Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective


```
Convex functions
```

3–13

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

- Convex functions

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

fiber
$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

 $\emptyset: \text{What abt subgraduents at } 2 \quad \partial f(\tilde{\chi}) ?$
 $\inf_{\mathcal{X}} = \partial f(\tilde{\chi}) = \text{Conv.hall}\left(\nabla f_1(\tilde{\chi}), \nabla f_2(\tilde{\chi})\right)$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X\in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Spectral

• ·

The conjugate function

the **conjugate** of a function f is

examples

• negative logarithm $f(x) = -\log x$

 $f^*(y) =$

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if h is convex, g is convex f h is increasing
• proof $f''(x) = h''(g(x))f'(x) + g''(x)h'(g(x))$ (n=1)
 $\nabla^2 f(x) = h''(g(x)) \forall g(x) \forall g(x) + \forall^2 g(x)h'(g(x))$ (Assume life rentro
 $-bitily$)

ı–د

examples

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c} g \text{ convex}, \ h \text{ convex}, \ \tilde{h} \text{ nondecreasing} \\ g \text{ concave}, \ h \text{ convex}, \ \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \hat{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Convex functions

Vector composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex}, h \text{ convex}, \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave}, h \text{ convex}, \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

3–17

Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

• $f(x,y) = x^T A x + 2x^T B y + y^T C y$ with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x,y) = x^T (A - BC^{-1}B^T) x$

- g is convex, hence Schur complement $A BC^{-1}B^T \succeq 0$
- distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x y||$ is convex if S is convex

Convex functions

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t), \qquad \mathbf{dom}\,g = \{(x,t) \mid x/t \in \mathbf{dom}\,f, \ t > 0\}$$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d)\right)$$

is convex on $\{x\mid c^Tx+d>0,\ (Ax+b)/(c^Tx+d)\in \operatorname{\mathbf{dom}} f\}$

3–19