Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed

2nd condition is hard to verify, except when *all* sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{dom} f = \mathbf{R}^n$
- true if $f(x) \to \infty$ as $x \to \mathbf{bd} \operatorname{\mathbf{dom}} f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i)), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Unconstrained minimization

10-3

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

$$abla^2 f(x) \succeq mI$$
 for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

hence, S is bounded

• $p^{\star} > -\infty$, and for $x \in S$,

$$f(x) - p^{\star} \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$. repeat 1. $\Delta x := -\nabla f(x)$. 2. *Line search.* Choose step size t via exact or backtracking line search.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

• very simple, but often very slow; rarely used in practice

Unconstrained minimization

quadratic problem in R^2

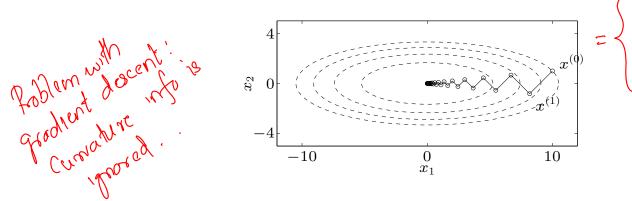
$$f(x) = (1/2)(x_1^2 + \gamma x_2^2)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:

Unconstrained minimization



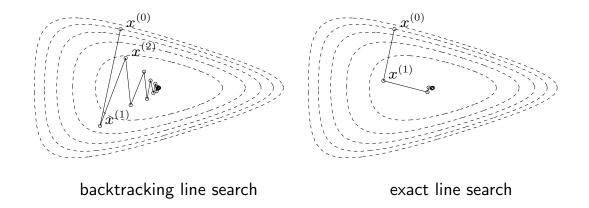
1 if r>1 r if r>1

10-7

 $f(x) = 2 + 1 = \frac{1}{2}$

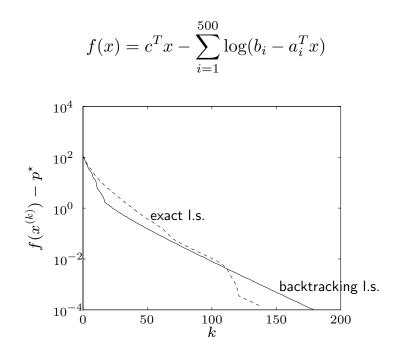
 $(\gamma > 0)$

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$



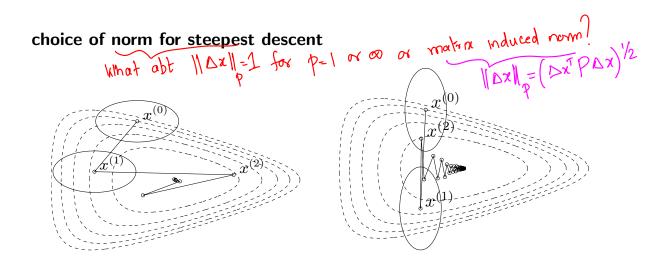
Unconstrained minimization

a problem in $\boldsymbol{\mathsf{R}}^{100}$



'linear' convergence, i.e., a straight line on a semilog plot

10–9



- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$? Ellipses show search space for Dr
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x} = P^{1/2}x$

shows choice of P has strong effect on speed of convergence

Unconstrained minimization

10-13

Newton step

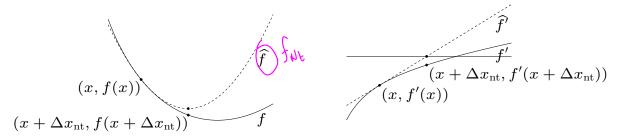
interpretations

• $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

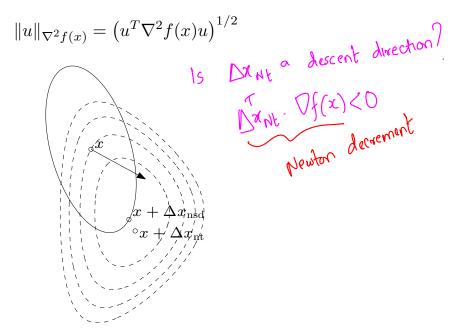
• $x + \Delta x_{nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$



Unconstrained minimization

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm



dashed lines are contour lines of f; ellipse is $\{x+v\mid v^T\nabla^2 f(x)v=1\}$ arrow shows $-\nabla f(x)$

Unconstrained minimization

10–15

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^{\star}

properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $abla f(x)^T \Delta x_{\mathrm{nt}} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)