choice of norm for steepest descent
What aft $\|\Delta x\|_{p}=1$ for $p=1$ or ∞ or matron induced nom?

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$: Ellipses show search space for Δx
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x}=P^{1 / 2} x$
shows choice of P has strong effect on speed of convergence
interpretations
Newton step
- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f \underbrace{(x) v}_{\text {exact Taylor serves }}
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition for some $y=x+\alpha v$

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v)=\underbrace{\nabla f(x)+\nabla^{2} f(x) v=0}_{\text {How to Solve e effesently? }}
$$

(f) f ot

Q: How to efficiently solve for Δx in Newton update??

$$
\nabla f\left(x^{k}\right)+\nabla^{2} f\left(x^{k}\right) \Delta x=0
$$

frs (1)Dont invert $\nabla^{2} f(x)$ though $\Delta x=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f\left(x^{\prime \prime}\right)$
(2) Gauss Elimination $=n^{3}$: You have not accounted for positure semi-definiteness
(\& syumelicy) of $\nabla^{2} f(x)$ since f is convex
(3) Cholesky decomposition: $\nabla^{2} f\left(x^{k}\right)=L L^{\top}$ $n^{3} / 6 \rightarrow$ constant factors matter since Δx is computed in every

$$
\begin{aligned}
& L \underbrace{L^{\top} \Delta x}_{Y}=-\nabla f\left(x^{k}\right) \\
& L_{y}=-\nabla f\left(x^{k}\right) \cdots \text { substitution in of } \\
& L^{\top} \Delta x=y \ldots O\left(n^{2}\right)
\end{aligned}
$$

Quasi Newton methods find even $n^{3} / 6$ unacceptable \& try \& avoid computing $\nabla^{2} f(x)$ by moving in a subspace that potentially space the $\bar{\nabla}^{2} f(x)$

Is $\Delta x^{k}=-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)$ a (valid) descent direction?
Q

$$
\begin{aligned}
& \nabla^{\top} f\left(x^{k}\right) \Delta x^{k}<0 \\
& \text { ic is } \\
&=\left.\nabla^{\top} f\left(x^{k}\right)\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)\right)<0 \\
& \text { Newton } \\
& \text { deceremi }
\end{aligned}
$$

if f is sanely convex at
$x^{k+1}=x^{k}+t^{k} \Delta x^{k}$: Q what if $\nabla^{2} f\left(x^{k}\right)$ is in in io x x^{x+2} not invertible / positive defmit
an out could still solve $\nabla^{2} f\left(x^{k}\right) \Delta x^{k}=-\nabla f\left(x^{k}\right)$
\rightarrow But. since. $\left.\nabla^{2} f x^{k} k\right)$ is p.sd, Δx^{k} does not Guarantee decrement
\rightarrow Line search over t might yield $t^{k}=0$ if no descent is possible along Δx^{k}
Problem: Find $H^{k} \approx \nabla^{2} f\left(x^{k}\right)$ but positive definite
$\begin{aligned} \text { Quasi newton: } & H^{k} \\ \& & \approx\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1}\end{aligned}$ if $\nabla^{2} f\left(x^{k}\right)$ is positive \& $H^{k} \approx\left(\nabla^{2} f\left(x^{k}\right)+\sigma I\right)^{-1} 0 / \omega$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

dashed lines are contour lines of f; ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to x^{\star}
properties

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- directional derivative in the Newton direction: $\nabla f(x)^{T} \Delta x_{\mathrm{nt}}=-\lambda(x)^{2}$
- affine invariant (unlike $\|\nabla f(x)\|_{2}$)
given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

affine invariant, ie., independent of linear changes of coordinates:
Newton iterates for $\tilde{f}(y)=f(\underline{T y})$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are

$$
x^{(x)}=\tau_{v}^{(k)} \leftarrow-\left(x^{(t)}=T^{-1} x^{(x)}\right)
$$

$$
x^{(0)}=T y^{(0)}
$$

- f strongly convex on S with constant m
- $\nabla^{2} f$ is Lipschitz continuous on S, with constant $L>0$:

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

(L measures how well f can be approximated by a quadratic function)
outline: there exist constants $\eta \in\left(0, m^{2} / L\right), \gamma>0$ such that

- if $\|\nabla f(x)\|_{2} \geq \eta$. then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma \quad \therefore$ Gradient is sufficiently
- if $\|\nabla f(x)\|_{2}<\eta$, then
\Rightarrow Sublinear

$$
\begin{gathered}
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2} \text { Quadratic } \\
f\left(2(y)=f\left(x^{k}\right)+\nabla^{\top}\left(f\left(x^{k}\right)\left(y-x^{k}\right)+\frac{1}{2}\left(y-x^{k}\right)^{\top} \nabla^{2} f\left(x^{1 c}\right)\left(y-x^{1 c}\right)\right.\right.
\end{gathered}
$$

$$
\begin{aligned}
& \text { if } b \in \operatorname{col}(A) \\
& \text { Eq: } \log (\operatorname{det}(x))=\underset{\text { Classical convergence analysis }}{\log (\operatorname{ded}(7 y))} x \\
& \text { assumptions }
\end{aligned}
$$

$$
\underset{2 m^{2}}{L}\left\|f\left(x^{k+1}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2}\right)^{2}
$$

when $\left\|\nabla f\left(x^{k}\right)\right\|_{2}<\eta$
Assume e: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leqslant L\|x-y\|$

$$
\begin{aligned}
& \Delta x^{k}=\underset{\Delta x}{\operatorname{argmin}} f\left(x^{k}\right)+\nabla^{\top} f\left(x^{k}\right) \Delta x+\frac{1}{2} \Delta x^{\top} \nabla^{2} f\left(x^{k}\right) \Delta x \\
& f(y) \geqslant f(x)+\nabla^{\top} f(x)(y-x)+\frac{m}{2}\|y-x\|^{2}
\end{aligned}
$$

damped Newton phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^{\star}>-\infty$, this phase ends after at most $\left(f\left(x^{(0)}\right)-p^{\star}\right) / \gamma$ iterations

quadratically convergent phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$

- all iterations use step size $t=1$
- $\|\nabla f(x)\|_{2}$ converges to zero quadratically: if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{l}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
$$

conclusion: number of iterations until $f(x)-p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right) \quad \text { H/W }
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
(\# of iterations fer $f\left(x^{k}\right)-f\left(x^{2}\right) \leq E$)
Gradent descent:
f is Luschitz: $k=O\left(1 / \epsilon^{2}\right)$

$$
\nabla f(x) \text { is Lipschitz: } k=O(1 / t)
$$

f is strongly convere \& Lupsehitz: $k=O(\log (1 / \epsilon))$
Daniped
Newton:
$\nabla^{2} f$ is Lipschite \& f is strongly, subinear convex Quadcons.

$$
O(\log \log (1 / \epsilon))
$$

Stochastic Gradient: $f=E\left(f_{i}(x)\right)$
Af ith iteration: $x^{k+1}=x^{k}-\nabla f_{i}\left(x^{k}\right)$
f is Lupschitz! $O\left(1 / \epsilon^{2}\right)$
f is strongly convex \& ∇f is lupschitz: $O\left(\frac{\log (1 / \epsilon)}{\epsilon}\right)$

Examples

example in \mathbf{R}^{2} (page 10-9)

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbf{R}^{100} (page 10-10)

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact I.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbf{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$.
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, \ldots)
- bound is not affinely invariant, although Newton's method is
convergence analysis via self-concordance (Nesterov and Nemirovski)
- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=g
$$

where $H=\nabla^{2} f(x), g=-\nabla f(x)$

via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost $(1 / 3) n^{3}$ flops for unstructured system
- cost $\ll(1 / 3) n^{3}$ if H sparse, banded
example of dense Newton system with structure

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\psi_{0}(A x+b), \quad H=D+A^{T} H_{0} A
$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_{i}^{\prime \prime}\left(x_{i}\right) ; H_{0}=\nabla^{2} \psi_{0}(A x+b)$
method 1: form H, solve via dense Cholesky factorization: (cost $(1 / 3) n^{3}$) method 2 (page 9-15): factor $H_{0}=L_{0} L_{0}^{T}$; write Newton system as

$$
D \Delta x+A^{T} L_{0} w=-g, \quad L_{0}^{T} A \Delta x-w=0
$$

eliminate Δx from first equation; compute w and Δx from

$$
\left(I+L_{0}^{T} A D^{-1} A^{T} L_{0}\right) w=-L_{0}^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L_{0} w
$$

cost: $2 p^{2} n$ (dominated by computation of $L_{0}^{T} A D^{-1} A^{T} L_{0}$)

