(\# of iterations for $f\left(x^{k}\right)-f\left(x^{2}\right) \leq E$)
Gradient descent:
f is Lipchitz: $k=O\left(1 / \epsilon^{2}\right)\left[t_{k}=1 / \sqrt{k}\right]$
$\nabla f(x)$ is Lipchitz: $k=O(1 / \epsilon) \underset{\substack{(T L S}}{\left(t_{k} \text { from }\right.}$

Damped
Neut on:
$\nabla^{2} f$ is Lipschite \& f is strongly, Sublinear convex

Stochastic Gradient. $f=E\left(f_{i}(x)\right)$
Af th iteration: $x^{k+1}=x^{k}-\nabla f_{i}\left(x^{k}\right)$

$$
f \text { is Lupschitz! } O\left(1 / \epsilon^{2}\right)
$$

f is strongly convex \& ∇f is lupschitz: $O\left(\frac{\log \left(\frac{1}{\epsilon}\right)}{\epsilon}\right)$

- In machine learning: $f=E\left(\left(\sigma_{w} \phi\left(x_{i}\right)-y_{i}\right)^{2}\right)$ $\left(x_{i}, y_{i}\right)$ are $1 / p \& / p$ for th example in a dataset...
- Stochastic gradient descent: More interesting from generalization perspective (learning theory)

This proof is exactly the same proof as that for subgradient descent algorithm with Lipschitz continuity and convexity assumptions on the function:
http://www.seas.ucla.edu/~vandenbe/236C/lectures/sgmethod.pdf

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=g
$$

where $H=\nabla^{2} f(x), g=-\nabla f(x)$

via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost $(1 / 3) n^{3}$ flops for unstructured system
- cost $\ll(1 / 3) n^{3}$ if H sparse, banded
example of dense Newton system with structure

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\psi_{0}(A x+b), \quad H=D+A^{T} H_{0} A
$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_{i}^{\prime \prime}\left(x_{i}\right) ; H_{0}=\nabla^{2} \psi_{0}(A x+b)$
method 1: form H, solve via dense Cholesky factorization: (cost $(1 / 3) n^{3}$) method 2 (page 9-15): factor $H_{0}=L_{0} L_{0}^{T}$; write Newton system as

$$
D \Delta x+A^{T} L_{0} w=-g, \quad L_{0}^{T} A \Delta x-w=0
$$

eliminate Δx from first equation; compute w and Δx from

$$
\left(I+L_{0}^{T} A D^{-1} A^{T} L_{0}\right) w=-L_{0}^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L_{0} w
$$

cost: $2 p^{2} n$ (dominated by computation of $L_{0}^{T} A D^{-1} A^{T} L_{0}$)

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=g
$$

where $H=\nabla^{2} f(x), g=-\nabla f(x)$

via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost $(1 / 3) n^{3}$ flops for unstructured system
- cost $\ll(1 / 3) n^{3}$ if H sparse, banded
example of dense Newton system with structure

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\psi_{0}(A x+b), \quad H=D+A^{T} H_{0} A
$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_{i}^{\prime \prime}\left(x_{i}\right) ; H_{0}=\nabla^{2} \psi_{0}(A x+b)$
method 1: form H, solve via dense Cholesky factorization: (cost $(1 / 3) n^{3}$) method 2 (page 9-15): factor $H_{0}=L_{0} L_{0}^{T}$; write Newton system as

$$
D \Delta x+A^{T} L_{0} w=-g, \quad L_{0}^{T} A \Delta x-w=0
$$

eliminate Δx from first equation; compute w and Δx from

$$
\left(I+L_{0}^{T} A D^{-1} A^{T} L_{0}\right) w=-L_{0}^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L_{0} w
$$

cost: $2 p^{2} n$ (dominated by computation of $L_{0}^{T} A D^{-1} A^{T} L_{0}$)

