Composition with scalar functions

composition of g : R — Rand h: R — R:
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Composition with scalar functions

composition of g : R — Rand h: R — R:

g convex, h convex, h nondecreasing
is convex if

f

g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
f'(x) = 1"(g(z))g'(x)* + W' (g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e exp g(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Convex functions

Vector composition

composition of g : R® — R* and h: R* = R:

f(@) = h(g(x)) = h(g1(2), g2(2), . . ., g())

f is convex if g; convex, h convex, h nondecreasing in each argument
g; concave, h convex, h nonincreasing in each argument

Coenp ge Nt
proof (for n = 1, differentiable g, h %VN\ oy Hessan = N \fy‘

O 2 e

f(@) = g'(2)" Vh(g(x ))\};HW( 9(x))"g"(2)
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e logd " expg;(x) is convex if g; are convex
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Move €xames’.

Theorem T8 Let f: D — R with D C R™ be differentiable on the conver set
D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
P Ty
forallx,y € R

(Vi) = Vf(y))" (x=y) >0 (4.53)
Ao \g 129 Mun Ahe weans 95) > Hly)
2. [ is strictly conver on D if and only if is its gradient V [ is strictly mono-
tone. That is, for all x,y € R with x # y,

(Vf(x)=Viy) (x—y)>0 (4.54)

3. f is uniformly or strongly conver on D if and only if is its gradient V f is
uniformly monotone. That s, for all x,y € R,

(VI(x)=Viy)' (x=y) =[x =y (4.55)

for some constant ¢ > (.



I":Iecessit}r: Suppose f is uniformly convex on D. Then from theorem 75,
we know that for any x,. ¥y € D,

1) 2 £6) + V6 (y =) = selly +xIP
1) 2 1) + V7 f(y) o~ y) — zellx+ 1P

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold
with ¢ = (0, yielding (4.54). If f is strictly convex, the inequalities will be strict,
vielding (4.54).

Sufficiency: Suppose V f is monotone. For any fixed x, y € D, consider the
function @#(t) = f (x +t{y — x)). By the mean value theorem applied to ¢(t),
we should have for some t € (0,1).

#(1) — a(0) = ¢'(t) (4.56)

Letting z = x + t(y — x), (4.56) translates to

f(y) - f(x) =V f(z)(y —x) (4.57)
Also, by definition of monotonicity of V f, (from (4.53)).

(Vf(2) = V1) (v =%) = 7 (V/(2) = VF() (2=2) 20 (458)

Combining (4.57) with (4.58), we get.

fly) = f(x) = (Vf(2) — f(x)" (¥ —=x) + V' f(x)(y — x)

By theorem 75, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (4.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (4.59). For the
case of strong convexity, from (4.55), we have

@'(t) — ¢'(0) = (Vf(z) — f(x))" (y —x)
(Vf(z) = fx)" (z—x) = %f—‘ll55 —x|* = etlly —x]* (4.60)

] =

8(1) = 6(0) - 60) = [ [#0) = SOt 2 gelly <l (461)
which translates to

Fly) > f(x) + VT F )y — %) + elly — x||2



Minimization ' Ai*

if f(x,y) is convex in (x,y) and C' is a convex set, then V5 X *”
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Perspective
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the perspective of a function f : R" — R is the function g : R” x R — R,
g(z,t) =tf(z/t),  domg={(z,1)|x/t € domf, ¢ >0}

g is convex if

examples
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Minimization
if f(x,y) is convex in (x,y) and C' is a convex set, then

g(x) = inf f(z,y)

yeC
IS convex W
examples
o f(z,y) = 2T Ax + 227 By + yT Cy with \)\( S§ 5O o
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me(l\i‘\cq's minimizing over y gives g(z) = inf, f(z,y) = 27(A — BC~'BT)z
S
g is convex, hence Schur complement A — BC~'BT >~ 0
e distance to a set: dist(z,5) = inf,cg ||z — y|| is convex if S is convex
Convex functions 3-19
Perspective
the perspective of a function f : R" — R is the function g : R” x R — R,
g(x,t) = tf(z/t),  domg={(z,t)|x/t €domf, ¢ >0}
g is convex if f is convex
examples
o f(x) = 2T is convex; hence g(x,t) = 2Tz /t is convex for t > 0
e negative logarithm f(z) = —log x is convex; hence relative entropy
g(z,t) =tlogt — tlogx is convex on Ri+ .
e if f is convex, then \4(\99 X(\

g(x) = ("z + d)f (Az +b)/("z + d)) %(oﬂwfo

is convex on {z | Tz +d >0, (Az +b)/(c'z + d) € dom f}
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Restriction of a convex function to a line

f : R"™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t|x+tv € dom f}

is convex (in t) for any z € dom f, v € R”
can check convexity of f by checking convexity of functions of one variable

example. f:S™ — R with f(X) =logdet X, dom X =S, (7\'\> O

g(t) =logdet(X +tV) = \lo/g—(ig_tj\—l- \b% A& (E+ L\A—‘\_j)’) Ad&&f\k(&;\)) At\[é\
= logdet X + [58 T\,("flf?\i: (:ﬁ \IT -
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Restriction of a convex function to a line

f :R"™ — R is convex if and only if the function g : R — R,

L g

g(t) = f(z + tv), domg = {t |z +tv € dom f}

is convex (in t) for any z € dom f, v € R”
can check convexity of f by checking convexity of functions of one vari

example. f:S" — R with f(X) =logdet X, dom X =S’ |
= = —1/2 —1/2
g(t) = logdet(X +tV) w—l— logdet(I +tX " /“VX~/%)

= logdet X + znzlog(l +tA;) [/
nshnl T~

where )\; are the eigenvalues of X /27 X ~1/2 i

g is concave in t (for any choice of X > 0, V); hence f is concave

Convex functions 3-5
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