Composition with scalar functions
composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if h is convex, g is convex \& h is non-decrecising

$$
\text { - proof is convex if } \left.f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)\right)^{2}+g^{\prime \prime}(x) h^{\prime}(g(x)) \quad(n=1)
$$

$$
\begin{aligned}
& \text { proof } f^{\prime \prime}(x)=h^{\prime}(g(x)) g(x) \\
& \nabla^{2} f(x)=h^{\prime \prime}(g(x)) \nabla g(x) \nabla^{\top} g(x)+\nabla^{2} g(x) h^{\prime}(g(x))
\end{aligned}
$$ -billy)

Another option: h is convex, g is concave \& h is non-increasing

$$
\begin{aligned}
& f(x)=\sum \log \left(x_{c}\right) \\
& f(x)=\log \left(\Sigma x_{i}\right) \quad(H \mid \omega) \\
& \text { - (HP/w: Ague based an }
\end{aligned}
$$

Composition with scalar functions
composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))
$$

f is convex if g convex, h convex, \tilde{h} nondecreasing
g concave, h convex, \tilde{h} nonincreasing

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- note: monotonicity must hold for extended-value extension \tilde{h}
examples
- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive
so that non-decreasing
Convex functions

Vector composition
composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if $\quad g_{i}$ convex, h convex, \tilde{h} nondecreasing in each argument g_{i} concave, h convex, \tilde{h} nonincreasing in each argument
\qquad

$$
n \times n \text { Jacobian = Matron of gradients }=n \times k
$$ examples

Note: Non negative

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

$$
\begin{aligned}
& \text { Note: Non regor } \\
& \text { mixture of ps sd } \\
& \text { matrices is pod }
\end{aligned}
$$

More examples:

Theorem 78 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \subseteq \Re^{n}$ be differentiable on the convex set D. Then,

1. f is convex on \mathcal{D} if and only if is its gradient ∇f is monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \tag{4.53}
\end{equation*}
$$

For 1-d: If $x \geqslant y$ then this means $\nabla f(x) \geqslant \nabla f(y)$
2. f is strictly convex on \mathcal{D} if and only if is its gradient ∇f is strictly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$ with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})>0 \tag{4.54}
\end{equation*}
$$

3. f is uniformly or strongly convex on \mathcal{D} if and only if is its gradient ∇f is uniformly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq c\|\mathbf{x}-\mathbf{y}\|^{2} \tag{4.55}
\end{equation*}
$$

for some constant $c>0$.

Necessity: Suppose f is uniformly convex on \mathcal{D}. Then from theorem 75, we know that for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{aligned}
& f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})-\frac{1}{2} c\|\mathbf{y}+\mathbf{x}\|^{2} \\
& f(\mathbf{x}) \geq f(\mathbf{y})+\nabla^{T} f(\mathbf{y})(\mathbf{x}-\mathbf{y})-\frac{1}{2} c\|\mathbf{x}+\mathbf{y}\|^{2}
\end{aligned}
$$

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold with $c=0$, yielding (4.54). If f is strictly convex, the inequalities will be strict, yielding (4.54).

Sufficiency: Suppose ∇f is monotone. For any fixed $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, consider the function $\phi(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$. By the mean value theorem applied to $\phi(t)$, we should have for some $t \in(0,1)$,

$$
\begin{equation*}
\phi(1)-\phi(0)=\phi^{\prime}(t) \tag{4.56}
\end{equation*}
$$

Letting $\mathbf{z}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}),(4.56)$ translates to

$$
\begin{equation*}
f(\mathbf{y})-f(\mathbf{x})=\nabla^{T} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \tag{4.57}
\end{equation*}
$$

Also, by definition of monotonicity of ∇f, (from (4.53)),

$$
\begin{equation*}
(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})=\frac{1}{t}(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq 0 \tag{4.58}
\end{equation*}
$$

Combining (4.57) with (4.58), we get,

$$
\begin{align*}
f(\mathbf{y})-f(\mathbf{x})=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) & +\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \\
& \geq \underbrace{\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})} \tag{4.59}
\end{align*}
$$

By theorem 75, this inequality proves that f is convex. Strict convexity can be similarly proved by using the strict inequality in (4.58) inherited from strict monotonicity, and letting the strict inequality follow through to (4.59). For the case of strong convexity, from (4.55), we have

$$
\begin{gather*}
\phi^{\prime}(t)-\phi^{\prime}(0)=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) \\
=\frac{1}{t}(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq \frac{1}{t} c\|\mathbf{z}-\mathbf{x}\|^{2}=c t\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.60}\\
\phi(1)-\phi(0)-\phi^{\prime}(0)=\int_{0}^{1}\left[\phi^{\prime}(t)-\phi^{\prime}(0)\right] d t \geq \frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
\end{gather*}
$$

which translates to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
$$

if $f(x, y)$ is convex in (x, y) and C is a convex set, then
is

examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with ss that one. ins

$$
\underbrace{\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0, \quad \overbrace{C \succ 0} f(x, y)}_{\text {Convexity of }}
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=$
g is convex, hence

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is

Convex functions
Next result: $g(x)$ is convex in R^{2} if its projection along every line in R^{2} is

Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex
examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

Gauss dernination on $B C^{-1} \rightarrow\left[\begin{array}{cc}A & B \\ B^{T} & C\end{array}\right] \succeq 0, \quad C \succ 0$
 submalykes minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$ g is convex, hence Schur complement $A-B C^{-1} B^{T} \succeq 0$

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

g is convex if f is convex

examples

- $f(x)=x^{T} x$ is convex; hence $g(x, t)=x^{T} x / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex on \mathbf{R}_{++}^{2}
- if f is convex, then

$$
g(x)=\left(c^{T} x+d\right) f\left((A x+b) /\left(c^{T} x+d\right)\right)
$$

is convex on $\left\{x \mid c^{T} x+d>0,(A x+b) /\left(c^{T} x+d\right) \in \operatorname{dom} f\right\}$

Restriction of a convex function to a line
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$
can check convexity of f by checking convexity of functions of one variable example. $f: \mathbf{S}^{n} \rightarrow \mathbf{R}$ with $f(X)=\log \operatorname{det} X, \operatorname{dom} X=\mathbf{S}_{++}^{n}\left(\lambda_{i}>0\right)$

$$
\left.\begin{array}{rl}
g(t)=\log \operatorname{det}(X+t V) & =\underbrace{\log \operatorname{det} X+\log \operatorname{det}\left(I+t x^{-1} V\right)}([\operatorname{det}(A B) \\
& =\log \operatorname{det} X
\end{array} \log _{S^{n}}\left(1+t \lambda_{i}\left(X^{-1} V\right)\right)=\operatorname{det}(A) \operatorname{det}(B)\right]
$$

$$
\text { we the fact that } \operatorname{det}(A)
$$

Convex functions

$$
=\frac{\pi}{i} \lambda_{i s}^{i}(A)
$$

Restriction of a convex function to a line

