First Order Descent Methods

Instructor: Prof. Ganesh Ramakrishnan



General descent algorithm %\5
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Let us say we want to minimize a function f{x) *

The general descent algorithm involves two steps:

» Determining a good descent direction Axt%) typically forced to
have unit norm
» Determining the step size using some line search technique

We want that A(xkt1)) < f{x(¥)

If the function fis convex, we_m_ust’hgge 0{\)
T A 3) <0 Goccser) o

That is, the descent direction Ax{¥ must make an obtuse angle
with the gradient vector V(x¥)
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General descent algorithm

@ In descent for a convex function f, we must have:

lc(x(k+1)) > f(x(k)) _|_VT,¢(X(;<))(XU<+1) - X(k))
Here, the LHS is the actual value and RHS is the linear

approximation of f{x(k*1)) &
e Since step size tK > 0, {0(\‘5\_
VT AXR) AR < A E
@ Algorithm: XQ ? L((/
@ Set a starting point x*) S(\ F 3 \
@ repeat N \‘}> N S&
@ Determine Ax(®)
@ Choose a step size t¥) > 0 using line search ‘—\

@ Obtain x(¥1) — XA 4 HKAX i\/A &
@ Set k— k+1 \
until stopping criterion (such as HVF(XU‘H))H < €) is satisfied
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Steepest descent Mo mfm{un \7?(1) \

e The idea of steepest descent is to determine a descent direction
such that for a_unit step in that direction, the prediction of
decrease in the objective is maximized

e However, consider Ax = argmin, [—5 10 15} v

o S
= Ax= [—o0 vg(')@')

which is unacceptable
@ Thus, there is a necessity to restrict the norm of v
@ The choice of the descent direction can be stated as:

Ax = argman fix)v
- W
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Various choices of the norm result in different solutions for Ax
VHxK)

@ For 2-norm, Ax = _W

(gradient descent)
@ For 1-norm, Ax = — sign (%@) e;, where e; is the ith

standard basis vector
(coordinate descent)

o For oc-norm, Ax = — sign(VAx¥))
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Gradient Descent



Interpretation of gradient descent

e Consider the optimization problem
X' = argmin f(x)

@ The idea behind gradient descent is that you start with a \Lj
X eR" andVk=0,1,2,...,
v, 5

Xk gAY

@ x**! can be treated as a solution to a quadratic approximation
of faround x¥

"z

b S (f) vhett! \\\,LJ,‘\\
X = G% 19 QK Do ¥\ %
" ?a&ma“@t‘)s«ﬂ(ﬂ(”) .
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@ At each iteration, we can consider the quadratic approximation

2

fou (1) = k) + VAR T (41— o) 51—

o Equating Vi, (x**1) =0
= VAX)+ (T —x) =0
— X = XK — tVAX)
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Finding the step size t N
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e If tis too large, we get diverging updates of x

SN

e If tis too small, we get a very slow descent

: _ . yh @n
@ We need to find a t that is just right L0 3
e We discuss two ways of finding t: e L3¢
Exact line search \p sense e } Kot M\f

@ Backtracking line search— Lae (»*N“JM"E’ \ a\dfi“k

I cuﬁwg;ﬂ [+t ns%)
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Exact line search

Ned
gt = argmin f(xk — tVf"()(k))\p\'3 (NE W\“X)
YDSS' \ N
= argmtin o( )\O?- ,N},musi\‘”

@ This method gives the most optimal step size in the given
descent direction Vf{(x

\s
@ It ensures that'q”\\ Tl

e If fis itself quadratic, it gives an optimal solution to the

minimization of f (since the quadratic approximation fg would

become exact and no longer approximate)
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Backtracking li h
acktracking line searc @.,3(’3
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@ The algorithm O\C‘ ﬂt"

&
§

§ » Choose a 3 € (0,1)

u{ » Start with t =1

2 > While f(x" - tVf(X")) > fixt) - %va(xk)H o
& * Update t+ Ot
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Interpretation of backtracking line search
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o Ax = direction of descent = —Vf{x*) for gradient descent

e A different way of understanding the varying step size with 3:
Multiplying t by (3 causes the interpolation to tilt as indicated in

the figure
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Assumptions for proving the convergence of
gradient descent

@ f: R"” — R is convex and differentiable

oVfis Lipschitz continuous
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o Claim: If t* < 1, then

o=
"(Xk)_f(x)ST

» The gap between the optimal solution and the solution at the
kth step is going to decrease with increasing step size t
» O(y) rate or linear convergence
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