# SVM and SMO <br> Instructor: Prof. Ganesh Ramakrishnan 

## Joachims' SVMlight

## Choosing the working set in SVM light

- Let

$$
f(\alpha)=\frac{1}{2} \alpha^{\top} Q \alpha-e^{\top} \alpha
$$

- SVM ${ }^{\text {light }}$ chooses working set $B$ by solving for:

$$
\Delta \alpha=\min _{d} \nabla^{\top} f\left(\alpha^{k}\right) d
$$

where $d$ is the descent direction and $\Delta \alpha=\alpha^{k+1}-\alpha^{k}$ s.t.

- $\left|\left\{d_{i}: d_{i} \neq 0\right\}\right| \leq q$

Intuitively, if $q$ non-zero $d_{i}$ 's are possible, they will be picked up since such a set will reduce the objective further as compared to a smaller set

- $y^{\top} d=0$
$\left(\alpha^{k}\right)^{\top} y=0$, and $\left(\alpha^{k+1}\right)^{\top} y=0 \Longrightarrow\left(\alpha^{k}+d\right)^{\top} y=0$
Thus, $y^{\top} d=0$
- $d_{i} \in[-1,1]$
- $d_{i} \geq 0$, for $\left(\alpha^{k}\right)_{i}=0$
- $d_{i} \leq 0$, for $\left(\alpha^{k}\right)_{i}=C$


## Solving for $d$ in SVMlight

The intuition is that:

- The descent directions $d_{i}$ 's for the most violating $\left(\alpha^{k}\right)_{i}$ 's correspond to the $\left(\nabla f\left(\alpha^{k}\right)\right)_{i}$ 's that are farthest from 0 ,
- taking care that we also want $y^{\top} d=0$, ie. $\sum y_{i} d_{i}=0$, for all $i$ 's chosen as per above (s.t. $\left.\left|\left\{d_{i}: d_{i} \neq 0\right\}\right| \leq q\right)$


## Solving for $d$ in SVM ${ }^{\text {light }}$

(1) Sort $y_{i}\left(\nabla f\left(\alpha^{k}\right)\right)_{i}$ in decreasing order
(2) Symmetrically do:

From the top, sequentially set $d_{i}=-y_{i}$
From the bottom, sequentially set $d_{i}=y_{i}$

- Until either
$\star \frac{q}{2}$ ' $d_{i}=-y_{i}$ 's have been selected from the top, and $\frac{q}{2}$ ' $d_{i}=y_{i}$ 's have been selected from the bottom
* we cannot find $d_{i}=-y_{i}$ from the top and $d_{i}=y_{i}$ from the bottom at the same time
- At any point,
if $\left(\alpha_{k}\right)_{i}=0$ and $d_{i}=-1$, set $d_{i}=0$ and bypass it, and
if $\left(\alpha_{k}\right)_{i}=C$ and $d_{i}=1$, set $d_{i}=0$ and bypass it
- The goal is to achieve a balancing between the two signs from the opposite ends, ie. $\sum y_{i} d_{i}=0$
(3) $d_{i}$ 's not yet considered are assigned 0

If $\frac{q}{2}$ ' $d_{i}=-y_{i}$ 's from the top and $\frac{q}{2}$ ' $d_{i}=y_{i}$ 's from the bottom could not be selected (or if $q$ is large enough), the algorithm will stop at $i_{t}$ from the top and $i_{b}$ from the bottom
One of the following will happen:

- $i_{t}$ is just before $i_{b}$
- There is one position $i$ between $i_{t}$ and $i_{b}$ with $0<\left(\alpha^{k}\right)_{i}<C$

When the algorithm stops, $d$ is an optimal solution for

$$
\Delta \alpha=\min _{d} \nabla^{\top} f\left(\alpha^{k}\right) d
$$

s.t.

- $\left|\left\{d_{i}: d_{i} \neq 0\right\}\right| \leq q$
- $y^{\top} d=0$
- $d_{i} \in[-1,1]$
- $d_{i} \geq 0$, for $\left(\alpha^{k}\right)_{i}=0$
- $d_{i} \leq 0$, for $\left(\alpha^{k}\right)_{i}=C$

When the algorithm stops at $i_{t}$, if the next index in the sorted list of $y_{i}\left(\nabla f\left(\alpha^{k}\right)\right)_{i}$ is $\bar{i}_{t}$, there are three possible situations:

- $\left(\alpha^{k}\right)_{\bar{i}_{t}} \in(0, C)$
- $\left(\alpha^{k}\right)_{\overline{i t}_{t}}=0$ and $y_{\bar{i}_{t}}=-1$
- $\left(\alpha^{k}\right)_{\bar{i}_{t}}=C$ and $y_{\bar{i}_{t}}=1$

If the last two do not hold, we can move down further by assigning $d_{\bar{i}_{t}}=0$

## Decomposition in Joachims' $\underset{\text { (continued) }}{\text { SVMlight }}$

## Choice of the working set size $q$

- In the decomposition algorithm, a working set size $q \leq I$ must be chosen
- There is a tradeoff between $q$ and the number of iterations needed for the algorithm to converge
- The higher the working set size $q$, the lower will be the number of iterations needed
- However, with a larger $q$, individual iterations become extremely expensive


## Correctness of the algorithm

- Verify that the algorithm actually minimizes the objective ${ }^{1}$
- When an iteration of the algorithm stops, $d$ is an optimal solution for

$$
\Delta \alpha=\min _{d} \nabla^{\top} f\left(\alpha^{k}\right) d
$$

s.t.

- $\left|\left\{d_{i}: d_{i} \neq 0\right\}\right| \leq q$
- $y^{\top} d=0$
- $d_{i} \in[-1,1]$
- $d_{i} \geq 0$, for $\left(\alpha^{k}\right)_{i}=0$
- $d_{i} \leq 0$, for $\left(\alpha^{k}\right)_{i}=C$
${ }^{1}$ Full proof at http://www.csie.ntu.edu.tw/~cjlin/papers/conv.pdf
Chih-Jen Lin. On the Convergence of the Decomposition Method for Support Vector Machines

When an iteration of the algorithm stops, the following KKT conditions are satisfied, showing that $d$ is an optimal solution:

- $\nabla f\left(\alpha^{k}\right)=-b y+\lambda_{i}-\xi_{i}$
- $y^{\top} d=0$
- $\lambda_{i}\left(d_{i}+1\right)=0$, if $0<\alpha_{i}^{k} \leq C$
- $\lambda_{i} d_{i}=0, \alpha_{i}^{k}=0$
- $\xi_{i}\left(1-d_{i}\right)=0$, if $0 \leq \alpha_{i}^{k}<C$
- $\xi_{i} d_{i}=0$, if $\alpha_{i}^{k}=C$
- $\lambda_{i} \geq 0, \xi_{i} \geq 0, \forall i=1, \ldots, l$
- Assume that $B$ is the working set at the $k$ th iteration, and $N=1, \ldots, / \backslash B$
- If we define $s=\alpha^{k+1}-\alpha^{k}$, then $s_{N}=0$ and
- $f\left(\alpha^{k+1}\right)-f\left(\alpha^{k}\right)$
$=\frac{1}{2} s^{\top} Q s+s^{\top} Q \alpha^{k}-e^{\top} s$
$=\frac{1}{2} s_{B}^{\top} Q_{B B} s_{B}+s_{B}^{\top}\left(Q \alpha^{k}\right)_{B}-e_{B}^{\top} s_{B}$

Thus, in the $k$ th iteration, we solve the following problem with the variable $s_{B}$ :

$$
\min _{s_{B}} \frac{1}{2} s_{B}^{\top} Q_{B B} s_{B}+s_{B}^{\top}\left(Q \alpha^{k}\right)_{B}-e_{B}^{\top} s_{B}
$$

s.t.

- $0 \leq\left(\alpha_{k}+s\right)_{i} \leq C, i \in B$
- $y_{B}^{\top} s_{B}=0$

This is written purely in terms of the basis $B$ components, ignoring the function of $s_{N}$ in the objective which does not depend on $s_{B}$

Using the KKT conditions that the optimal solution $s_{B}$ must satisfy, we show a sufficient decrease of $f(\alpha)$ over the iterations:

- $f\left(\alpha_{k+1}\right) \leq f\left(\alpha^{k}\right)-\frac{\sigma}{2}\left\|\alpha^{k+1}-\alpha^{k}\right\|^{2}$
- where, $\sigma=\min _{l}\left(\min \left(\operatorname{eig}\left(Q_{I I}\right)\right)\right)$
- At every step, the function decreases by an amount that does not become insignificant


## Convergence of SMO

- SVM Dual objective:

$$
\min _{\alpha} \frac{1}{2} \alpha^{\top} Q \alpha-e^{\top} \alpha
$$

s.t.

- $0 \leq \alpha_{i} \leq C, \forall i$
- $y^{\top} \alpha=0$
- where:
- $Q$ is positive-semidefinite, and $Q_{i j}=y_{i} y_{j} \phi^{\top}\left(x_{i}\right) \phi\left(x_{j}\right)$
$-e=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right] \in \mathbf{R}^{n}$
- We split the constraint $0 \leq \alpha_{i} \leq C, \forall i$ into:
- $-\alpha_{i} \leq 0$, with the Lagrange multiplier $\theta_{i}$
- $\alpha_{i} \leq C$, with the Lagrange multiplier $\Gamma_{i}$
- and, consider $y^{\top} \alpha=0$, with the Lagrange multiplier $\beta$
- Thus, we can write the Lagrangian as:

$$
L(\alpha, \theta, \Gamma, \beta)=\frac{1}{2} \alpha^{\top} Q \alpha-e^{\top} \alpha-\theta^{\top} \alpha+\Gamma^{\top}(\alpha-C)+\beta y^{\top} \alpha
$$ s.t. $\forall i$,

- $\theta_{i} \geq 0$
- $\Gamma_{i} \geq 0$
- $\theta_{i} \alpha_{i}=0$
- $\Gamma_{i}\left(\alpha_{i}-C\right)=0$
- Taking $\nabla_{\alpha} L=0$, we get:
$Q \alpha-e-\theta+\Gamma+\beta y=0$
- If $\alpha_{i}=0, \alpha_{i}-C \neq 0$ and thus $\Gamma_{i}=0$
- $(Q \alpha)_{i}-1-\theta_{i}+\beta y_{i}=0$

$$
\Longrightarrow \theta_{i}=(Q \alpha)_{i}-1+\beta y_{i}
$$

- As $\theta_{i} \geq 0$,

$$
(Q \alpha)_{i}-1+\beta y_{i} \geq 0
$$

- If $\alpha_{i}=C, \theta_{i}=0$
- $(Q \alpha)_{i}-1+\Gamma_{i}+\beta y_{i}=0$

$$
\Longrightarrow-\Gamma_{i}=(Q \alpha)_{i}-1+\beta y_{i}
$$

- As $\Gamma_{i} \geq 0$,

$$
(Q \alpha)_{i}-1+\beta y_{i} \leq 0
$$

- If $\alpha_{i} \in(0, C), \theta_{i}=0$ and $\Gamma_{i}=0$
- Thus,

$$
(Q \alpha)_{i}-1+\beta y_{i}=0
$$

Let us define the following sets of indices $i$

- $I_{0}(\alpha)=\left\{i: 0<\alpha_{i}<C\right\}$
- $I_{1}(\alpha)=\left\{i: y_{i}=+1, \alpha_{i}=0\right\}$
- $I_{2}(\alpha)=\left\{i: y_{i}=-1, \alpha_{i}=C\right\}$
- $I_{3}(\alpha)=\left\{i: y_{i}=+1, \alpha_{i}=C\right\}$
- $I_{4}(\alpha)=\left\{i: y_{i}=-1, \alpha_{i}=0\right\}$

Let us now consider
(1) $I_{0}(\alpha) \cup I_{1}(\alpha) \cup I_{2}(\alpha)$

$$
\begin{aligned}
= & \left\{i: y_{i}=+1, \alpha_{i}<C\right\} \cup\left\{i: y_{i}=-1, \alpha_{i}>0\right\} \\
& -\left((Q \alpha)_{i}-1\right) y_{i} \geq-\beta
\end{aligned}
$$

(2) $I_{0}(\alpha) \cup I_{3}(\alpha) \cup I_{4}(\alpha)$

$$
\begin{aligned}
= & \left\{i: y_{i}=+1, \alpha_{i}>0\right\} \cup\left\{i: y_{i}=-1, \alpha_{i}<C\right\} \\
& \cdot\left((Q \alpha)_{i}-1\right) y_{i} \leq-\beta
\end{aligned}
$$

Here, $\left((Q \alpha)_{i}-1\right) y_{i}$ is equivalent to $(\nabla f(\alpha))_{i} y_{i}$ from the decomposition algorithm in Joachims' SVM ${ }^{\text {light }}$

Thus, we have:

$$
\min _{i \in I_{0} \cup I_{1} \cup I_{2}}((Q \alpha)-1) y_{i} \geq \max _{i \in I_{0} \cup I_{3} \cup I_{4}}((Q \alpha)-1) y_{i}
$$

We get:

$$
\begin{gathered}
\min \left(\min _{y_{i}=+1, \alpha_{i}>0}-(\nabla f(\alpha))_{i}, \min _{y_{i}=-1, \alpha_{i}<C}(\nabla f(\alpha))_{i}\right) \\
\geq \\
\max \left(\max _{y_{i}=+1, \alpha_{i}<C}-(\nabla f(\alpha))_{i}, \max _{y_{i}=-1, \alpha_{i}>0}(\nabla f(\alpha))_{i}\right)
\end{gathered}
$$

Let the $\min$ be attained at index $l$, and max be attained at index $j$. If for $(I, j)$, the inequality is violated, the KKT conditions are violated.

We need to prove that for all such choices of $I$ and $j$ across iterations, $\forall k$,

$$
f\left(\alpha^{k+1}\right) \leq f\left(\alpha^{k}\right)-\frac{\sigma}{2}\left\|\alpha^{k+1}-\alpha^{k}\right\|^{2}
$$

s.t. $\sigma>0$, and $\alpha^{k+1} \neq \alpha^{k}$

Once we find $I$ and $j$, we will find closed form solutions for $\alpha_{I}^{k+1}=g\left(\alpha_{I}^{k}, \alpha_{j}^{k}, \alpha_{N}^{k}\right)$
$\alpha_{j}^{k+1}=\bar{g}\left(\alpha_{l}^{k}, \alpha_{j}^{k}, \alpha_{N}^{k}\right)$
(which have been discussed before)

- Whatever be the values of $\alpha_{I}^{k+1}$ and $\alpha_{j}^{k+1}$, we will have:
- $y_{l} \alpha_{I}^{k+1}+y_{j} \alpha_{j}^{k+1}=-y_{N}^{\top} \alpha_{N}^{k}$ (constant)
- Thus, we can say that if $\alpha_{l}$ changes linearly, then $\alpha_{j}$ also changes linearly
- We can replace $\alpha_{l}^{k+1}$ and $\alpha_{j}^{k+1}$ as:

$$
\begin{aligned}
& \alpha_{l}(t) \leftarrow \alpha_{l}^{k+1} \\
& \alpha_{j}(t) \leftarrow \alpha_{j}^{k+1}
\end{aligned}
$$

- $\alpha_{l}$ and $\alpha_{j}$ vary linearly with $t$
- $\alpha_{l}(t) \equiv \alpha_{I}^{k}+t y=\alpha_{I}^{k}+\frac{t}{y_{l}}$
- $\alpha_{j}(t) \equiv \alpha_{j}^{k}+t y=\alpha_{j}^{k}+\frac{t}{y_{j}}$
- Let $f(\alpha)=\psi(t)$
- $\psi$ is a function of $\alpha_{N}, \alpha_{l}(t)$, and $\alpha_{j}(t)$
- We need to analyze w.r.t. $\bar{t}$ that minimizes $\psi(t)$ subject to constraints
- $\sum \alpha_{i} y_{i}=0$
- $\alpha_{i} \in[0, C]$
- That would give
- $\alpha^{k}=\left[\begin{array}{c}\alpha_{N}^{k} \\ \alpha_{j}^{k} \\ \alpha_{l}^{k}\end{array}\right]$, and $\alpha^{k+1}=\left[\begin{array}{c}\alpha_{N}^{k} \\ \alpha_{j}^{k}+\frac{\bar{t}}{y_{j}} \\ \alpha_{l}^{k}+\frac{t}{y_{l}}\end{array}\right]$
- $\alpha^{k+1}-\alpha^{k}=\left[\begin{array}{c}0 \\ \frac{\bar{t}}{y_{j}} \\ \frac{t}{y_{l}}\end{array}\right]$
- Taking norm on both sides, we get:

$$
\begin{aligned}
& \left\|\alpha^{k+1}-\alpha^{k}\right\|=2 \bar{t}^{2} \\
& \Longrightarrow|\bar{t}|=\frac{1}{\sqrt{2}}\left\|\alpha^{k+1}-\alpha^{k}\right\|
\end{aligned}
$$

- Now, $\psi(t)$ is a quadratic function on $t$
- Thus, $\psi(t)=\psi(0)+\psi^{\prime}(0)+\psi^{\prime \prime}(0) \frac{t^{2}}{2}$
- $\psi^{\prime}(t)=\sum_{i=1}^{m}(\nabla f(\alpha(t)))_{i} \frac{d \alpha_{i}(t)}{d t}$
$=y_{I}(\nabla f(\alpha(t)))_{I}-y_{j}(\nabla f(\alpha(t)))_{j}$
$=y_{l}\left(\sum_{i=1}^{m} Q_{l i} \alpha_{i}(t)-1\right)-y_{j}\left(\sum_{i=1}^{m} Q_{j i} \alpha_{i}(t)-1\right)$
- $\psi^{\prime}(0)=y_{l}\left(\nabla f\left(\alpha^{k}\right)\right)_{I}-y_{j}\left(\nabla f\left(\alpha^{k}\right)\right)_{j}$
- $\psi^{\prime \prime}(t)=Q_{I I}+Q_{j j}-2 y_{l} y_{j} Q_{l j}$

$$
\begin{aligned}
= & \phi^{\top}\left(x_{l}\right) \phi\left(x_{l}\right)+\phi^{\top}\left(x_{j}\right) \phi\left(x_{j}\right)-2 \phi^{\top}\left(x_{l}\right) \phi\left(x_{j}\right) \\
& \text { - } \psi^{\prime \prime}(0)=\left\|\phi\left(x_{l}\right)-\phi\left(x_{j}\right)\right\|^{2}
\end{aligned}
$$

- $\bar{t}$ minimizes $\psi(t)$ s.t. $\sum \alpha_{i} y_{i}=0$ and $\alpha_{i} \in[0, C], \forall i$

$$
|\bar{t}|=\frac{1}{\sqrt{2}}\left\|\alpha^{k+1}-\alpha^{k}\right\|
$$

- Suppose $t^{*}$ minimizes $\psi(t)$ without constraints
- Solving for $\psi^{\prime}\left(t^{*}\right)=0$, we get: $t^{*}=-\frac{\psi^{\prime}(0)}{\psi^{\prime \prime}(0)}$
- $\psi(\bar{t}) \geq \psi\left(t^{*}\right)$
- We can say that $\bar{t}=\gamma t^{*}$, where $\gamma \in[0,1]$ (you could have gone till $t^{*}$ but had to halt at $\bar{t}$ due to constraints)
- $\psi(\bar{t})=\psi\left(\gamma t^{*}\right)=\psi\left(-\gamma \frac{\psi^{\prime}(0)}{\psi^{\prime \prime}(0)}\right)$

$$
\begin{aligned}
& =\psi(0)+\psi^{\prime}(0)\left(-\gamma \frac{\psi^{\prime}(0)}{\psi^{\prime \prime}(0)}\right)+\frac{\psi^{\prime \prime}(0)}{2}\left(-\gamma \frac{\psi^{\prime}(0)}{\psi^{\prime \prime}(0)}\right)^{2} \\
& =\psi(0)-\gamma \frac{\left(\psi^{\prime}(0)\right)^{2}}{\psi^{\prime \prime}(0)}+\frac{\gamma^{2}}{2} \frac{\left(\psi^{\prime}(0)\right)^{2}}{\psi^{\prime \prime}(0)}
\end{aligned}
$$

- Since $\gamma \in[0,1], \gamma^{2} \leq \gamma$, and $\frac{\gamma^{2}}{2}-\gamma \leq-\frac{\gamma^{2}}{2}$
- Thus, $\psi(\bar{t}) \leq \psi(0)-\frac{\gamma^{2}}{2} \frac{\left(\psi^{\prime}(0)\right)^{2}}{\psi^{\prime \prime}(0)}$

$$
\begin{aligned}
& \Longrightarrow \psi(\bar{t})-\psi(0) \leq-\frac{\gamma^{2}}{2} \frac{\left(\psi^{\prime}(0)\right)^{2}}{\psi^{\prime \prime}(0)} \\
& \Longrightarrow \psi(\bar{t})-\psi(0) \leq-\frac{\psi^{\prime \prime}(0)}{4}\left\|\alpha^{k+1}-\alpha^{k}\right\|^{2}
\end{aligned}
$$

- This becomes:

$$
f\left(\alpha^{k+1}\right)-f\left(\alpha^{k}\right) \leq-\frac{\sigma}{2}\left\|\alpha^{k+1}-\alpha^{k}\right\|^{2}
$$

- where, $\sigma=\frac{\psi^{\prime \prime}(0)}{2}=\frac{1}{2}\left\|\phi\left(x_{l}\right)-\phi\left(x_{j}\right)\right\|^{2}$
- $\sigma>0$ except when feature vector $\phi\left(x_{l}\right)$ is the same as $\phi\left(x_{j}\right)$
- We assume $Q$ to be positive-semidefinite so that $\psi^{\prime \prime}(0) \geq 0$
- But in the analysis of general decomposition, we assumed $Q_{/ /}$to be positive-semidefinite for any submatrix of $Q$, which is a stronger assumption

