Credient descent: (# of iterations for
$$f(x^k) - f(x^k) \le c$$
)
Credient descent: f is Lipschitz: $k = O(1/c^2)$ [$4e^{-\frac{1}{2}}/\frac{1}{k}$]
 $\nabla f(x)$ is Lipschitz: $k = O(1/c^2)$ [$4e^{-\frac{1}{2}}/\frac{1}{k}$]
 f is $3e^{-\frac{1}{2}}$ convex 4 Lipschitz: $k = O(1/c)$ [$4e^{-\frac{1}{2}}/\frac{1}{k}$]
Newlow:
 $D^{2}f$ is Lipschitz 4 f is $\frac{1}{2}$ convex
 $Convect$
 $O(1/c)$ $\frac{1}{2}$ $\frac{1}{$

If fis Lipschitz & convex

)

This proof is exactly the same proof as that for subgradient descent algorithm with Lipschitz continuity and convexity assumptions on the function: http://www.seas.ucla.edu/~vandenbe/236C/lectures/sgmethod.pdf

Υ.

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = g$$

where $H = \nabla^2 f(x)$, $g = -\nabla f(x)$

via Cholesky factorization

- $H = LL^T$, $\Delta x_{\rm nt} = L^{-T}L^{-1}g$, $\lambda(x) = ||L^{-1}g||_2$
- cost $(1/3)n^3$ flops for unstructured system
- cost $\ll (1/3)n^3$ if H sparse, banded

Unconstrained minimization

10–29

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form H, solve via dense Cholesky factorization: (cost $(1/3)n^3$) method 2 (page 9–15): factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1}g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^TAD^{-1}A^TL_0$)

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = g$$

where $H = \nabla^2 f(x)$, $g = -\nabla f(x)$

via Cholesky factorization

- $H = LL^T$, $\Delta x_{\rm nt} = L^{-T}L^{-1}g$, $\lambda(x) = ||L^{-1}g||_2$
- cost $(1/3)n^3$ flops for unstructured system
- cost $\ll (1/3)n^3$ if H sparse, banded

Unconstrained minimization

10–29

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form H, solve via dense Cholesky factorization: (cost $(1/3)n^3$) method 2 (page 9–15): factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1}g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^TAD^{-1}A^TL_0$)