	et us study the dual, slaters condition,
	Strong duality, kKT conditions
	Let us study the dual, slaters condition, Strong duality, kkT conditions & application of all this through
	the example of LASSO
	$\min_{x \in R^n } \ Ax - b\ _2^2 + \lambda \ x\ _1$
	xelk"
	where I's fixed (not a Lagrange variable)
-	

For Lasso, it can be shown that for every O there exists a $\lambda \gtrsim 0$ set following two problems are equivalent:

min $\|Ax - b\|_{2}^{2} + \lambda \|x\|_{1} = \beta$ $\|x\|_{1}^{2} = \beta$ min $||Ax-b||_{2}^{2}$ s.t $||x||_{1} \le 0$ 2)...say solution is 2

Solution to (a) with $\theta = \beta = x^2$ is also x^2 !

Solution to (1) with λ as solution to $A^{T}(b-Ax) = \lambda g_{x}^2$ is also \hat{x} ! $g_{x} \in \partial \|\hat{x}\|_{L}$

What about dual of Lasso?

Dual of $\min_{x \in \mathbb{R}^n} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$ is a constant!

Redefine primal as:

min = 1/2 | y-z|2 + > | 2 | 1/2 | 1 ZE IRM SE Z=AX

 $L^{*}(u) = \min_{\substack{2 \in \mathbb{R}^{n} \\ 2 \in \mathbb{R}^{n}}} \frac{1}{2} |y-z|^{2} + \lambda ||2||_{L} + \mu^{T}(z-Ax)$ $= \frac{z \in \mathbb{R}^{n}}{2} ||y-\mu||_{L}^{2} - \Gamma(||A\mu|| \le 1)$ $= \frac{1}{2} ||y||_{L}^{2} - \frac{1}{2} ||y-\mu||_{L}^{2} - \Gamma(||A\mu|| \le 1)$

:. Lasso dual problem is

max
$$\frac{1}{2}(||b||^2 - ||b-M||^2)$$

MERM $\frac{1}{2}(||b||^2 - ||b-M||^2)$

Le max $\frac{1}{2}(||u-b||_2)$

MERM $\frac{1}{2}(||u-b||_2)$

Nere $\frac{1}{2}(||u-b||_2)$

Recall: Dual norm for p is q st

 $\frac{1}{2}(||u-b||_2)$

Here $p=1$ & $q=\infty$

. * KKT conditions are necessary & Sufficient (since Slater's Condition Satisfied)

- 1) Primal constraints: $\hat{Z} = A\hat{x}$
- 2) Dual constraints: NonE
- 3 Complementary slackness: NONE
- (4) Subdiff wit Primal variables = 0:

$$\partial_{z} L(\hat{x}, \hat{z}, \hat{u}) = \hat{x} - b - \hat{u} = 0$$

$$\partial_{z} L(\hat{x}, \hat{z}, \hat{u}) = \hat{x} \int_{Sqn}(\hat{x}_{i}) f \hat{x}_{i} \neq 0$$

$$\partial_{z} L(\hat{x}, \hat{z}, \hat{u}) = \lambda \int_{Sic}(\hat{x}_{i}) f \hat{x}_{i} \neq 0$$

$$\partial_{z} L(\hat{x}, \hat{z}, \hat{u}) = \lambda \int_{Sic}(\hat{x}_{i}) f \hat{x}_{i} \neq 0$$

Q: How to use the dual formulation 4 KKT? Ans: We know by State's rondition 4 KKT that
if X, M, Z sochsfy KKT then $\frac{1}{2} \|A\hat{x} - b\|^2 + \lambda \|\hat{z}\|_1 = \min_{x \in \mathbb{R}^n} \frac{1}{2} \|z - b\|_2^2 + \lambda \|x\|_1$ ZEIRM St AX=Z = max 1/1/11-6/12

MERM
Sit ||ATM/00 < 1 $=\frac{1}{2}\|\hat{\mathbf{M}}-\mathbf{b}\|_{2}^{2}$

(terative 190 for primal)

(terative 190 for primal)

(terative 190 for primal)

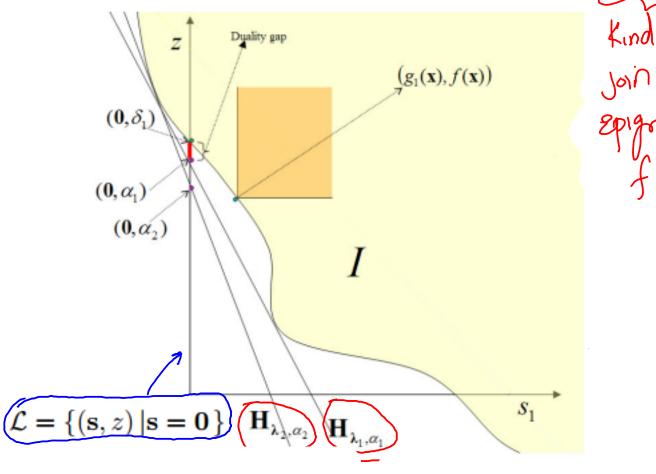
(a) = 2 = [Aij] 4 b; = 2 = Aij(Y; -x;Ai) Then: $\vec{x}_{j} = S(\vec{b}_{j} + \lambda)/\vec{a}_{j}$ if $\vec{b}_{j} < -\lambda$ $(\vec{b}_{j} - \lambda)/\vec{a}_{j}$ if $\vec{b}_{j} > \lambda$ So to sochsfy this, Lasso iterates on $x^{(6)}$ as follows: $x^{(6)} \rightarrow b^{(6)} \rightarrow x^{(7)}$. - - - until convergence - - - We can understand through following simplification where A=I Iterative algo for primal... Stopping contescen: 2 Solve for M 4 Z(k) using kKT Check gap $\frac{1}{2} \|A_{x}^{(k)} - b\|_{2}^{2} + \lambda \|2^{(k)}\|_{1}^{2} \le C$

(The general dual problem & its geometric interpreta

pg 292, sec 4.4.3 \$\footnotes/\text{http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf}

Consider the set:

$$\mathcal{I} = \{(\mathbf{s}, z) \mid \mathbf{s} \in \mathbb{R}^m, z \in \mathbb{R}, \exists \mathbf{x} \in \mathcal{D} \text{ with } g_i(\mathbf{x}) \leq s_i \ \forall 1 \leq i \leq m, f(\mathbf{x}) \leq z\}$$



 $\mathcal{H}_{\lambda,\alpha} = \{ (\mathbf{s}, z) | \lambda^T \cdot \mathbf{s} + z = \alpha \}$

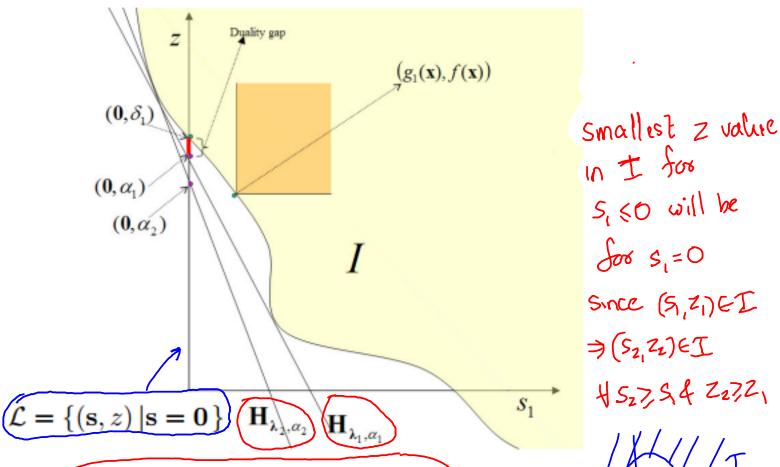
Kind of Join between Epigraphs of f&g!s

(The general dual problem & its geometric interpreta

η λης sec 4.4.3 of http://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvex/Optimization.pdf

Consider the set:

$$\mathcal{I} = \{ (\mathbf{s}, z) \mid \mathbf{s} \in \mathbb{R}^m, \ z \in \mathbb{R}, \ \exists \mathbf{x} \in \mathcal{D} \ with \ g_i(\mathbf{x}) \le s_i \ \forall 1 \le i \le m, \ f(\mathbf{x}) \le z \}$$



 $\mathcal{H}_{\lambda,\alpha} = \{ (\mathbf{s}, z) | \lambda^T \cdot \mathbf{s} + z = \alpha \}$

max

 α

subject to $\mathcal{H}_{\lambda,\alpha}^+ \supseteq \mathcal{I}$

max

 α

subject to
$$\lambda^T . \mathbf{s} + z \ge \alpha \ \forall (\mathbf{s}, z) \in \mathcal{I}$$

max

 α

$$\lambda^T \cdot \mathbf{s} + z \ge \alpha \ \forall (\mathbf{s}, z) \in \mathcal{I}$$

subject to $\lambda^T \cdot \mathbf{s} + z \geq \alpha \ \forall (\mathbf{s}, z) \in \mathcal{I}$ $\lambda \geq \mathbf{0}$ If $\exists \ d_b \ soln \ to \ (b)$ $\exists \ \lambda \geq \mathbf{0}$ $\exists \ \lambda \geq \mathbf{0}$ $\exists \ \lambda \leq \mathbf{0}$

subject to $\lambda^T . \mathbf{g}(\mathbf{x}) + f(\mathbf{x}) \ge \alpha \ \forall \mathbf{x} \in \mathcal{D}$

 $\lambda \geq \mathbf{0}$

max
$$\alpha$$
 subject to $L(\mathbf{x}, \lambda) \ge \alpha \ \forall \mathbf{x} \in \mathcal{D}$ $\lambda \ge \mathbf{0}$

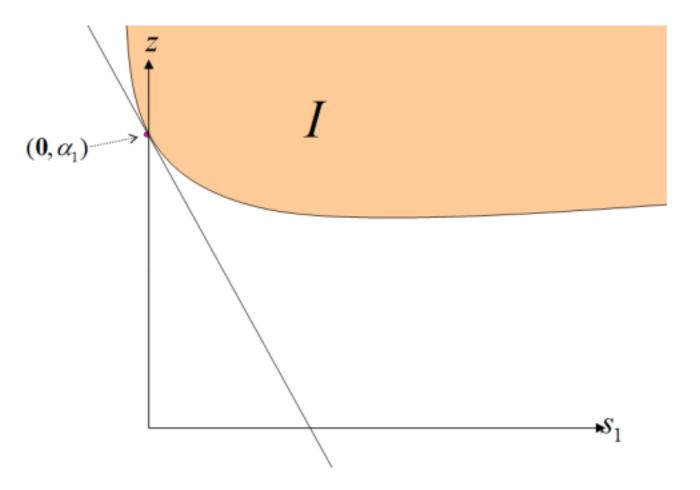
Since, $L^*(\lambda) = \min_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda)$, we can deal with the equivalent

max
$$\alpha$$
 subject to $L^*(\lambda) \ge \alpha$ $\lambda \ge \mathbf{0}$

This problem can be restated as

$$\max \qquad L^*(\lambda)$$

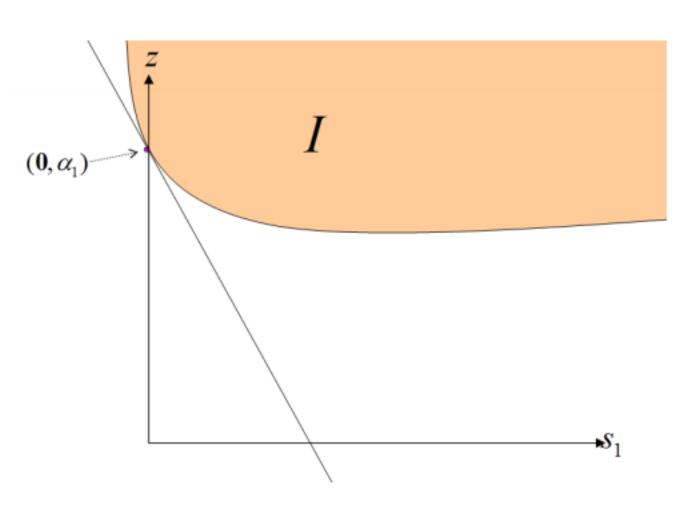
subject to $\lambda \geq \mathbf{0}$



Q: What is desirable of the set I for zero duality gap?

DI should be convex je fit q's are convex

(2) $(0,8_1)$ should exist in T's intersection with S=0 should be closed



Q: What is desirable of the set I for zero duality gap?

Ans: I (0,0) (I and) s.t 1/s+z> x + (s,z) (EI and below)

Ja supporting hyperplane to I at (0,0)

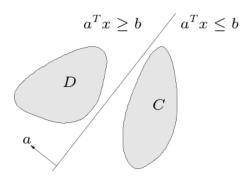
fintersection of I with zaxis is closed
below (with (0,0) being boundary pt)

← I is closed & I a supporting hyperplane to I at every boundary point

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$



the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Convex sets 2–19

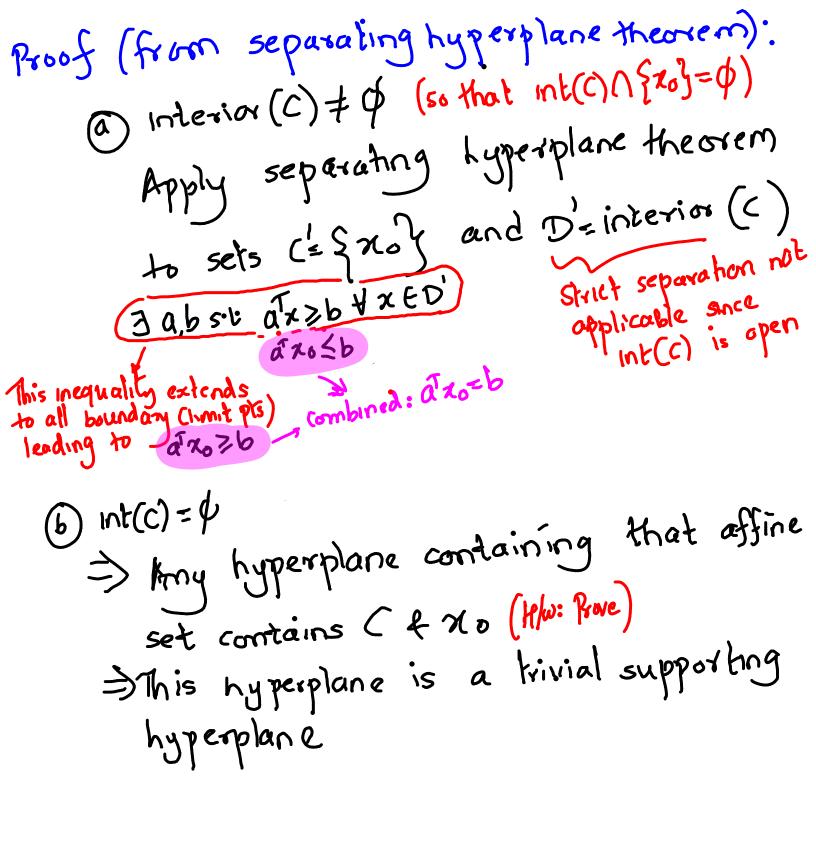
Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

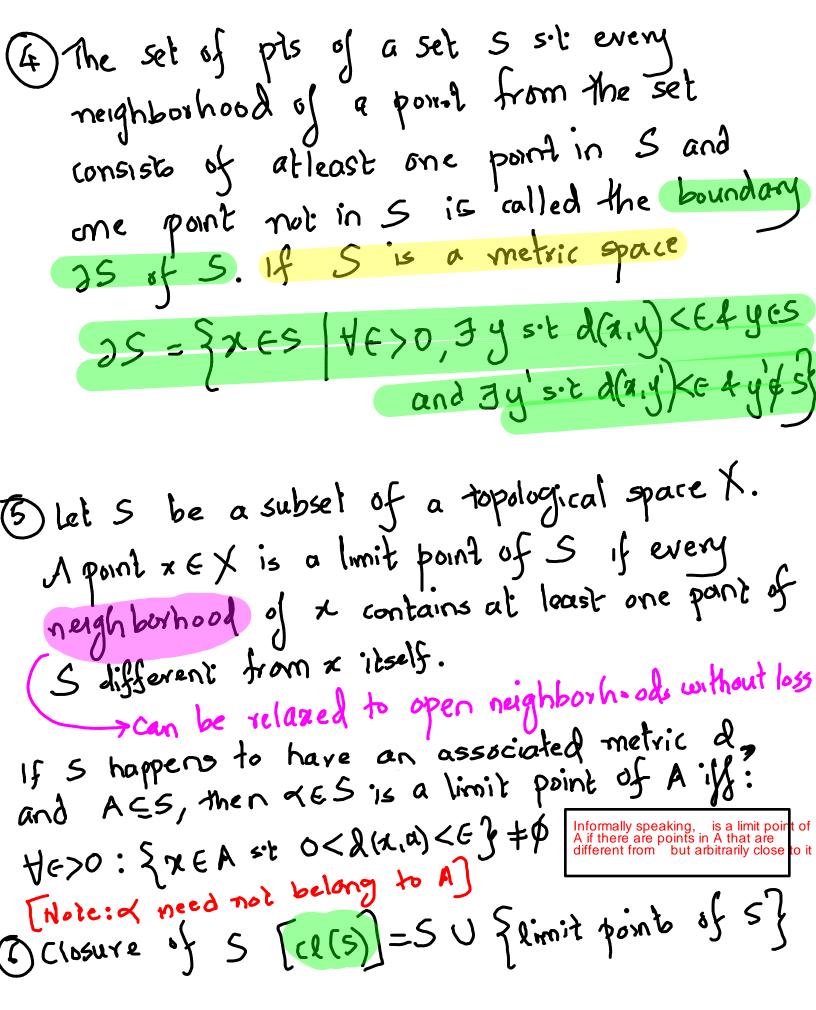


Convex sets 2–15

Some topological concepts topological set is set with OA set U is called an open set it it does not contain any of its boundary pts. If S is a metric space (eg an innex product space) with distance metric d(x,y), then a subset U of S is called open if, given any xEU, 7 E>O such that given any yES with d(x,y)<E, yEU TA set VCS is called closed if its complement

(3) x ∈ S is called an interior point of S if there exists a neighborhood of a contained in S. If S is a metric space, then xES is an interior ptif JE>0 s.t ty s.t d(a.y) < E, y ES The set of all interior pto of S form the interior of S. Thus, if S is a metric space! int(s) = {x | 3 E>0 sit 49 sit d(x,y) < E, y & s} interior of 5 What can I say if interior (c) = \$

Sis Oc Chyperplane. In particular, if s is effine
this is necessary a sufficient
is significant. 3) Eq: C=DK in topological space S
(see next page for defin if boundary)
(see next page for defin if boundary)
of set x denoted by DK)



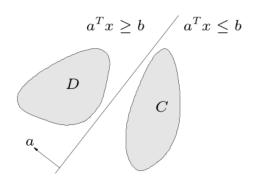
Some standard results that we will regularly invoke for topological spaces

- (1) Intersection of (even uncountable) closed sets is closed
 - a) Union of (even uncountable)
 open sets is open
 - 3 Intersection of finite number of open sets is open
 - 4 Union of Sinite number of closed sets is closed
 - 3 S is closed iff Sc is open

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

 $a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$



the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Now we can prove (see http://www.cse.iitb.ac.in/-cs709/notes/eNotes/ExtraPro, &1)
that 5, being a sum of two convex sets, is convex.

Since (nD=\$, 0\$=5

assuppose of cl(\$): Consider the sets \$0\$
and cl(\$). We will prove that 3 a \$=0 sit
and cl(\$). We will prove that 3 a \$=0 sit
and cl(\$) & d = 0 & d = 0

Q: How to choose a?

Obvious

Complete proof quen in class: H/W

2-20

Convex sets

i.e 3 a sit a (x-y) >0 4 x-y € 5 i·e ax>ay v xec & yED Let b=infatx. Then we proved existence of alb sit atrob trec 4 aysb treed B suppose OE (1(s). Since OES, OE binday (s) If interior (s) = \$\phi\$ (empty), Smust be = \{\frac{5}{2} | a^{\tau}z = b^{\text{y}}\} & the hyperplane must includ 0 on body (5) I =>b=0. i.e an-ay trec 4 yeD hyperplane >> we have a trivial separating hyperplane

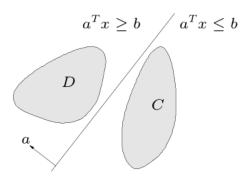
limit by a, we have $\alpha(E/Z) > 0 \quad \forall z \in S_{-E/Z}$ for all ke therefore az>0 y zeinterior (s)

az>0 y zes l groof by (use the groperty atx>, aty txec 4 y ED that a tenver set is connected? Mence proved!

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$



the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Convex sets

2-19

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C