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Matrix Completion
Given matrix A, m × n, only some entries are observed Aij, (i, j) ∈ Ω, the objective is to fill in
the missing entries. This can be used to predict user preferences such as user rating for unseen
movies. The objective is to

min
X∈Rm×m

1

2

∑
(i,j)∈Ω

(Aij − Xij)
2 + λ∥X∥∗ (1)

where ∥X∥∗ is the nuclear norm of X and is given by

∥X∥∗ =
r∑

i=1

σi(X)

where r = rank(X) and σi is the ith singular value.
To solve this first lets define a projection operator onto the observed set

[PΩ(X)]ij =
{

Xij (i, j) ∈ Ω
0 otherwise
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Matrix Completion
The objective is to minimize the following function

f(X) = 1

2
∥PΩ(A)− PΩ(X)∥2F + λ∥X∥∗

which has the same form as f(x) + c(x). Now projection function is convex and the Frobenius
norm is differentiable and convex and the nuclear norm is convex but not differentiable. Here
we can apply generalized gradient descent. The gradient is ∇g(X) = −(PΩ(A)− PΩ(X)) and
the prox function is

proxt(X) = arg min
Z∈Rm×n

1

2t∥X − Z∥2F + λ∥Z∥∗

If we select proxt(X) = Z then Z should satisfy

0 ∈ Z − X + λt.δ∥Z∥∗ (2)

We recap discussion from quiz 2, problem 3 which was about the restricted case where X and
Z were restricted to be diagonal matrices and the solution was obtained simply using ISTA
(Lasso)
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Quiz 2, Problem 3: The simpler case of Matrix Completion
Consider solving the following problem of determining proximal (diagonal matrix Z ∈ ℜn×n)
solution to Z = proxt(X) with the non-differentiable function, called the nuclear norm
c(Z) = ∥Z∥∗. Here X ∈ ℜn×n is also a diagonal matrix but is fixed (in an iteration). More
specifically,

proxt(X) = arg min
Z∈Rn×n,Z is diagonal

1

2
∥X − Z∥2F + λ∥Z∥∗

Here ∥Z∥∗ is the nuclear norm and equals the sum of its singular values. For a diagonal matrix
Z, ∥Z∥∗ equals the sum of absolute value of its diagonal elements and can be assumed to be a
convex non-differentiable function.
The solution can be EITHER worked out along same lines as LASSO OR simply
recovered from the homework problem and its solution presented in the class by
vectorizing the non-zero (diagonal) elements of X and Z to vectors x and z respectively such
that Xii = xi and Zjj = zj (and also setting t = 1/2) and applying proximal descent step on
Lasso:
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Quiz 2, Problem 3: The simpler case of Matrix Completion (contd.)

Recap from class from the Iterative Soft Thresholding Algorithm:
Compute w(k+1) = argmin

w
||w − ŵ(k+1)||22 + λt||w||1 by:

1 If ŵ(k+1)
i > λt/2, then w(k+1)

i = −λt/2 + ŵ(k+1)
i

2 If ŵ(k+1)
i < −λt/2, then w(k+1)

i = λt/2 + ŵ(k+1)
i

3 0 otherwise.
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Quiz 2, Problem 3: The simpler case of Matrix Completion (contd.)

Applying the same idea (or deriving along similar lines as discussed in class) with
vectorized(X) = x = ŵ(k+1) and vectorized(Z) = z = w(k+1)

Compute Z = argmin
diagonal Z

||Z − X||22 + 2λ||Z||∗ by:

1 If Xii > λ, then Zii = −λ+ Xii
2 If Xii < −λ, then Zii = λ+ Xii
3 0 otherwise.

Now if we let Z and X be arbitrary non-diagonal matrices but use the Singular Value
Decomoposion for Z as Z = UΣVT then

δ∥Z∥∗ = {UVT + W : W ∈ Rm×n, ∥W∥ ≤ 1,UTW = 0,WV = 0}

. We will see that our solution is a natural generalization of the case of diagonal Z (in Quiz 2,
problem 3).

April 12, 2018 5 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Matrix Completion
If we let Z = UΣλVT then equation 2 holds, here X = UΣVT is the SVD and Σλ is given by
the diagonal matrix

(Σλ)ii = max{Σii − λ, 0}

This is true because X − Z = λUVT ∈ δ∥Z∥∗. Thus the prox function can be written as

proxt(X) = Sλt(X) = UΣλVT

and the generalized gradient update step is

X+ = Sλt(X + t(PΩ(A)− PΩ(X)))

since ∥∇g(Y)−∇g(X)∥F = ∥PΩ(A)− PΩ(X)∥F ≤ ∥Y − X∥F the Lipschitz constant is L = 1
thus the step size can be picked as t = 1 leading to

X+ = Sλ(PΩ(A) + X − PΩ(X)) = Sλ(PΩ(A) + P⊥
Ω(X))

where PΩ(X) + P⊥
Ω(X) = X This is called the soft-impute algorithm for matrix completion.
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Matrix Completion
In the case of matrix completion, acceleration and even backtracking can hurt performance.
The matrix completion problem is described in Lecture 8. Briefly, Given a matrix A, only some
entries (i, j) ∈ Ω of which are visible to you, you want to fill in the rest of entries, while
keeping the matrix low rank. We solve,

min
X

1

2
∥PΩ(A)− PΩ(x)∥2F + λ∥X∥∗

where ∥X∥∗ =
∑r

i=1 σi(x) is the nuclear norm, r is the rank of X and PΩ(·) is the projection
operator, [

PΩ(x)
]

ij =

{
Xij (i, j) ∈ Ω

0 (i, j) /∈ Ω

the gradient descent updates, also known as the soft-impute algorithm are
X+ = Sλ(PΩ(A) + P⊥

Ω(x))
where Sλ(·) is the matrix soft-thresholding operator which requires the SVD to compute as
Sλ(x) = UΣλVT where (Σλ)ii = max{Σii − λ, 0} . Calculating the SVD can be expensive and
can cost upto O(mn2) operations. April 12, 2018 7 / 8


