
Composition with scalar functions

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

• proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive

Convex functions 3–17

Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) + ∇h(g(x))Tg′′(x)

examples

•
∑m

i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex

Convex functions 3–18



Composition with scalar functions

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

• proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive

Convex functions 3–17

Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) + ∇h(g(x))Tg′′(x)

examples

•
∑m

i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex

Convex functions 3–18







Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

• f(x, y) = xTAx + 2xTBy + yTCy with

[

A B
BT C

]

� 0, C ≻ 0

minimizing over y gives g(x) = infy f(x, y) = xT (A − BC−1BT )x

g is convex, hence Schur complement A − BC−1BT � 0

• distance to a set: dist(x, S) = infy∈S ‖x − y‖ is convex if S is convex

Convex functions 3–19

Perspective

the perspective of a function f : Rn → R is the function g : Rn ×R → R,

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

g is convex if f is convex

examples

• f(x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

• negative logarithm f(x) = − log x is convex; hence relative entropy
g(x, t) = t log t − t log x is convex on R2

++

• if f is convex, then

g(x) = (cTx + d)f
(

(Ax + b)/(cTx + d)
)

is convex on {x | cTx + d > 0, (Ax + b)/(cTx + d) ∈ dom f}

Convex functions 3–20
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Restriction of a convex function to a line

f : Rn → R is convex if and only if the function g : R → R,

g(t) = f(x + tv), dom g = {t | x + tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ Rn

can check convexity of f by checking convexity of functions of one variable

example. f : Sn → R with f(X) = log detX, domX = Sn
++

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n
∑

i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X ≻ 0, V ); hence f is concave

Convex functions 3–5

Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) = ∞, x 6∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx + (1 − θ)y) ≤ θf̃(x) + (1 − θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

• dom f is convex

• for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

Convex functions 3–6
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