ADMM AND DSO

By Ayush Bhatnagar

- Pre-requisites for ADMM

0 Dual Ascent
0 Dual decomposition

0 Augmented Lagrangian

Dual Ascent

Constraint convex optimization of the form:

min f(x)
subject to Ax = b
Lagrangian:
L(z,y) = f(z) +y" (Az — b)
Dual function.
g(y) = inf L(z,y)
Issue:

u Slow convergence

» No distributedness.

Algorithm 1 Dual Ascent

1: Initialize dual variable:

2: repeat

3: for each iteration do

4: 2« argmin L(z, y")
XL

; Voly) = AzltH) — b
b Yyt 1yt +a'Vg(y)
7. end for
8: until happy

Dual decomposition
—

Same constraint convex optimization problem but separable.

G G
f(x) = Z fi(z:) Ar = 21: Aiz;
i=1 =

Lagrangian:

ZL(?I J}—Z(fi ;) + y' A ri—%?Tfj}

i=1

Parallelization is possible.

Issue:

m Still slow convergence.

Algorithm 2 Dual Decomposition

1: Initialize dual variable: 3"

2: repeat

3: for each machine i € {1,...,G} in parallel do
4: IEHH — argmin L;(z;, y")

5 end for l

Collect :.':EHITJ from all machines to make z(*+!)
Now compute:
Vg(y) = Azt —p
Yty +a'Vg(y)
10: Distribute y**! to all the machines
11: until happy

* xi updates of t+1 iteration are send to a central hub which calculates
y(t+1) and then again propagates it to different machines.

Augmented Lagrangian method
—

Constraint convex optimization : Updated objective function
min f(x) + g | Az —b |3

subject to Ax = b
So the Lagrangian would look like:

L(z,y) = f(z) +y"(Az =) + £ || Az = b |
Updates would look like:

gkl .= argmin L ,(x, yF)

I

ssue: y* = yF 4+ p(AZFTE — b),

® Due to this new term we lost decomposability but improved
convergence.

- ADMM (Alternating Direction
Method of multipliers

a Standard ADMM

0 Scaled ADMM

Standard ADMM

o1 Constraint convex optimization :

minimize f(z) + g(2)
subject to Ax + Bz =c¢

o1 Augmented Lagrangian:

Ly(z,z,y) = f(z) + 9(2) + y" (Az + Bz — ¢) + (p/2)|| Az + Bz — c||3.

o AL updates would be like:

t+1 £+1]I

(', 2" := argmin L(z, z,1")

yt+1 = yt + P(AIHI _|_ BEHI _ E)

Standard ADMM

o1 Blend of dual decomposition and augmented Lagrangian
method(AL).

o ADMM updates would be:

™= argmin L(z, 2, 1)
€L

t+1 t+1

T i=argmin Lz, 2, 1)

yt+1 = yt -I-p(AIHl + BEHI _ E)

Scaled ADMM

1
Scale the dual variable: u:y/p

The standard ADMM updates would look like:
2! .= argmin (f{:;r;) +(p/2) || Az + Bz —c+u' |3)

21 := argmin (9(3) + (p/2) || Az"™' 4+ Bz —c+u' |3)

t4+1 ¢ t+1 t+1
Wt =yt AT - BT —
The formulas are shorter in this version.

This version is widely used.

Least square problem

Consider the method of least-square where we
minimize the sum of square of errors for regression
purpose:

min || Az =Y ||?
T

For standard ADMM to work, we will reformulate
the problem as:

min || z |3

st Ar—z=Y

- DSO (Distributed Stochastic Optimization)

Regularized Risk Minimization

01 Introducing constraints:

o 1 i)
1;::”11;1 A Z ¢i(w;) + o Z Li(u;)

j=]_ =1

st. w;=(w,z;) Yi=1,....m

Lagrangian
—

o Lagrangian:
d 1 m 1 m
min max Az;;ﬁj (w;) + — Z;fi{?.ag] +— Zl:mi(ui — (w, x;))

-1 Fenchel-Legendre conjugate :
ffz) =max (z,y) — f(y) =) —f;(—ﬂ'i) = min,, o;U; + Ei(“i}
)

1 Lagrangian can be rewritten as:

T

d m
1 1
min max A E ¢j(w;) — — E o (w, T;) — — E I} (—ay)

j=1 =1 =1

DSO

Again rewriting the previous equation but only for
non-zero features.

AQ;(w; —(x; W5
Imin max E i :I } A

w a | QO | m | (2; | m

Now qpplying stochastic gradient descent for w
and ascent for A :

AV o (w; Y; Tis

Vif(—ai) wjizij)
| {g | m

oy — o + r;(_ — —
m | € | m

Note that we can parallelize this stochastic
optimization algorithm.

Algorithm 1 Distributed Stochastic Optimization

1: Each processor ¢ € {1,2,...,p} initializes w'@, a(®

2: L1

3: repeat

L /i

5. forallre{l,2,... p}do

6: for all processors g € {1,2,.... p} in parallel do
7 for (7, 7) non zero f[}fltur[} in ¢'" processor do

8 Wj wj — '??(EET) _ E";“)

o T _)
10: end for
11: send these w;’s to next machine and receive from previous.
12: end for
13: end for
14: t+1+1

15: until convergence

el
al?)
al?)

()

wil) wi(2) (3 (@)

i NN =

X X X

1st inner iteration

oll)

o(2)

ol3)

o)

N B

2nd inner iteration

Working of DSO

- Thank-you ©

