
Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(

f0(x) +

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p⋆

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ, ν)
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Least-norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx + νT (Ax − b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x + ATν = 0 =⇒ x = −(1/2)ATν

• plug in in L to obtain g:

g(ν) = L((−1/2)ATν, ν) = −
1

4
νTAATν − bTν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAATν − bTν for all ν

Duality 5–4



Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

• a nonconvex problem; feasible set contains 2n discrete points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i, j to the same set; −Wij is cost of assigning to different sets

dual function

g(ν) = inf
x

(xTWx +
∑

i

νi(x
2
i − 1)) = inf

x
xT (W + diag(ν))x − 1Tν

=

{

−1Tν W + diag(ν) � 0
−∞ otherwise

lower bound property: p⋆ ≥ −1Tν if W + diag(ν) � 0

example: ν = −λmin(W )1 gives bound p⋆ ≥ nλmin(W )
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Lagrange dual and conjugate function

minimize f0(x)
subject to Ax � b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(

f0(x) + (ATλ + CTν)Tx − bTλ − dTν
)

= −f∗
0 (−ATλ − CTν) − bTλ − dTν

• recall definition of conjugate f∗(y) = supx∈dom f(yTx − f(x))

• simplifies derivation of dual if conjugate of f0 is kown

example: entropy maximization

f0(x) =
n
∑

i=1

xi log xi, f∗
0 (y) =

n
∑

i=1

eyi−1
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The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ � 0

• finds best lower bound on p⋆, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d⋆

• λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual (page 5–5)

minimize cTx
subject to Ax = b

x � 0

maximize −bTν
subject to ATν + c � 0
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Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications
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http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture24b.pdf



Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior
relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(

(c + ATλ)Tx − bTλ
)

=

{

−bTλ ATλ + c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ + c = 0, λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible
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Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(

f0(x) +

m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆
i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +

p
∑

i=1

ν⋆
i hi(x

⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . , m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ � 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . , m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x � 0, 1Tx = 1

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1Tx =
∑n

i=1 max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆

i

1/ν⋆

xi

αi
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