4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 309

4.5.3 Variants of Newton’s Method

One important aspect of the algorithm in Figure 4.49 is the step (1), which
involves solving a linear system V?2f(x(®))Ax(*®) = Vf(x(*)). The system can
be easy to solve if the Hessian is a 100 x 100 sparse matrix, but it can get hairy if
it is a larger and denser matrix. Thus it can be unfair to claim that the Newton’s
method is faster than the gradient descent method on the grounds that it takes
a fewer number of iterations to converge as compared to the gradient descent,
since each iteration of the Newton’s method involves inverting the hessian to
solve a linear system, which can take time?® O(n?) for dense systems. Further,
the method assumes that the hessian is positive definite and therefore invertible,
which might not always be so. Finally, the Newton’s method might make huge-
uncontrolled steps, especially when the hessian is positive semi-definite (for
example, if the function is flat along the direction corresponding to a 0 or nearly
0 eigenvalue). Due to these disadvantages, most optimization packages do not
use Newton’s method.

There is a whole suite of methods called Quasi-Newton methods that use
approximations of the hessian at each iteration in an attempt to either do less
work per iteration or to handle singular hessian matrices. These methods fall
in between gradient methods and Newton’s method and were introduced in the
1960’s. Work on quasi-Newton methods sprang from the belief that often, in a
large linear system, most variables should not depend on most other variables
(that is, the system is generally sparse).

We should however note that in some signal and image processing problems,
the hessian has a nice structure, which allows one to solve the linear system
V2 f(x*)Ax*®) = V £(x*)) in time much less than O(n?) (often in time com-
parble to that required for quasi Newton methods), without having to explicitly
store the entire hessian. We next discuss some optimization techniques that use
specific approximations to the hessian V?2f(x) for specific classes of problems,
by reducing the time required for computing the second derivatives.

4.5.4 Gauss Newton Approximation

The Gauss Newton method decomposes the objective function (typically for a
regression problem) as a composition of two functions?” f = loms; (i) the vector
valued model or regression function m : " — R? anme scalar-valued
loss (such as the sum squared difference between predicted outputs and target
outputs) function I. For example, if m; is y; — r(t;,x), for parameter vector
x € " and input instances (y;,t;) for i = 1,2,. 5o P the function f can be

written as = ZW, (A
1p RS < k[,‘d)
£ = 53 i~ r(ti,%))? ey
i=1
AV Ve
260(n27) to be precise. 0]

27Here, n is the number of weights.

T

310 CHAPTER 4. CONVEX OPTIMIZATION

An example of the function 7 is the linear regression function r(t;,x) = x”'t;.
Logistic regression poses an example objective function, which involves a cross-

entropy loss.

—s f(x Z Yi log)) + (1 —y;)log (U(—XTti)))

where o(k) = 1+i,k is the logistic function.

The task of the loss function is typically to make the optimization work well
and this gives freedom in choosing [. Many different objective functions share
a common loss function. While the sum-squared loss function is used in many
regression settings, cross-entropy loss is used in many classification problems.
These loss functions arise from the problem of maximizing log-likelihoods in
some reasonable way.

The Hessian V2 f(x) can be expressed using a matrix version of the chain
rule, as

| () Vm,(x)-.ﬁmﬁﬁﬂ V2 f(x) = Jm(x)Tv2 +Zv2ml (Vi(m),

vH'}\M ﬂg'cham -(u\LC;C)‘)&C)\CA '\'b =0 W \'QXC

where Jp, is the jacobian®® of the vector valued function m. It can bé shown
that if V2I(m) > 0, then Gf(x) = 0. The term Gy(x) is called the Gauss-
Newton approximation of the Hessian V2f(x). In many situtations, Gy(x) is
the dominant part of V2f(x) and the approximation is therefore reasonable.
For example, at the point of minimum (which will be the critical point for a

\:’\ﬂz&w convex function), V2 f(x) = G(x). Using the Gauss-Newton approximation to
N(SEPN wﬁ&he hessian V2 f(x), the Newton update rule can be expressed as
(1N

XA «— % Ax = —(G(x)) V(%) = —(G(x)) " T Vi(m)

where we use the fact that (Vf(x)); = > h_, 8%;9 %’Zﬂ since the gradient of a
composite function is a product of the jacobians.

For the cross entropy classification loss or the sum-squared regression loss
[, the hessian is known to be positive semi-definite. For example, if the loss
function is the sum of squared loss, the objective function is f = 2 37 | m;(x)?

and V2I(m) = I. The Newton update rule can be expressed as

Ax = ~(Jm(%)" (%)) " (x) "' mi(x)

Recall that (Jm (%)7 Jm (%)) "1 Jm(x)7 is the Moore-Penrose pseudoinverse Jp, (x)*
of Jm(x). The Gauss-Jordan method for the sum-squared loss can be interpreted
as multiplying the gradient VI(m) by the pseudo-inverse of the jacobian of m

28The Jacobian is a p X n matrix of the first derivatives of a vector valued func‘cion7 where
p is arity of m. The (i,)*" entry of the Jacobian is the derivative of the it" output with

8m7

respect to the jt# variable, that is 5o+ For m =1, the Jacobian is the gradient vector.

Moywazhmt_@?oﬂe‘s Freatemn 7Q~; ad jc O-aé /f(a

"TO

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 311

instead of its transpose (which is what the gradient descent method would do).
Though the Gauss-Newton method has been traditionally used for non-linear
least squared problems, recently it has also seen use for the cross entropy loss
function. This method is a simple adoption of the Newton’s method, with the
advantage that second derivatives, which can be computationally expensive and
challenging to compute, are not required.

4.5.5 Levenberg-Marquardt

Like the Gauss-Newton method, the Levenberg-Marquardt method has its main
application in the least squares curve fitting problem (as also in the minimum
cross-entropy problem). The Levenberg-Marquardt method interpolates be-
tween the Gauss-Newton algorithm and the method of gradient descent. The
Levenberg-Marquardt algorithm is more robust than the Gauss Newton algo-
rithm - it often finds a solution even if it starts very far off the final minimum. On
the other hand, for well-behaved functions and reasonable starting parameters,
this algorithm tends to be a bit slower than the Gauss Newton algorithm. The
Levenberg-Marquardt method aims to reduce the uncontrolled step size often
taken by the Newton’s method and thus fix the stability issue of the Newton’s
method. The update rule is given by

Ax = — (G (x) 4+ M diag(Gy)) ™" JL (x)Vi(m)

where Gy is the Gauss-Newton approximation to V2f(x) and is assumed to
be positive semi-definite. This method is one of the work-horses of modern
optimization. The parameter A > 0 adaptively controlled, limits steps to an
elliptical model-trust region?. This is achieved by adding A to the smallest
eigenvalues of G'r, thus restricting all eigenvalues of the matrix to be above A so
that the elliptical region has diagonals of shorter length that inversely vary as
the eigenvalues (c.f. page 3.11.3). While this method fixes the stability issues in
Newtons method, it still requires the O(n?) time required for matrix inversion.

4.5.6 BFGS (on nsiance ‘Jt Quost NQM

The Broyden-Fletcher-Goldfarb-Shanno®® (BFGS) method uses linear algebra

to iteratively update an estimate B®*) of (V2f(x(k)))71 (the inverse of the
curvature matrix), while ensuring that the approximation to the hessian inverse
is symmetric and positive definite. Let Ax(*) be the direction vector for the k"
step obtained as the solution to

Ax(F) — —B(’“)Vf(x(k))
The next point x(**1) is obtained as

FFD) = () | 4 (0) A ()

29Essentially the algorithm approximates only a certain region (the so-called trust region)
of the objective function with a quadratic as opposed to the entire function.
30The the 4 authors wrote papers for exactly the same method at exactly at the same time.

(ould we sowe s & Secant en ® =

(\9 Would \ike & aNend Comn u)(\ -
<Z\{(XK>) fata o\uwc&wcs m‘%‘“ﬁ Vf(w‘) 4’ V%GCH” -j

@CQ\)\\A \ae Wvomma\» % V\S_j %

f@) 500 fre som
CQCa@

Any o}?f')’@'hm [nvj\/ﬁj

Lo
o
gs
£ §
%\—C
. %
ar\
S
NJ
c £
on
<

ac4al:h0‘n .

312 CHAPTER 4. CONVEX OPTIMIZATION

where t(*) is the step size obtained by line search. Let Ag*®) = V f(x(F+1)) —
Vf(x™). Then the BFGS update rule is derived by imposing the following
logical conditions:

1. Ax®) = —BRV f(x®) with B*) = 0. That is, Ax* is the minimizer
of the convex quadratic model

QW(p) = (=) + VT F(x®)p+ 2p” (B) ' p

2. x+D) = x(k) 1 W Ax(*) where t*) is obtained by line search.

3. The gradient of the function Q1) = f(x*+1)+ VT f(x*k+D)p4L1p? (BE+D) ! p
at p= 0 and p = -t Ax(®) agrees with gradient of f at x(*t1) and x(¥)
respectively. While the former condition is naturally satisfied, the latter
need to be imposed. This quasi-Newton condition yields

(B(k+1)) -t (X(k+1) _ X(k)) — VfxED) — v x®).

This equation is called the

4. Finally, among all symmetric matrices satisfying the secant equation,
\Bi(_’“/‘“) is closest to the current matrix Q_(k) in some norm. Different
matrix norms give rise to different quasi-Newton methods. In particular,
when the norm chosen is the Frobenius norm, we get the following BGFS

update rule
B+ — k) . p(k) 4 (k)

where,
T T T
R _ Ax(®) (Ax(k)) B B®) Ag(k) (Ag(k)) (B(k))
(Ax®) T Ag®) (Ag®)" B Ag®)
and -
Sk =y (Ax(k)) B AxF)yT

with

(’ Ax®) Bk Agk)

(ax)T Agh) (Agh)T BEI AgH)

We have made use of the Sherman Morrison formula that determines how
updates to a matrix relate to the updates to the inverse of the matrix.

The approximation to the Hessian is updated by analyzing successive gra-
dient vectors and thus the Hessian matrix does not need to be computed at
any stage. The initial estimate B(®) can be taken to be the identity matrix, so
that the first step is equivalent to a gradient descent. The BFGS method has
a reduced complexity of O(n?) time per iteration. The method is summarized

| 85GS) mted ronry BFEs o by esky «chi nf
scasch spoee “JC B J Susthon.
4t vad\zs%‘,CGﬂr\T st anenony %m decation Ve el A devatens

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 313

Find a starting point x(%) € D and an approximate B(®) (which could be
I).
Select an appropriate tolerance € > 0.
repeat
1. Set Ax(F) = — BRIV f(x*)).
Let A2 = VT f(x*) BRIV f(x(F).
A <e quit.
Set step size t*) = 1.
Obtain xF+1) = x(k) 4 (k) Ax (k)
Compute Agh) = V f(x*+1)) — v f(x(*)).
Compute R*) and S*).
Compute B*+1 = B() 4 R(Kk) 4 g(k),
6. Set k =k + 1.
until

XN LN

Figure 4.50: The BFGS method.

in Figure 4.50 The BFGS [?] method approaches the Newton’s method in be-
haviour as the iterate approaches the solution. They are much faster than the
Newton’s method in practice. It has been proved that when BFGS is applied
to a convex quadratic function with exact line search, it finds the minimizer
within n steps. There is a variety of methods related to BFGS and collectively
they are known as Quasi-Newton methods. They are preferred over the New-
ton’s method or the Levenberg-Marquardt when it comes to speed. There is a
variant of BFGS, called LBFGS [?], which stands for ”Limited memory BFGS
method”. LBFGS employs a limited-memory quasi-Newton approximation that
does not require much storage or computation. It limites the rank of the inverse
of the hessian to some number « € R so that only ny numbers have to be stored
instead of n? numbers. For general non-convex problems, LBFGS may fail when
the initial geometry (in the form of B (0)) has been placed very close to a saddle
point. Also, LBFGS is very sensitive to line search.

Recently, L-BFGS has been observed [?] to be the most effective parameter
estimation method for Maximum Entropy model, much better than improved
iterative scaling [?] (IIS) and generalized iterative scaling [?] (GIS).

4.5.7 Solving Large Sparse Systems

In many convex optimization problems such as least squares, newton’s method
for optimization, etc., one has to deal with solving linear systems involving large
and sparse matrices. Elimination with ordering can be expensive in such cases.
A lot of work has gone into solving such problems efficiently®! using iterative

31Packages such as LINPack (which is now renamed to LAPACK), EiSPACK, MINPACK,
etc., which can be found under the netlib respository, have focused on efficiently solving large
linear systems under general conditions as well as specific conditions such as symmetry or
positive definiteness of the coefficient matrix.

314 CHAPTER 4. CONVEX OPTIMIZATION

methods instead of direct elimination methods. An example iterative method
is for solving a system Ax = b by repeated multiplication of a large and sparse
matrix A by vectors to quickly get an answer X that is sufficiently close to the
optimal solution x*. Multiplication of an n x n sparse matrix A having k non-
zero entries with a vector of dimension n takes O(kn) time only, in contrast to
O(n?) time for Gauss elimination. We will study three types of methods for
solving systems with large and sparse matrices:

1. Iterative Methods.
2. Multigrid Methods.
3. Krylov Methods.

The most famous and successful amongst the Krylov methods has been the
conjugate gradient method, which works for problems with positive definite ma-
trices.

Iterative Methods
The central step in an iteration is
PXk+1 = (P — A)Xk +b

where x;, is the estimate of the solution at the k*" step, for k = 0,1,.... If the
iterations converge to the solution, that is, if x;x41 = xj one can immediatly
see that the solution is reached. The choice of matrix P, which is called the
preconditioner, determines the rate of convergence of the solution sequence to
the actual solution. The initial estimate xg can be arbitrary for linear systems,
but for non-linear systems, it is important to start with a good approximation.
It is desirable to choose the matrix P reasonably close to A, though setting
P = A (which is referred to as perfect preconditioning) will entail solving the
large system Ax = b, which is undesirable as per our problem definition. If x*
is the actual solution, the relationship between the errors e; and ey4; at the
kth and (k + 1)*" steps respectively can be expressed as

Pek+1 = (P — A)ek
where e, = x; — x*. This is called the error equation. Thus,
€r+1 = (I — P_lA)ek = Mey,

Whether the solutions are convergent or not is controlled by the matrix M.
The iterations are stationary (that is, the update is of the same form at every
step). On the other hand, Multigrid and Krylov methods adapt themselves
across iterations to enable faster convergence. The error after k steps is given
by

ep = MPeg (4.96)

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 315

Using the idea of eigenvector decomposition presented in (3.101), it can be
proved that the error vector ey — 0 if the absolute values of all the eigenvalues
of M are less than 1. This is the fundamental theorem of iteration. In this
case, the rate of convergence of e; to 0 is determined by the maximum absolute
eigenvalue of M, called the spectral radius of M and denoted by p(M).

Any iterative method should attempt to choose P so that it is easy to com-
pute X;4 1 and at the same time, the matrix M = I—P~' A has small eigenvalues.
Corresponding to various choices of the preconditioner P, there exist different
iterative methods.

1. Jacobi: In the simplest setting, P can be chosen to be a diagonal matrix
with its diagonal borrowed from A. This choice of A is correponds to the
Jacobi method. The value of p(M) is less than 1 for the Jacobi method,
though it is often very close to 1. Thus, the Jacobi method does converge,
but the convergence can be very slow in practice. While the residual
T = AX — b converges rapidly, the error X = X — x* decreases rapidly in
the beginning, but the rate of decrease of X reduces as iterations proceed.
This happens because X = A~!F and A~! happens to have large condition
number for sparse matrices. In fact, it can be shown that Jacobi can take
upto n? iterations to reduce the error X by a factor f.

We will take an example to illustrate the Jacobi method. Consider the
following n x n tridiagonal matrix A.

A=l 0 0 0 ... -1 2 -1 ... 0 (4.97)

The absolute value of the " eigenvalue of M is cos % and its spectral

radius is p(M) = cos 1+ For extremely large n, the spectral radius is

2
approximately 1 — % (#—1) , which is very close to 1. Thus, the Jacobi
steps converge very slowly.

2. Gauss-Seidel: The second possibility is to choose P to be the lower-
triangular part of A. The method for this choice is called the Gauss-
Siedel method. For the example tridiagonal matrix A in (4.97), matrix

316

CHAPTER 4. CONVEX OPTIMIZATION

P — A will be the strict but negated upper-triangular part of A. For
the Gauss-Seidel technique, the components of x;41 can be determined
from xj, using back-substitution. The Gauss-sidel method provides only a
constant factor improvement over the Jacob: method.

Successive over-relazation: In this method, the preconditioner is obtained
as a weighted composition of the preconditioners from the above two meth-
ods. It is abbreviated as SOR. In history, this was the first step of progress
beyond Jacobi and Gauss-Seidel.

Incomplete LU: This method involves an incomplete elimination on the
sparse matrix A. For a sparse matrix A, many entries in its LU decompo-
sition will comprise of nearly 0 elements; the idea behind this method is
to treat such entries as 0’s. Thus, the L and U matrices are approximated
based on the tolerance threshold; if the tolerance threshold is very high,
the factors are exact. Else they are approximate.

Multigrid Methods

Multigrid methods come very handy in solving large sparse systems, especially
differential equations using a hierarchy of discretizations. This approach often
scales linearly with the number of unknowns n for a pre-specified accuracy
threshold. The overall multi-grid algorithm for solving Apu; = by, with residual
given by rp, = b — Auy, is

1. Smoothing: Perform a few (say 2-3) iterations on Aju = by, using either

Jacobi or Gauss-sidel. This will help remove high frequency components of
the residual r = b — Apu. This step is really outside the core of the multi-
grid method. Denote the solution obtained by uy. Let rp, = b — Apuy.

. Restriction: Restrict ry to coarse grid by setting ro;, = Rry. That is,

r; is downsampled to yield ro; Let k& < n characterize the coarse grid.
Then, the k x n matrix R is called the restriction matrix and it takes the
residuals from a finer to a coarser grid. It is typically scaled to ensure that
a vector of 1’s on the fine mesh gets transformed to a vector of 1’s on a
coarse mesh. Calculations on the coarse grid are way faster than on the
finer grid.

Solve Aspesr, = rap with Aoy, = RA, N, which is a natural construction for
the coarse mesh operation. This could be done by running few iterations
of Jacobi, starting with eq;, = 0.

Interpolation/Prolongation: This step involves interpolating the cor-
rection computed on a coarses grid to a finer grid. Interpolate back to
en, = Negp. Here N is a k x n interpolation matrix and it takes the resid-
uals from a coarse to a fine grid. It is generally a good idea to connect N
to R by setting N = aRT for some scaling factor o. Add ey, to u,. The

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 317

analytical expression for ey is

e, = N(Agh)ilRAh(u — uh) = (N(RAN)flRAh(u - uh))(u — uh)

S

A property of the nxn matrix S is that S? = S. Thus, the only eigenvalues
of S are 0 and 1. Since S is of rank k < n, k of its eigenvalues are 1 and
n — k are 0. Further, the eigenvectors for the 1 eigenvalues, which are
in the null space of I — S form the coarse mesh (and correspond to low
frequency vectors) whereas the eigenvectors for the 0 eigenvalues, which
are in the null space of S form the fine mesh (and correspond to high
frequency vectors). We can easily derive that k eigenvalues of I — S will
be 0 and n — k of them will be 1.

5. Finally as a post-smoothing step, iterate Au; = by starting from the
improved uy, + ey, using Jacobi or Gauss-Sidel.

Overall, the error e* after k steps will be of the form

ep = (M'(I - S)M")e, (4.98)

where ¢ is the number of Jacobi steps performed in (1) and (5). Typically ¢
is 2 or 3. When you contrast (4.98) against (4.96), we discover that p(M) >>
p(MH(I—S)M?). Ast increases, p(M*(I —S)M?) further decreases by a smaller
proportion.

In general, you could have multiple levels of coarse grids corresponding to
2h, 4h, 8h and so on, in which case, steps (2), (3) and (4) would be repeated
as many times with varying specifications of the coarseness. If A is an n X n
matrix, multi-grid methods are known to run in O(n?) floating point operations
(flops). The multi-grid method could be used an iterative method to solve a
linear system. Alternatively, it could be used to obtain the preconditioner.

Linear Conjugate Gradient Method

The conjugate gradient method is one of the most popular Krylov methods.
The Krylov matrix K, for the linear system Au = b is given by

K;i=[b Ab A’® ... AT7'b]

The columns of K are easy to compute; each column is a result of a matrix
multiplication A with the previous column. Assuming we are working with
sparse matrices, (often symmetric matrices such as the Hessian) these compu-
tations will be inexpensive. The Krylov space K; is the column space of Kj;.
The columns of K; are computed during the first j steps of an iterative method
such as Jacobi. Most Krylov methods opt to choose vectors from /C; instead of a
fixed choice of the j** column of K;. A method such as MinRes chooses a vector

318 CHAPTER 4. CONVEX OPTIMIZATION

u; € K; that minimizes b — Au;. One of the well-known Krylov methods is
the Conjugate gradient method, which assumes that the matrix A is symmetric
and positive definite and is faster than MinRes. In this method, the choice of
u; is made so that b — Au; LKC;. That is, the choice of u; is made so that the
residual r; = b — Au; is orthogonal to the space K. The conjugate gradient
method gives an exact solution to the linear system if j = n and that is how
they were originally designed to be (and put aside subsequently). But later,
they were found to give very good approximations for j << n.

The discussions that follow require the computation of a basis for ;. It
is always prefered to have a basis matrix with low condition number32, and an
orthonormal basis is a good choice, since it has a condition number of 1 (the
basis consisting of the columns of K turns out to be not-so-good in practice).
The Arnoldi method yields an orthonormal Krylov basis qi,qs,...,q; to get
something that is numerically reasonable to work on. The method is summarized
in Figure 4.51. Though the underlying idea is borrowed from Gram-Schmidt
at every step, there is a difference; the vector t is t = AQ; as against simply
t = q;. Will it be expensive to compute each t? Not if A is symmetric. First
we note that by construction, AQ = QH, where q; is the jth column of Q.
Thus, H = QT AQ. If A is symmetric, then so is H. Further, since H has only
one lower diagonal (by construction), it must have only one higher diagonal.
Therefore, H must be symmetric and tridiagonal. If A is symmetric, it suffices
to subtract only the components of t in the direction of the last two vectors
q;—1 and q; from t. Thus, for a symmetric A, the inner ‘for’ loop needs to
iterate only over ¢ = j — 1 and i = j.

Since A and H are similar matrices, they have exactly the same eigenvalues.
Restricting the computation to a smaller number of orthonormal vectors (for
some k << n), we can save time for computing @y and Hy. The k eigenvalues
of Hj, are good approximations to the first k£ eigenvalues of H. This is called
the Arnoldi-Lanczos method for finding the top k eigenvalues of a matrix.

As an example, consider the following matrix A.

0.5344 1.0138 1.0806 1.8325
1.0138 1.4224 0.9595 0.8234
1.0806 0.9595 1.0412 1.0240
1.8325 0.8234 1.0240 0.7622

32For any matrix A, the condition number x(A) = ?7%%, where omas(A) and opmin(A)
are maximal and minimal singular values of A respectively. Recall from Section 3.13 that

the " eigenvalue of AT A (the gram matrix) is the square of the ‘" singular value of A.
Further, if A is normal, k(A) = ‘;LI((Q))
A with maximal and minimal magnitudes respectively. All orthogonal, symmetric, and skew-
symmetric matrices are normal. The condition number measures how much the columns/rows
of a matrix are dependent on each other; higher the value of the condition number, more is
the linear dependence. Condition number 1 means that the columns/rows of a matrix are
linearly independent.

, where Amaz(A) and Apin(A) are eigevalues of

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION

319

Set q1 = ﬁb. //The first step in Gram schmidt.
for j=1ton—1do
t= qu.
fori=1to j do
//If A is symmetric, it will be ¢ = max(1,j — 1) to j.

Hi,j = q?t
t=t— Hi,jqi-
end for
Hji1,5 = [[t]].
Qj+1 = ﬁt
end for
t = Aq,.

for i =1 ton do
//If A is symmetric, it will be ¢ =n — 1 to n.
Hi,n = qZTt.
t=t— Hiq;.

end for

His1, = |8l

1
qQj+1 = Wt'

Figure 4.51: The Arnoldi algorithm for computing orthonormal basis.

and the vector b

T
b:[0.6382 0.3656 0.1124 0.5317

The matrix K4 is

0.6382 1.8074 8.1892 34.6516
0.3656 1.7126 7.5403 32.7065
0.1124 1.7019 7.4070 31.9708
0.5317 1.9908 7.9822 34.8840

K,

Its condition number is 1080.4.

The algorithm in Figure 4.51 computed the following basis for the matrix

K.

0.6979 -0.3493 0.5101 -0.3616
0.3998 0.2688 0.2354 0.8441
0.1229 0.8965 0.1687 -0.3908
0.5814 0.0449 -0.8099 -0.0638

Qa4

320 CHAPTER 4. CONVEX OPTIMIZATION

The coefficient matrix Hy is

3.6226 1.5793 0 0
1.5793 0.6466 0.5108 0
0 0.5108 -0.8548 0.4869
0 0 0.4869 0.3459

Hy=

and its eigenvalues are 4.3125, 0.5677, —1.2035 and 0.0835. On the other hand,
the following matrix Hs (obtained by restricting to K3) has eigenvalues 4.3124,
0.1760 and —1.0741.

The basic conjugate gradient method selects vectors in x; € i that ap-
proach the exact solution to Ax = b. Following are the main ideas in the
conjugate gradient method.

1. The rule is to select an x; so that the new residual rp, = b — Axy, is
orthogonal to all the previous residuals. Since Axy € Kk11, we must have
r; € K41 and ri must be orthogonal to all vectors in K. Thus, ry must
be a multiple of qx41. This holds for all k¥ and implies that

rfri =0
for all 7 < k.

2. Consequently, the difference ry — rip_;, which is a linear combination of
di+1 and qg, is orthogonal to each subspace IC; for ¢ < k.

3. Now, x; —x;_1 lies in the subspace K;. Thus, Ar = ry—rj_; is orthogonal
to all the previous Ax = x; —x;_1. Since ry —ri_1 = —A(Xg — Xg—1), We
get the following ‘conjugate directions’ condition for the updates

(Xi — Xi_l)TA(Xk — Xk—l) =0

for all ¢ < k. This is a necessary and sufficient condition for the orthogo-
nality of the new residual to all the previous residuals. Note that while the
residual updates are orthogonal in the usual inner product, the variable
updates are orthogonal in the inner product with respect to A.

The basic conjugate gradient method consists of 5 steps. Each iteration of
the algorithm involves a multiplication of vector dx_1 by A and computation of
two inner products. In addition, an iteration also involves around three vector
updates. So each iteration should take time upto (2+6)n, where 6 is determined
by the sparsity of matrix A. The error e, after k iterations is bounded as follows.

k
= (xp —x)TA(x, — x M e
llerlla = (xx —%)" A(xk)S2<M+1> [leol|

The ‘gradient’ part of the name conjugate gradient stems from the fact that
solving the linear system Ax = b is corresponds to finding the minimum value

Basic dea von /%Qf_,\ifﬂ\x—— \Of;; (95 A\r0>

(0}\(\3\&0&)(G\g \r\\/\m?ﬂ&m% @’Qmmwﬂ \ﬁauwﬂ \ﬁ A

<%(\§>A; ?Jlt\\f
(rrodes G Grsare Shmal m%oaﬁﬂakzﬁ‘m Tm@s&
Yo oban w&iﬁa\ NecXor> {5\0\% | AS\S

G\;,ﬂbﬁo N fﬂ
LQ},/ V@"‘\/ﬂ—)be L\nw@ mﬁ?age,rﬁwﬁc Neokov

AD:\/O
A Ve o ATAd

lﬁr X = %ﬁiﬁi = %&55‘\2\\1”2\,_&\0”?1
—)~ L \ ‘L—_ \g\';\\(>
Se\D&“&a\o\€ NS o } 50(7/0«& r\ﬂw\’ﬂ\ 0<(

@mmgmii'r«;ry B (on) - @;@Q}
* (=0 " = %@(ﬁﬁoﬂ)

CGY\JuﬁaJrQ &"‘Q_Q)ﬂm\@ Wﬁ\fzw(l:_) SURBRE %Cca
= 151C07+ ZDQ(IAC UJ\Y\ Al Wave 5(,?01'-60&\0]\13 0

g anding e mif Ad F/'\S \’DE']

Cmdwaah deci\m{ sodnshies apcgan@

(o] k s
gty G- (B
g0 .A,QS«M Subéjbo.

/
/\Lm &nduaa)ﬁ, e then SAV@)Y '.

CK) \
K = OJ?S@Y‘\’Q q%c)
xe (4

(oS H®) il e othegesdl T
(e 8\ \7*&\‘"0*3 A\«ec\’lmns>

man bl

ce ok \é‘n Yewahien

do Ay A

Cm’\\)u(ja\l %«Ow\\uﬂ“ a\gov_ (v Quadnahe o,ﬁ)

o Ao - -\7’/05 PR A
Il = B -

\whalt A= ’VK’)‘@B; -&«)L(“L.\O

"

M erep W) Qe
x =X l d(K“ d\(_\g_{j . .ixae)(\\ﬂQ ggao{ok

- - 0560 fﬂ@c“)l\&;‘

2 C*“‘ax&‘(< Ak
Son (=0 A'\"Aa

- -~C('bdlm %O\ﬁm\aﬁ g—q—,

Guest nes
@ A—m’“ﬂiﬁma\'\kj i(y i Ao . a\\}x

T e |
@&Q‘*) 0&% -7 »3 Ady.= ;(\,\1 —A\ (© I(K,—\)>

] ;(L\-c \V/S (’%) > ’“vg Cjé@»

@'}}\/ chﬂxm&\ﬂos MQ\nvg’b\é o
| okie*é 3 ,
Y %(@) ._\— J kﬁ:-»%v /g efck’23> o J {('xm}
> 4= ~HE) T46) (0569) e
TR frs

(3
e

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 321

XOZO, I‘():b, dOZI‘o, k=1.
repeat

rfflrk—l
dT L Adi_: "
the entry Hy, 1.
2. Xp = Xp—1 +apdi_1.
3. 1y = rp_1 — arAdg_1. //New residual obtained using ry — rp_1 =
—A(Xk — Xk—l)-

1. ap = //Step length for next update. This corresponds to

c—1Tk—1
to the ent;ylHk)kH.
5. dy = ri + Bgdg—1. //The next search direction, which should be
orthogonal to the search direction just used.
k=k-+1.
until G, < 6.

T
4. By = rTrkirk //Improvement over previous step. This corresponds‘/ QQQ,

Figure 4.52: The conjugate gradient algorithm for solving Ax = b or equiva-
lently, for minimizing F(x) = %XTAX —xTb.

of the convex (for positive definite A) energy function E(x) = 3xTAx—bTx =r
by setting its gradient Ax — b to the zero vector. The steepest descent method
makes a move along at the direction of the residual r at every step but it
does not have a great convergence; we land up doing a lot of work to make
a little progress. In contrast, as reflect in the step dy = ri + Ordir_1, the
conjugate gradient method makes a step in the direction of the residual, but
only after removing any component g along the direction of the step it just
took. Figures 4.53 and 4.54 depict the steps taken by the steepest descent
and the conjugate descent techniques respectively, on the level-curves of the
function E(x) = %XTAX—XTb, in two dimensions. It can be seen that while the
steepest descent technique requires many iterations for convergence, owing to its
oscillations, the conjugate gradient method takes steps that are orthogonal with
respect to A (or are orthogonal in the transfomed space obtained by multiplying
with A), thus taking into account the geometry of the problem and taking
a fewer number of steps. If the matrix A is a hessian, the steps taken by
conjugate gradient are orthogonal in the local Mahalonobis metric induced by
the curvature matrix A. Note that if x(9) = 0, the first step taken by both
methods will be the same.

The conjugate gradient method is guaranteed to reach the minimum of the
energy function E in exactly n steps. Further, if A has only r distinct eigen-
values, then the conjugate gradient method will terminate at the solution in at
most r iterations.

4.5.8 Conjugate Gradient

We have seen that the Conjugate Gradient method in Figure 4.52 can be
viewed as a minimization algorithm for the convex quadratic function E(x) =

S‘-*’X?Yose ka\uaai» Cm&&\u\{ 15 a)??\wd o

Sb\\mj i Az -le
L

A (8 e
|- My 35+ !

 <cord (A) = -2 [2
- — %\ma'ﬂ

Avmn

N D
For Tadwr* A\Q}ceﬂ%,"(ﬂ\a was \ﬂa(xv‘ﬂad>

322 CHAPTER 4. CONVEX OPTIMIZATION

Figure 4.53: Tlustration of the steepest descent technique on level curves of the
function E(x) = 1xT Ax — x"b.

Orthogonal w.t A
Iy

Figure 4.54: Illustration of the conjugate gradient technique on level curves of
the function E(x) = 1x7Ax — xTb.

%XTAX — xTb. Can the approach be adapted to minimize general nonlinear

convex functions? Nonlinear variants of the conjugate gradient are well stud-
ied [?] and have proved to be quite successful in practice. The general conjugate
gradient method is essentially an incremental way of doing second order search.

Fletcher and Reeves showed how to extend the conjugate gradient method
to nonlinear functions by making two simple changes®® to the algorithm in
Figure 4.52. First, in place of the exact line search formula in step (1) for the
step length ay, we need to perform a line search that identifies an approximate
minimum of the nonlinear function f along d*~1. Second, the residual r(*),
which is simply the gradient of E (and which points in the direction of decreasing
value of F), must be replaced by the gradient of the nonlinear objective f, which
serves a similar purpose. These changes give rise to the algorithm for nonlinear
optimization outlined in Figure 4.55. The search directions d*) are computed
by Gram-Schmidt conjugation of the residuals as with linear conjugate gradient.
The algorithm is very sensitive to the line minimization step and it generally
requires a very good line minimization. Any line search procedure that yields
an oy, satisfying the strong Wolfe conditions (see (4.90) and (4.91)) will ensure
that all directions d*) are descent directions for the function f, otherwise, d(*)
may cease to remian a descent direction as iterations proceed. We note that
each iteration of this method costs on O(n), as against the Newton or quasi-
newton methods which cost atleast O(n?) owing to matrix operations. Most
often, it yields optimal progress after h << n iterations. Due to this property,
the conjugate gradient method drives nearly all large-scale optimization today.

33We note that in the algorithm in Figure 4.52, the residuals r(*) in successive iterations
(which are gradients of FE) are orthogonal to each other, while the corresponding update
directions are orthogonal with respect to A. While the former property is difficult to enforce
for general non-linear functions, the latter condition can be enforced.

4.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 323

Select x(©, Let fo = f(x(0), go = Vf(x(©), d® = Vg, k = 1.
repeat

1. Compute oy, by line search.

2. Set x) = x(k=1) 4 o, dk—1).

3. Evaluate g®) = V f(x(*)).

g®) T g

4. B = W

5. dy = —g® + BdD),

k=Fk+1.
until % < 0 OR k > maxlter.

Figure 4.55: The conjugate gradient algorithm for optimizing nonlinear convex
function f.

It revolutionalized optimization ever since it was invented in 1954.
Variants of the Fletcher-Reeves method use different choices of the parameter
Bk. An important variant, proposed by Polak and Ribiere, defines 3 as

T
pr_ (8") (8™ —g"Y)
g (g®)T g®

The Fletcher-Reeves method converges if the starting point is sufficiently close
to the desired minimum. However, convergence of the Polak-Ribiere method
can be guaranteed by choosing

Br = max {ﬁ,fR,O}

Using this value is equivalent to restarting®® conjugate gradient if ﬁ,f B <.
In practice, the Polak-Ribiere method converges much more quickly than the
Fletcher-Reeves method. It is generally required to restart the conjugate gradi-
ent method after every n iterations, in order to get back conjugacy, etc.

If we choose f to be the strongly convex quadratic F and «j to be the
exact minimizer, this algorithm reduces to the linear conjugate gradient method,
Unlike the linear conjugate gradient method, whose convergence properties are
well understood and which is known to be optimal (see page 321), nonlinear
conjugate gradient methods sometimes show bizarre convergence properties. It
has been proved by Al-Baali that if the level set £ = {x|f(x) < f(x(o)} of a
convex function f is bounded and in some open neighborbood of £, f is Lipshitz
continuously differentiable and that the algorithm is implemented with a line
search that satisfies the strong Wolfe conditions, with 0 < ¢; < ¢ < 1, then

klim inf [|g®|| =0

34Restarting conjugate gradient means forgetting the past search directions, and start it
anew in the direction of steepest descent.

324 CHAPTER 4. CONVEX OPTIMIZATION

In summary, quasi-Newton methods are robust. But, they require O(n?)
memory space to store the approximate Hessian inverse, and so they are not
directly suited for large scale problems. Modificationsof these methods called
Limited Memory Quasi-Newton methods use O(n) memory and they are suited
for large scale problems. Conjugate gradient methods also work well and are
well suited for large scale problems. However they need to be implemented
carefully, with a carefully set line search. In some situations block coordinate
descent methods (optimizing a selected subset of variables at a time) can be
very much better suited than the above methods.

4.6 Algorithms for Constrained Minimization

The general form of constrained convex optimization problem was given in (4.20)
and is restated below.

minimize f(x)
subject to g;(z) <0, i=1,....,m (4.99)
b

For example, when f is linear and g;’s are polyhedral, the problem is a linear
program, which was stated in (4.83) and whose dual was discussed on page 289.
Linear programming is a typical example of constraint minimization problem
and will form the subject matter for discussion in Section 4.7. As another
example, when f is quadratic (of the form x7 @x+b7x) and g;’s are polyhedral,
the problem is called a quadratic programming problem. A special case of
quadratic programming is the least squares problem, which we will take up in
details in Section 4.8.

4.6.1 Equality Constrained Minimization

The simpler form of constrained convex optimization is when there is only the
equality constrained in problem (4.99) and it turns out to be not much different
from the unconstrained case. The equality constrained convex problem can be
more explicitly stated as in (4.100).

mln'lmlze f(z) (4.100)
subject to Az =10

where f is a convex and twice continuously differentiable function and A € P>

has rank p. We will assume that the finite primal optimal value p* is attained

by f at some point X. The following fundamental theorem for the equality con-

strained convex problem (4.100) can be derived using the KKT conditions stated

