2 Equivalent definitions of affine sets:
(i)
$$\forall x_{1,1}x_{2} \in S$$
 $\theta_{1}x_{1} + \theta_{2}x_{2} \in S$ $\theta_{1} + \theta_{2} = 1$
(a) $\int x_{1,1}x_{2} \in S$ $\theta_{1}x_{1} + \theta_{2}x_{2} \in S$ $\theta_{1} + \theta_{2} = 1$
(b) $\int x_{1,1}x_{2} + \theta_{2}x_{2} = b$ for some matrix A
Proof:
(c) $\Rightarrow (2)$ is trivial since $Ax_{1} = b + Ax_{2} = b$
 $\Rightarrow A(\theta_{1}x_{1} + \theta_{2}x_{2}) = b$ if $\theta_{1} + \theta_{2} = 1$
 $\Rightarrow A(\theta_{1}x_{1} + \theta_{2}x_{2}) = b$ if $\theta_{1} + \theta_{2} = 1$
 $\Rightarrow A(\theta_{1}x_{1} + \theta_{2}x_{2}) = b$ if $\theta_{1} + \theta_{2} = 1$
 $\Rightarrow A(\theta_{1}x_{1} + \theta_{2}x_{2}) = b$ if $\theta_{1} + \theta_{2} = 1$
 $\Rightarrow (2) - \dots$ suggestion: Subtract p $\in S$ from S
 $P(e + S_{p} = S - p + S + 0)$ $S = 1$ is a vis

For answer: pages 145 to 181 of http://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

Thus:

The system of equations $A\mathbf{x} = \mathbf{b}$ is solvable when \mathbf{b} is in the column space C(A).

Another way of describing solvability is:

The system of equations $A\mathbf{x} = \mathbf{b}$ is solvable if a combination of the rows of A produces a zero row, the requirement on \mathbf{b} is that the same combination of the components of \mathbf{b} has to yield zero.

Steps to find x particular:

- x_{particular}²: Set all free variables (corresponding to columns with no pivots) to 0. In the example above, we should set x₂ = 0 and x₄ = 0.
- Solve Ax = b for pivot variables.

$$x_{complete} = \begin{bmatrix} -2\\ 0\\ \frac{3}{2}\\ 0 \end{bmatrix} + \begin{bmatrix} -2 & 2\\ 1 & 0\\ 0 & -2\\ 0 & 1 \end{bmatrix} (3.36)$$

$$x_{particular} = x_{nullepare}$$
Shap that $x_{complete} = \Theta x_{i} f(1-\Theta) x_{2}$ for some $x_{i} x_{2} \in \mathbb{R}^{4} \in \Theta \in \mathbb{R}$

$$x_{i} x_{2} \in \mathbb{R}^{4} \in \Theta \in \mathbb{R}$$

$$x_{i} = x_{i} + x_{i} = x_{i}$$

Procedure to obtain A&b given an affine set S OLet pes S-p Then claim: $\{x-p \mid x \in S\}$ is a vector space (all it Sp (all it Sp, A x = 0Basically i.e. rows of A could form basis of A mullspace (3) Identify b = ApBasically the separticular giving you Aspanhealar

ve the in real, ore appropriate nome when x, & x2 ite dimensional Eucledian vector space **line segment** between x_1 and x_2 : all points $x = \theta x_1 + (1 - \theta) x_2$ with $0 \le \theta \le 1$ convex set: contains line segment between any two points in the set $x_1, x_2 \in C, \quad 0 < \theta < 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$ examples (one convex, two nonconvex sets) Aside: (convex sets is connected: https://en.wikipedia.org/wiki/Connected_space Convex sets convex sets con, but not necessarily contains @ $aff(C) \neq O$ O∉ aff(C) C Convex combination and convex

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k \subset \operatorname{COW}\left\{ \left\{ \chi_1, \chi_2 \dots \chi_k \right\} \right\}$$

with $\theta_1 + \dots + \theta_k = 1, \ \theta_i \ge 0$

2 - 4

convex hull conv S: set of all convex combinations of points in S

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

Convex sets

040

2-5

Q: What is the relation between
A=affine set:
$$0_1 + 0_2 = 1$$

 $S = convex set: $0_1 + 0_2 = 1$ $0_1, 0_2 \ge 0$
 $C = convex cone: $0_1, 0_2 \ge 0$
Every affine set is convex ?= Family of affine sets
is subset of family of
Every convex cone is convex .
Every convex cone is convex .
Every convex cone is convex .
Every convex sets
Every convex sets$$

Thus: (a) convex hull (5) = set of all convex denoted conv(s) combinations of pts in S (b) Convex hull (S) = Smallest convex set denoted conv(s) that contains S [Prove as h/w} Also. The idea of a convex combination can be generalised to include infinite sums, integrals, and, in the most general form, probability distributions Sumlarly. (a) conic/MEine hull (s)=set of all conic(s) or aff(s) of pto in s (b) comic (Affine hull (s) = Smallest conic(s) or aff(s) conic affine M-Lconic affine set that contains S

Definitions: In topological space,
$$\{x_i\}$$
 cald converge to
a limit lim x_i
. lim $t = 0$ invested and space
. lim x_i for eveny
. Should consist of S
. Should con

[HIW: Prove that "normed" space is a metric" space]

Inner product space: It is a vector space over a field of scalars along with an inner product an algebraic structure with addition, subtraction, multiplication & division eg:1R commutative must associative de exist distributive associative & commutative a Konjugate) symmetry: < x, y) = < y x) 6 Linearity in the first argument $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ <x+y,z7=<x,z)+<y,z> © Positive definiteness: (a, x>>> o with equality \${ x=0