Upi (f) is a convex set if f is a convex f_{n}
Dual characterization?
"A closed convex set is the intersection of all half spaces containing $t^{\prime \prime}$

Q: How to characterize the half spaces that contain the epigraph of f ?
Sunn: Consider the conjugate for

$$
\begin{array}{r}
\left.f^{x}(y)=\sup _{x \in d m n f}(\langle y, x)-f(x))\right\} \begin{array}{l}
\begin{array}{l}
i n f \\
x \in d m n f
\end{array} \\
=f^{x}(0)
\end{array} \\
f^{x}(y) \geqslant\langle y, x\rangle-f(x) \forall x \in d_{m n} f \\
\Rightarrow f^{*}(y)+f(x) \geqslant\langle y, x\rangle \forall x \in d m \cap f \quad \begin{array}{l}
\text { Young rienchel } \\
\text { inequably }
\end{array}
\end{array}
$$

Upi (f) is a convex set if f is a convex f_{n}
Dual characterization?
"A closed convex set is the intersection of all half spaces containing $t^{\prime \prime}$

Q: How to characterize the half spaces that contain the epigraph of f ?
Soln: Consider the conjugate for

$$
f^{x}(y)=\sup _{x \in \operatorname{dmn} f}(\langle y, x\rangle-f(x))
$$

It can be proved that if f is differentiable at $x \& \nabla f(x)=g_{x}$ is gradient at x then

$$
f^{*}\left(g_{x}\right)+f(x)=\left\langle g_{x} x\right\rangle
$$

Epi (f) is a convex set ifs f is a convex fo
Dual characterization?
"A closed convex set is the intersection of all half spaces containing $t^{\prime \prime}$

Q: How to characterize the half spaces that contain the epigraph of f ?
Soln: Consider the conjugate for

$$
\begin{aligned}
& f^{x}(y)=\sup _{x \in d m n f}(\langle y, x\rangle-f(x)) \\
&\left(f^{*}\right)^{x}(x)=\sup _{y \in \mathbb{R}^{n}}\left\{\langle y, x\rangle-f^{*}(y)\right\}
\end{aligned}
$$

We know: $f(x) \geqslant\langle y, x\rangle-f^{x}(y) \quad \forall y \in \mathbb{R}^{m}$

$$
\Rightarrow f(x) \geqslant \sup _{y \in R^{n}}\left\{\langle y, x\rangle-f^{*}(y)\right\}=\left(f^{*}\right)^{*}(x)
$$

If epis (f) s closed $[$ ie f is proper \& lover semicto] then $f(x)=\left(f^{+}\right)^{2}(x)$

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum \& composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals) composition with affine function: $f(A x+b)$ is convex if f is convex
examples

- log barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex

examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex ($x_{[i]}$ is i th largest component of x) proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex

examples

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

The conjugate function
the conjugate of a function f is

- f^{*} is convex (even if f is not)
- will be useful in chapter 5

Convex functions

conjugate:

遇

$$
\begin{aligned}
& f(x) \geqslant\langle x, \tilde{y}\rangle-f^{*}(\tilde{y}) \quad \forall x \\
& f \\
& f^{\Delta+}\left(x^{+}\right)=\left\langle x^{\infty}, \tilde{y}\right\rangle-f^{x}(\tilde{y})
\end{aligned}
$$

(supporting hyperplane to convex hull of epi(f) at $x^{*}\left(\operatorname{conv}(\right.$ epic $(f))$ at x^{*}
送 supporting hyperplane to epigraph of convex envelope of f at x^{a})

The conjugate function
the conjugate of a function f is

- f^{*} is convex (even if f is not).

$$
\begin{aligned}
& \leq \operatorname{Sup}_{x \in d m n} d_{y_{1}} \text { xedmnf } \\
& \therefore f^{+}\left(\alpha y_{1} y_{1}+(1-\alpha) y_{2}\right)=\sup _{x \in d m n}\left\{\left\langle x_{1} \alpha_{1} y_{1}+[1-\alpha) y_{2}\right\rangle\right. \\
& 1-f(x)\}
\end{aligned}
$$

- will be useful in chapter 5

$$
\begin{aligned}
& \begin{array}{l}
\leq \sup \alpha\left\{\langle x, y,\rangle-f(x)^{\eta}\right\}+\sup (1-\alpha)\left\{\left(x, y_{y}\right\rangle\right) \\
x \in d_{\text {mn }} f \\
=\alpha f^{0}(y)+\left(1-\alpha f^{\infty}\left(y_{2}\right) \quad-\int(x)\right\}
\end{array} \\
& =\alpha f^{a}\left(y_{1}\right)+(1-\alpha) f^{\infty}\left(y_{2}\right)
\end{aligned}
$$

Convex functions
examples

- negative logarithm $f(x)=-\log x$

$$
f^{*}(y)=
$$

extended value
extension of $\left.f^{\prime}(y)=-1-\log (-y)\right\}=-1-\log (-y)$ if $y<0$ \& $4<0$ if $y>0$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

Necessary
Condition for $x 1-1 \frac{1}{2} i$ i ty
at x, since $x y$,
15 dyferentiabl $12 x)=0$
$\nabla_{x}\left(x^{\pi y}\right.$

$$
\begin{aligned}
f^{*}(y) & =\sup \left(x^{\top} y-\frac{1}{2} x^{\top} Q x\right) \\
& =\left(y^{\top} Q^{-1} y-\frac{1}{2} y^{\top} Q^{\top} y\right) \\
& =\frac{1}{2} y^{\top} Q^{-1} y
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{2} \varphi-\frac{1}{2} x=0\right. \\
& \text { ie } y-Q^{x} \quad y=\theta^{1} y
\end{aligned}
$$

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

- f^{*} is convex (even if f is not)
- will be useful in chapter 5

examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

Next question: When is epi (f) dosed?

- A f_{n} is cts at so iff it is upper \& lower semi cts at x_{0}

Need not be cts

$$
\begin{aligned}
& f(x)= \begin{cases}-1 & \text { if } x<1 \\
-1.5 & \text { if } x=1 \\
-3 / 4 & \text { if } x>1\end{cases} \\
& f(x)=\left\{\begin{array}{cc}
-\sin \left(\frac{1}{x}\right) & x \neq 0 \\
-1 & x=0
\end{array}\right.
\end{aligned}
$$

A lower semi-continuous function.
The solid blue dot indicates $f\left(x_{0}\right)$.

An upper semi-continuous function. The solid blue dot indicates $f\left(x_{0}\right)$.
\rightarrow Need not be right coo

Proof: (2) $\Rightarrow(1) \Rightarrow(3) \Rightarrow 2$
(2) \Rightarrow (1): suppose $\{x \mid f(x) \leq a\}$ is closed $\forall a \in R \&$ for proof by contradiction, say, $\exists \bar{x}$ $s \cdot \mathcal{L} f(x)>\lim \inf _{k \rightarrow \infty} f\left(x_{k}\right) \&\left\{x_{k}\right\} \rightarrow \bar{x}$
Let $a \in \mathbb{R}$ be $5 \cdot t$

$$
f(\bar{x})>a>\lim \inf _{k>\infty} f\left(x_{k}\right)
$$

$\Rightarrow \exists$ subsequence $\left\{x_{k}\right\}_{k}$ st $f\left(x_{k}\right) \leq a \quad \forall k \in K$ Since $\{x \mid f(x) \leq a\}$ is closed, \bar{x} must belong to $\left\{x_{k}\right\} k \Rightarrow f(\bar{x}) \leq a \ldots-a$ contradiction!
(1) \Rightarrow (3) If f is lower semi continuous over $\mathbb{R}^{n} \&$ if (\bar{x}, \bar{a}) is limit of $\left\{\left(x_{k}, a_{k}\right)\right\}$ cepi (f) then $f\left(x_{k}\right) \leq a_{k} \quad$ and taking $\lim _{k \rightarrow \infty}\left(f\left(x_{k}\right) \leq a_{k}\right)$
$f(\bar{x}) \leq \lim \inf _{k \rightarrow \infty} f\left(x_{k}\right) \leq \bar{a} \Rightarrow(\bar{x}, \bar{a}) \in \operatorname{epi}(f)$, ie epic (f) is closed!
(3) \Rightarrow (2) If upi (f) is closed \& $\left\{x_{k}\right\}$ is a sequence that converges to some \bar{x} $*$ belongs to level set $\{x \mid f(x) \leqslant a\}$ for some a, then $\left(x_{k}, a\right) \in$ epi $(f) \forall k \&$ $\left(x_{k}, a\right) \rightarrow(\bar{x}, a)$. Since ep (f) is closed,

$$
(\bar{x}, a) \in \text { ep }(f) \Rightarrow \bar{x} \in\{x \mid f(x) \leq a\}
$$

$$
\Rightarrow\{x \mid f(x) \leqslant a\} \text { is closed! }
$$

qq: () $f(x)=1$ for $x \in(-\infty, 0)$ is lower (upper)
semi-continuous ils f closed? (ie is epic)
$\tilde{f}(x)=\mid$ if $x \in(-\infty, 0) \&=\infty$ o/w \quad closed ?)
Ans: epi $(f):\{(x, z) \mid f(x) \leq z\}=\left\{(x, z) \left\lvert\, \begin{array}{c}x \in(-\infty, 0) \\ \text { is NOT closed! what went wrong? } \\ z \in[1, \infty]\end{array}\right.\right\}$
is NoT closed! What went wrong??
Recall: f should be lower semi-continuous over \mathbb{R}^{n}... $1 n$ this case f is lower semi-cts only over $(-\infty, 0)$
Soln: Define extended value extension \bar{f} of f over $R^{n}(n=1$ in this example). If f is lower semicto over \mathbb{R}^{\cap}, then api (\bar{f}) is closed unfortunately, \tilde{f} is NOT lower semicts at \mathcal{O}.

Eg: if $\bar{f}(x)=1$ if $x \in(-\infty, 0) \& \infty \quad 0 / 0$ is $f(x)$ lower semi-cts on \mathbb{R} ?.

Ans: NO

$$
\operatorname{epi}(\bar{f})=
$$

Which is
(2) If $f: x \rightarrow(-\infty, \infty) \& \operatorname{dmm}(f)$ is closed \& f is lower semicts on $d m n(f)$, then epi (f) is closed Because \tilde{f} will remain lower semicto

Eg: if $\bar{f}(x)=1$ if $x \in(-\infty, 0) \& \infty \quad 0 / 00$ $15 f(x)$ lower semi-cts on \mathbb{R} ?

ANS: No!

$$
\begin{aligned}
& \text { ANS: No ! } \\
& \operatorname{epi}(\bar{f})=\{(x, z) \mid x \in(-\infty, 0), z \in[7, \infty)\} \cup \\
&\{(x, z) \mid x \in[0, \infty), z=\infty\}
\end{aligned}
$$

which is also NOT closed
(2) If $f: x \rightarrow(-\infty, \infty) \& \operatorname{dmm}(f)$ is closed \& f is lower semicts on $\operatorname{dmn}(f)$, then api (f) is closed

Extended-value extension
extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbf{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

(3) $f(x)=1 / x$ if $x>0 \quad \bar{f}(x)$ is lower semi cts \& epi (\bar{f}) is closed!

In summary:
(1) epi(f) is closed \& convex

$$
\widetilde{f} \text { is lower } \begin{gathered}
\text { if } \\
\text { semi-cts }
\end{gathered} \& \substack{111 \text { ifs } \\
\sim}
$$

(2) If f is convex, it is cts on the relative interior of it domain (\& \therefore lower semi-cto on the relative interior of its domain)
Discontinuities possible only on relative boundary
(3) Thus, for a convex f, for ensuring (note closed cpi (f), you need to take care of lower semi-continuity of f particularly on the relative boundary of its domain.
(4) In particular, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on \mathbb{R}^{n} then f (its epigraph) is closed convex \& so are its level seta $\{x \mid f(x) \leq a\} \forall a$

Examples on R
convex:

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R} \quad A M \geqslant G M$

concave:
- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$
affine functions are convex and concave; all norms are convex examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
\& sang le and
an examples on $\mathbf{R}^{m \times n}(m \times n$ matrices $)$
- affine function
- affine function

$$
f(X)=\underbrace{\operatorname{tr}\left(A^{T} X\right)+b}_{\langle A, X\rangle_{F}+b}=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- spectral (maximum singular value) norm

$$
f(X)=\|X\|_{2}=\underbrace{\sigma_{\max }(X)}=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}\}
$$

Proof of Holder's inequality using Jenseris inequality (ie conveculty of $\|x\|_{p}$ for $p \geqslant 1$)

Clam: $\sum_{i=1}^{n}\left|u_{i}\right|\left|x_{i}\right| \leq\left(\sum_{i=1}^{n}\left|u_{i}\right|^{q}\right)^{1 / q}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / p}$
we will assume $\left|u_{i}\right|>0$ (why does it suffice to do so?.) since $\|a\|_{p}^{p}$ is convex, by Jensen's inequality:

$$
\begin{array}{r}
\left(\sum_{i=1}^{n} \omega_{i} a_{i}\right)^{p} \leqslant \sum_{i=1}^{n} \omega_{i} a_{i}^{p} \quad \text { for } \quad a_{i}, \omega_{i}>0 \& \\
\sum \omega_{i}=1
\end{array}
$$

Substituting $\omega_{i}=\frac{\left|x_{i}\right|^{p}}{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}$ and $a_{i}=\frac{\left|u_{i}\right|\left|x_{i}\right|}{w_{i}}$ in (*)
We get the Holder's inequality

