Examples on R

convex:

e affine: ax +bon R, for any a,b € R \/ .
tial: e f R ! g

e exponential: e®*, for any a € "M>/GM

e powers: z%on Ry, fora>1ora <0 — ?0{ KL

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: z%on Ry, for0 <a <1

e logarithm: logx on R, 4+
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Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(x) = a’z +b

Ly o norms: [lall, = (X, [af?)/7 for p > 1;|

D“%Q \X,

(™ examples on R"*" (m x n matrices)

Z||oo = maxy |z

e affine function

Aij Xij+0
1

FX) =tr(A"X) +b=>"

i=1 j=
(A\Y%‘f‘lo

e spectral (maximum singular value) norm

FIX) = X > = ue(X) = (e (X7 X)) E( ]
mex |8z o e W

Convex functions \’




First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G g e )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z) + Vf(x)T(y —x) forall x,y € dom f

wes lowr bouﬂa\ zgﬁmﬁ\?,

f(y) ’faoguﬂ%

flx)+ Vi) (y — )

(z, f(z))

first-order approximation of f is global underestimator

Convex functions 3-7

Second-order conditions

f is twice differentiable if dom f is open and the Hessian VZf(z) € S",

_ *f(=)
N 8:5‘1'8]3]"

V2 ()5

,j=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(xz) =0 forall z € dom f

o if V2f(z) = 0 for all x € dom f, then f is strictly convex

Convex functions 3-8



Definition 35 [Convex Function]: A function f: D — R is conver if D is

a conver set and

fox+(1—0)y) <Of(x)+(1—-0)f(y) VxyeD 0<0<1(431)

Figure 4.37 illustrates an example conver function. A function f : D — R
is strictly convex if D is conver and

flox+(1=0)y) <0f(x)+(1-8)f(y) VxyeD 0<6<1(4.32)

A function f : D — R is called uniformly or strongly conver if D is convex
and there exists a constant ¢ > 0 such that

f(6x+ (1= 0)y) < 8f(x) + (1 - 0)f(y)) = 2e8(1 - B)|lx —y|F Vx.yeD
\/\/——_
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Figure 4.37: Example of convex function. —’)C\wnj conve x‘t\) \m?\’\a
Stk " wavedy

e



Theorem 75 Let f : D — R be a differentiable conver function on an open
conver set D. Then:

1. f is conver if and only if, for any x,y € D,

fly) = f(x) + V" f(x)(y = x) (4.44)

2. f is strictly conver on D if and only if, for any x,y € D, with x # y,

fly) > f(x) + V' f(x)(y = x) (4.45)

3. [ is strongly convexr on D if and only if, for any x,y € D,

) 2 [0+ V)Y = %) + zelly =xIP  (4.46)

for some constant ¢ > ().



Proaf:
Sufficiency: The proof of sufficiency is very similar for all the three state-

ments of the theorem. S0 we will prove only for statement (4.44). Suppose
(4.44) holds. Consider x;,%x2 € D and any & € (0, 1). Let x = #x; + (1 — #)xa.
Then.

fler) = f(x) + V7 f(x) (a2 — x)
flxz2) = f(x) + V7 f(x)(x2 — %) (4.47)

Adding (1 — #) times the second inequality to # times the first, we get,

0f(x1) + (1 — &) f(x2) = fx)

which proves that f(x) iz a convex function. In the case of strict convexity,
strict inequality holds in (4.47) and it follows through. In the case of strong
convexity, we need to additionally prove that

1 1 1
'E"§ET||1 —x||* + (1 —#) i"-‘| Ix — xa||* = Efﬁ'il — 8)||x2 — xy||?

Necessity: Suppose f is convex. Then for all # € (0,1) and x;,x; € D, we
must have

Flfxa + (1 —8)xy) < 0f(x2) + (1 — 8) f(x1)
Thus,

fixn +8(xe — 1)) — flx)
t

< flx2) — f(x1)

Vi) (x2 —x1) = Jim

This proves necessity for (4.44). The necessity proofs for (4.45) and (4.46) are
very similar, except for a small difference for the case of strict convexity: the
strict inequality is not preserved when we take limits. Suppose equality does
hold in the case of strict convexity, that is for a strictly convex function f, let

flxz) = f(x1) + V7 f(x1)(x2 — x1) (4.48)

for some x5 # x;. Becanse f is stricly convex, for any # € (0, 1) we can write

Floa + (1 —8)xa) = fxa+0(x1 —xa)) < 6f(x1) + (1 —8)f(x2) (4.49)

Since (4.44) is already proved for convex functions, we use it in conjunction with
(4.48), and (4.49), to get

F(x2) +0VT f(xa2)(x1—%2) < f(x2+ 0(x; — x2)) < fx2)+ OV f(x2) (3 —%2)

which is a contradiction. Thus, equality can never hold in (4.44) for any x; # xa.
This nroves the necessity of (4.45). O



Basic inequality

recall basic inequality for convex differentiable f:

<) (=, (ﬂ)
@D, 4 )y A fff’ %yf > ?(

13

r) + Vi)' (y — )
e first-order approximation of f at x is global underestimator

o (Vf(x),—1) supports epi f at (z, f(z)) -
1¢5 @uo) AL - % fous A&c-ﬂ“‘\"‘j
9 haas &"‘ \3 ‘)‘-\’a\“L b% 083&\, v

what if f is not differentiable?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at z if

fy) > f(x)+g-(y—z) forally
a4 undes 0\"'““*6(

f(x)

REORTACEES
T f(x2) 4 g5 (m — @)

x1 Ty

g2, g3 are subgradients at x5; g1 is a subgradient at x4

X
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<& D
¥
\g_ﬁ e ¢ is a subgradient of f at x iff (g, —1) supports epi f at (z, f(z))
$

g:\?x{o g is a subgradient iff f(x) + ¢! (y — ) is a global (affine)

U underestimator of f
e if f is convex and differentiable, V f(x) is a subgradient of f at x

N
\§ /S’\ % dbéﬂa C@'{WCX, SU}?%‘M.&\\%}, .75 ?‘ﬂ“‘af\{'ﬁ@,a r\'b eL\Sk

subgradients come up in several contexts:

e algorithms for nondifferentiable convex optimization
e convex analysis, e.q., optimality conditions, duality for nondifferentiable

problems

(if f(y) < f(z) + gt (y — x) for all y, then g is a supergradient)

Prof. S. Boyd, EE364b, Stanford University



Definition 41 [Subgradient]: Let f: D — R be a conver function defined

on a conver set D. A vector h € R™ is said to be a subgradient of [ at the
point x € D if

f(y) = f(x) + h' (y = x)
for all y € D. The set of all such vectors is called the subdifferential of f
at x.

Theorem 76 Let f: D — R be a conver function defined on a convex set D.
A point x € D corresponds to a mintmum if and only if

Vi) =x) =0
for all y € D.

If ¥V f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 77 implies that for a differentiable convex function defined on an open
set, every critical point must be a point of (global) minimum.

Theorem 77 Let f: D — R be differentiable and conver on an open convez

domain D C R". Then x is a eritical point of [ if and only if it is a (global)
AT,

Theorem T8 Let f: D — R with D C R™ be differentiable on the conver set
D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
forallx,y € R

(Vix)=Viy) (x=y)=0 (4.53)

2. [ is strictly conver on D if and only if is its gradient V [ is strictly mono-
tone. That is, for all x,y € R with x # y,

(Vf(x)=Viy) (x—y)>0 (4.54)

3. f is uniformly or strongly conver on D if and only if is its gradient V f is
uniformly monotone. That s, for all x,y € R,

(VI(x)=Viy)' (x=y) =[x =y (4.55)

for some constant ¢ > (.



I":Iecessit}r: Suppose f is uniformly convex on D. Then from theorem 75,
we know that for any x,. ¥y € D,

1) 2 £6) + V6 (y =) = selly +xIP
1) 2 1) + V7 f(y) o~ y) — zellx+ 1P

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold
with ¢ = (0, yielding (4.54). If f is strictly convex, the inequalities will be strict,
vielding (4.54).

Sufficiency: Suppose V f is monotone. For any fixed x, y € D, consider the
function @#(t) = f (x +t{y — x)). By the mean value theorem applied to ¢(t),
we should have for some t € (0,1).

#(1) — a(0) = ¢'(t) (4.56)

Letting z = x + t(y — x), (4.56) translates to

f(y) - f(x) =V f(z)(y —x) (4.57)
Also, by definition of monotonicity of V f, (from (4.53)).

(Vf(2) = V1) (v =%) = 7 (V/(2) = VF() (2=2) 20 (458)

Combining (4.57) with (4.58), we get.

f(y) = f(x) = (Vf(z) = f(x)" (v —%) + V' f(x)(y — x)
>V f(x)(y — x) (4.59)

By theorem 75, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (4.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (4.59). For the
case of strong convexity, from (4.55), we have

@'(t) = #'(0) = (Vf(=z) — F(x))" (¥ —x)
(Vf(z) = f(x)" (2—x) 2 %f—‘ll55 —x||* = etlly — x||* (4.60)

] =

8(1) = 6(0) - 60) = [ [#0) = SOt 2 gelly <l (461)
which translates to

Fly) > f(x) + VT F )y — %) + elly — x||2



