 K) & {2 K } → 2 Let a ER be sit f(a)>a>lim inf f(xk) koo ⇒ J subsequence {xk} st f(xk) ≤ a ¥ KEK Since {x|f(x) ≤ a} is closed, x must belong to {xxyx => f(z) < a ... a contradiction! $(D \Rightarrow 3) \text{ if } f \text{ is lower semi-continuous over}$ $R^n \notin (\overline{z}, \overline{a}) \text{ is limit of } \{(z_k, a_k)\} \subset epi(f)$ then $f(x_k) \leq a_k$ and taking $\lim_{k \to \infty} (f(x_k) \leq a_k)$. and using lower semi-continuity $f(\bar{\pi}) \leq \lim_{k \to \infty} \inf f(\pi_k) \leq \bar{\alpha} \Rightarrow (\bar{\tau}, \bar{\alpha}) \in epi(f)$, ie epi(f)is closed!

(3)⇒ (2) If epi(J) is closed & {xk'} is a sequence that converges to some x t belongs to level set {x}f(x) < a7 for some a, then (xx,a) Eepi(f) H k& $(x_{\kappa}, \alpha) \rightarrow (\overline{x}, \alpha)$. Since epi(f) is closed, $(\bar{n}, a) \in epi(f) \Rightarrow \bar{x} \in \{x\} f(x) \leq a^{2}$ =) $\{x \mid f(x) \leq a^{\alpha}\}$ is closed! $e_1: \bigcirc f(x) = 1$ for $x \in (-\infty, 0)$ is lower (cupper) Semi-continuous. Is f closed? (ie is epi(f) J(x) = 1 $f x \in (\infty, 0)$ $k = \infty$ of w closed?) Ans: epi(f) : J(x, z) $f(x) \leq z$ = J(x, z) $x \in (-\infty, 0)$ is Not closed! What went wrong?? $z \in [1, \infty]$ Recall: f should be lower semi-continuous over 1Rn...In this case f is lower semi-cto only over (-00,0) Soln: Define extended value extension F of Fover Rⁿ (n=1 in this example). If J is Inver semicts over IRn then epi(F) is closed. Unfortunately, f is NOT lower semicts at U.

Sq: If
$$f(x) = 1$$
 if $x \in (-\infty, 0) \land \infty$ of ω
Is $f(x)$ lower semi-cb on \mathbb{R}^{7} .
Anns: NO
 $cpi(\overline{f}) =$

Sq: If
$$f(x) = 1$$
 if $x \in (-\infty, 0) \land \infty \circ 1/\omega$
(5 $f(x)$ lower semi-ob on R?.
ANS: No.
 $cpi(\overline{f}) = f(x, z) | x \in (-\infty, 0), z \in [1, \infty) \}$ ()
 $f(x, z) | x \in [0, \infty), z = \infty \}$
which is also NOT closed
(a) If $f: x = (-\infty, \infty) \notin Am(f)$ is closed $\& f$ is
lower semicts on $Am(f)$, then $epi(f)$ is closed

extended-value extension \tilde{f} of f is

 $\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$

often simplifies notation; for example, the condition

 $0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$

(as an inequality in $\textbf{R} \cup \{\infty\}),$ means the same as the two conditions

- $\mathbf{dom} f$ is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

 $0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ $\int f(x) = /\pi \quad \text{if } x > 0 \quad \overline{f}(x) \text{ is lower semicts & epi(f)}$ $is \ closed !$

In summary: Depi(f) is closed & convex 11/1/1 11/1 J is lower & convex semi-cto (2) If fis convex, it is cts on the relative interior of 16 domain (4. : lower semi-cts on the relative interior of its domain) Discontinuities possible only on relative boundary 3 Thus, for a convex f, for ensuring closed epi(f), you need to take care of lower semi-continuity of f particularly on the relative boundary of its domain. (4) In particular, if f:1R"-1R is convex on R" then f (its epigraph) is closed convex & so are its level sets {z | f(a) < a } y a

Examples on R

convex:

• affine: ax + b on **R**, for any $a, b \in \mathbf{R}$ • exponential: e^{ax} , for any $a \in \mathbf{R}$ AM>GM • powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$ - For all - powers of absolute value: $|x|^p$ on ${\bf R},$ for $p\geq 1$ • negative entropy: $x \log x$ on \mathbf{R}_{++} concave: • affine: ax + b on **R**, for any $a, b \in \mathbf{R}$ • powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$ conver Most proofs by proving Jensen's inequality: $f(\alpha x_{1} + (1-\alpha)x_{2}) \leq \alpha f(x_{1}) + (1-\alpha)f(x_{2})$ 3–3

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

• affine function $f(x) = a^T x + b$

• norms:
$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$
 for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbf{R}^{m imes n}$ (m imes n matrices)

• affine function

$$f(X) = \operatorname{tr}(A^T X) + b = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

Proof of Hilder's inequality using Tensen's inequality
(ic convexity of
$$\|x\|_p$$
 for $p\ge 1$)
Claim: $\sum_{i=1}^{n} |u_i| |x_i| \le \left(\sum_{i=1}^{n} |u_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}$
(we will assume $|u_i| > 0$ (why does it suffice to do so?)
Since $||\alpha||_p^p$ is convex, by Jensen's inequality:
 $\left(\sum_{i=1}^{n} w_i \alpha_i\right)^p \le \sum_{i=1}^{n} w_i \alpha_i^p$ for $\alpha_i, w_i > 0$ f (A)
Substituting $w_i^n = \frac{|x_i|^p}{\sum_{i=1}^{n} |x_i|^p}$ and $\alpha_i^n = \frac{|u_i||x_i|}{w_i}$ in (A)
We get the Holder's inequality