Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum \& composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals) composition with affine function: $f(A x+b)$ is convex if f is convex

examples

- log barrier for linear inequalities
- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum
if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex
examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
\begin{aligned}
& \text { gest components of } x \in \mathbf{R}^{n}: \\
& \qquad \underbrace{f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}}_{[i]}=\underbrace{\max }_{\sigma}\left(\sum_{i=1}^{\gamma} \boldsymbol{x}_{\sigma} \sigma[i]\right)
\end{aligned}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of $\left.x\right) \quad \sigma$ is a permutation proof:

D: What aft subgradients at $\tilde{x} \quad \partial f(\tilde{x})$?
Ans- $\partial f(\tilde{x})=$ cons. hall $\left(\nabla f_{1}(\tilde{x}), \nabla f_{2}(\tilde{x})\right)$

Q: How abl max over infinite indices?
$\max _{y \in D} f_{y}(x)$ where $f(x, y)$ is convex in x

What if D were union of disjoint intervals?

Pointwise supremum
if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$
g(x)=\underbrace{\sup _{y \in \mathcal{A}}} f(x, y)
$$

is convex

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\left.\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y\right\} \quad \text { spectral matrix } \quad \text { norm }
$$

The conjugate function
the conjugate of a function f is

- f^{*} is convex (even if f is not)
- will be useful in chapter 5

Convex functions

$$
(f)=\operatorname{coman}(f)
$$

- will be useful in chapter 5

送

$$
\begin{aligned}
& f(x) \geqslant\langle x, \tilde{y}\rangle-f^{*}(\tilde{y}) \quad \forall x \in d \\
& \&{ }^{\Delta+}\left(x^{*}\right)=\left\langle x^{\infty}, \tilde{y}\right\rangle-f^{x}(\tilde{y}) \\
& \text { (supporting hyperplane to }
\end{aligned}
$$ convex hull of cpi (f) at $x^{*}\left(\operatorname{conv}(\right.$ epis $(f))$ at x^{2}送 supporting hyperplane to epigraph of convex envelope of f at x^{a})

The conjugate function
the conjugate of a function f is

- f^{*} is convex (even if f is not).

$$
\begin{aligned}
& \leq \operatorname{Sup}_{x \in d m n} d_{y_{1}} \text { xedmnf } \\
& \therefore f^{+}\left(\alpha y_{1} y_{1}+(1-\alpha) y_{2}\right)=\sup _{x \in d m n}\left\{\left\langle x_{1} \alpha_{1} y_{1}+[1-\alpha) y_{2}\right\rangle\right. \\
& 1-f(x)\}
\end{aligned}
$$

- will be useful in chapter 5

$$
\begin{aligned}
& \begin{array}{l}
\leq \sup \alpha\left\{\langle x, y,\rangle-f(x)^{\eta}\right\}+\sup (1-\alpha)\left\{\left(x, y_{y}\right\rangle\right) \\
x \in d_{\text {mn }} f \\
=\alpha f^{0}(y)+\left(1-\alpha f^{\infty}\left(y_{2}\right) \quad-\int(x)\right\}
\end{array} \\
& =\alpha f^{a}\left(y_{1}\right)+(1-\alpha) f^{\infty}\left(y_{2}\right)
\end{aligned}
$$

Convex functions
examples

- negative logarithm $f(x)=-\log x$

$$
f^{*}(y)=
$$

extended value
extension of $\left.f^{\prime}(y)=-1-\log (-y)\right\}=-1-\log (-y)$ if $y<0$ \& $4<0$ if $y>0$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

Necessary
Condition for $x 1-1 \frac{1}{2} i$ i ty
at x, since $x y$,
15 dyferentiabl $12 x)=0$
$\nabla_{x}\left(x^{\pi y}\right.$

$$
\begin{aligned}
f^{*}(y) & =\sup \left(x^{\top} y-\frac{1}{2} x^{\top} Q x\right) \\
& =\left(y^{\top} Q^{-1} y-\frac{1}{2} y^{\top} Q^{\top} y\right) \\
& =\frac{1}{2} y^{\top} Q^{-1} y
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{2} \varphi-\frac{1}{2} x=0\right. \\
& \text { ie } y-Q^{x} \quad y=\theta^{1} y
\end{aligned}
$$

Composition with scalar functions
composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if h is convex, g is convex \& h is increasing

$$
\begin{aligned}
& \text { proof } f^{\prime \prime}(x)=h(g(x)) g(x)+h^{\prime \prime}(g(x)) \nabla g(x) \nabla^{T} g(x)+\nabla^{2} g(x) h^{\prime}(g(x)) \\
& \nabla^{2} f(x)=h^{\prime \prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Assume } \\
& \text { differentia } \\
& \text {-billy) }
\end{aligned}
$$

examples

Composition with scalar functions

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if g convex, h convex, \tilde{h} nondecreasing g concave, h convex, \tilde{h} nonincreasing

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if g_{i} convex, h convex, \tilde{h} nondecreasing in each argument g_{i} concave, h convex, \tilde{h} nonincreasing in each argument proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex

examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0, \quad C \succ 0
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$
g is convex, hence Schur complement $A-B C^{-1} B^{T} \succeq 0$

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

g is convex if f is convex

examples

- $f(x)=x^{T} x$ is convex; hence $g(x, t)=x^{T} x / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex on \mathbf{R}_{++}^{2}
- if f is convex, then

$$
g(x)=\left(c^{T} x+d\right) f\left((A x+b) /\left(c^{T} x+d\right)\right)
$$

is convex on $\left\{x \mid c^{T} x+d>0,(A x+b) /\left(c^{T} x+d\right) \in \operatorname{dom} f\right\}$

