First Order Descent Methods

Instructor: Prof. Ganesh Ramakrishnan

General descent algorithm

- Let us say we want to minimize a function f(x)
- The general descent algorithm involves two steps:
 - ▶ Determining a good descent direction $\Delta x^{(k)}$, typically forced to have unit norm
 - Determining the step size using some line search technique
- We want that $f(x^{(k+1)}) < f(x^{(k)})$
- If the function f is convex, we must have

If the function
$$f$$
 is convex, we must have $\nabla^{\top} f(x^{(k)})(x^{(k+1)} - x^{(k)}) < 0$ (necessary)

That is, the descent direction $\Delta x^{(k)}$ must make an of

- That is, the descent direction $\Delta x^{(k)}$ must make an obtuse angle with the gradient vector $\nabla f(x^{(k)})$
- Natural choice: $\Delta x^{(k)} = -\nabla f(a^k) -But ignores curvature$

General descent algorithm

• In descent for a convex function f, we must have:

$$f(x^{(k+1)}) \ge f(x^{(k)}) + \nabla^{\top} f(x^{(k)}) (x^{(k+1)} - x^{(k)})$$

Here, the LHS is the actual value and RHS is the linear approximation of $f(x^{(k+1)})$

- Since step size $t^{(k)} > 0$, $\nabla^{\top} f(x^{(k)}) \Delta x^{(k)} < 0$
- Algorithm:
 - Set a starting point $x^{(0)}$
 - repeat
 - Determine $\Delta x^{(k)}$
 - ② Choose a step size $t^{(k)} > 0$ using line search
 - **3** Obtain $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$

until stopping criterion (such as $\left\|
abla f(\mathbf{x}^{(k+1)}) \right\| < \epsilon$) is satisfied

who was soce (a)

Steepest descent

- The idea of steepest descent is to determine a descent direction such that for a unit step in that direction, the prediction of decrease in the objective is maximized
- However, consider $\Delta x = \operatorname{argmin}_{v} \begin{bmatrix} -5 & 10 & 15 \end{bmatrix} v$ $\Longrightarrow \Delta x = \begin{bmatrix} \infty \\ -\infty \\ -\infty \end{bmatrix}$

which is unacceptable

- ullet Thus, there is a necessity to restrict the norm of v
- The choice of the descent direction can be stated as:

$$\Delta x = \underset{v}{\operatorname{argmin}} \nabla^{\top} f(x) v$$

4 ロ > 4 個 > 4 意 > 4 意 > り ぬ や

Various choices of the norm result in different solutions for Δx

- For 2-norm, $\Delta x = -\frac{\nabla f(x^{(k)})}{\left\|\nabla f(x^{(k)})\right\|_2}$ (gradient descent)
- For 1-norm, $\Delta x = -\operatorname{sign}\left(\frac{\partial f(x^{(k)})}{\partial x_i^{(k)}}\right)e_i$, where e_i is the ith standard basis vector (coordinate descent)
- For ∞ -norm, $\Delta x = -\operatorname{sign}(\nabla f(x^{(k)}))$

Gradient Descent

Interpretation of gradient descent

Consider the optimization problem

$$x^* = \arg\min_{x \in \mathbf{R}^n} f(x)$$

• The idea behind gradient descent is that you start with a $x^{k+1} = x^k + t^k \Delta x^k$ $\int_{\mathcal{X}} x^{(k)} = \int_{\mathcal{X}} f(x^k)$ $x^0 \in \mathbf{R}^n$, and $\forall k = 0, 1, 2, \ldots$

• x^{k+1} can be treated as a solution to a quadratic approximation of f around x^k

around
$$x^k$$

$$\chi^{k+1} = argmin fo_k(x) \qquad where:$$

$$f_{Q_k}(x) = f(x^k) + \sqrt{f(x^k)(x-x^k)} + \frac{1}{24} ||x-x^k||^2$$

March 31, 2015

• At each iteration, we can consider the quadratic approximation

$$f_{Q_k}(x^{k+1}) = f(x^k) + \nabla f(x^k)^{\top} (x^{k+1} - x^k) + \frac{1}{2t} ||x^{k+1} - x^k||^2$$

• Equating $\nabla f_{Q_k}(x^{k+1}) = 0$ $\Rightarrow \nabla f(x^k) + \frac{1}{t}(x^{k+1} - x^k) = 0$ $\Rightarrow x^{k+1} = x^k - t\nabla f(x^k)$

March 31, 2015 8 / 14

Finding the step size t

- If t is too large, we get diverging updates of x
- If t is too small, we get a very slow descent
- We need to find a t that is just right
- We discuss two ways of finding t:

= argmin [] soft can

be used

for any

descent

(K) = argmin [] - K $f(x) = argmin f(x^k + t \nabla x^k)$

Exact line search

$$t^{k+1} = \operatorname*{argmin}_t f\left(x^k - t \nabla f(x^k)\right) \qquad \text{for all and the distance}$$

$$= \operatorname*{argmin}_t \phi(t) \qquad \text{for all and all and the distance}$$
 gives the most optimal step size in the given

- This method gives the most optimal step size in the given descent direction $\nabla f(x^k)$
- It ensures that $f(x^{k+1}) \leq f(x^k)$
- If f is itself quadratic, it gives an optimal solution to the minimization of f (since the quadratic approximation f_Q would become exact and no longer approximate)

March 31, 2015 10 / 14

Backtracking line search

Existence

- The algorithm

 Choice of the constant $f(x^k)$ is the property of the constant $f(x^k)$. Start with $f(x^k)$ is the second of the constant $f(x^k)$ is the constant $f(x^k)$

You want:
$$\int (x^k - t \mathcal{D}f(x^k)) \leq f(x^k) - gap$$
 as stupping enterior

Interpretation of backtracking line search

- $\Delta x = \text{direction of descent} = -\nabla f(x^k)$ for gradient descent
- A different way of understanding the varying step size with β : Multiplying t by β causes the interpolation to tilt as indicated in the figure

In practice Aimijo condutions are used

←□ → ←団 → ← 豆 → ← 豆 → りへで

Assumptions for proving the convergence of gradient descent

- $f: \mathbf{R}^n \to \mathbf{R}$ is convex and differentiable
- **V** *f* is Lipschitz continuous

• Claim: If $t^k \leq \frac{1}{L}$, then

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|^2}{2tk}$$

- ► The gap between the optimal solution and the solution at the kth step is going to decrease with increasing step size t
- $O(\frac{1}{k})$ rate or linear convergence

March 31, 2015 14 / 14