Midsem 2015

37 Marks, 25% weightage, Open Notes, 2.5 Hours. You can assume anything that was stated in class. I have made every effort to ensure that all required additional assumptions have been stated. If absolutely necessary, do make more assumptions and state them very clearly. Unless I ask you to prove something stated in class, you can assume facts proved or stated in class without proof.

1. Find and classify (as local or global maximum or minimum or as a saddle point) the stationary points for the following function.

$$
f(x)=\left(x_{2}-x_{1}^{2}\right)^{2}+x_{1}^{5}=x_{2}^{2}+\mathbf{x}_{1}^{4}+\mathbf{x}_{1}^{5}-2 x_{2} x_{1}^{2}=\boldsymbol{x}_{2}\left(x_{2}-2 x_{1}^{2}\right)
$$

$$
+x_{1}^{4}+x_{1}^{5}
$$

$$
\nabla f(x)=\left[\begin{array}{c}
5 x_{1}^{4}+4 x_{1}^{3}-4 x_{2} x_{1} \\
2 x_{2}-2 x_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
5 x_{1}^{4}+4 x_{1}\left(x_{1}^{2}-x_{2}\right) \\
2\left(x_{2}-x_{1}^{2}\right)
\end{array}\right]
$$

Solving for $\nabla f\left(x^{*}\right)=0$ we get
$x_{2}=x_{1}^{2} \& x_{1}^{4}=0 \Rightarrow x^{4}=0$ as only critical pant $\nabla^{2} f\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right] \quad$ Whish is p.s.d
Note from theorem 61 of http://www.cse.iitb.ac.in/~cs709/not es/BasicsOfConvexOptimization.p that a sufficient condition for local min is that Hessian is positive definite (whereas $D^{2} f\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$ is only p.5-d)
Thus, we need to find other ways of determining

If $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is local min or max
Consider some pt $\left(\lambda_{1}, \lambda_{2}\right)$ in the neighborhood of $(0,0)$

$$
f\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{2}\left(\lambda_{2}-2 \lambda_{1}^{2}\right)+\lambda_{1}^{4}+\lambda_{1}^{5}
$$

Taking cue from the form of f_{1} consider values along the curve $\lambda_{2}=\lambda_{1}^{2}+\lambda_{1}^{b}$

$$
\stackrel{\text { ie }}{=} f\left(\lambda_{1}, \lambda_{1}^{2}+\lambda_{1}^{3}\right)=\lambda_{1}^{6}-\lambda_{1}^{4}+\lambda_{1}^{4}+\lambda_{1}^{5}=\lambda_{1}^{6}+\lambda_{1}^{5}
$$

We note that for small $\lambda_{1}, f\left(\lambda_{1}, \lambda_{1}^{2}+\lambda_{1}^{3}\right)<0$ if $\lambda_{1}<0$

$$
\begin{array}{lll}
& f\left(\lambda_{1}, \lambda_{1}^{2}+\lambda_{1}^{3}\right)>0 & \text { if } \lambda_{1}>0 \\
\& & f\left(\lambda_{1}, \lambda_{1}^{2}+\lambda_{1}^{3}\right)=0 & \text { if } \lambda_{1}=0 \\
\Rightarrow & x^{*}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { is a saddle pt }
\end{array}
$$

$$
\begin{aligned}
& \text { 2. Find } \boldsymbol{\beta}_{j} \theta \in \Re \text { for which the function } f(x, y)=\beta\left(x^{2}+y^{2}\right)+\theta x y+x+y, y \\
& \text { (a) has no stationary points }
\end{aligned}
$$

(a) has no stationary points
(1 Mark)
(b) has exactly one stationary point and it is a global strict minimum (1 Mark)
(c) has infinite stationary points, and all of them are global minimizer (1 Mark)
In: $\nabla f(x, y)=\left[\begin{array}{ll}2 \beta x+\theta y+1 \\ 2 \beta y+\theta x+1\end{array}\right]=0 \quad \begin{array}{ll}0 \text { requires } \\ & 2 \beta x+\theta y=2 \beta y+\theta x=-1\end{array}$
If $\beta=\theta=0$ then this is impossible
\&se: If $2 \beta+\theta \neq 0$ then $x=y=\frac{-1}{2 \beta+\theta}$ is exactly one \& $\quad \alpha \beta-\theta \neq 0 \quad$ stationary $p t$
Further $\nabla^{2} f(x, y)=[2 \beta \quad \theta \quad 2 \beta+\theta \quad$ Further, $\nabla^{2} f(x . y)=\left[\begin{array}{cc}2 \beta & \theta \\ \theta & 2 \beta\end{array}\right] \quad \begin{array}{ll}\text { statuonary } p t \\ \lambda_{1}+\lambda_{2}=4 \beta \\ \lambda_{1}+\lambda_{2}=2 \beta^{2}-\theta^{2}\end{array}$ \therefore If $4 \beta>0 \& \quad 4 \beta^{2}-\theta^{2}>0 \quad$ ie $\beta^{2}>\frac{\theta^{2}}{4}$

Then f is strictly convex \& $\left[\begin{array}{l}\frac{-1}{2 \beta+\theta} \\ \frac{-1}{2 \beta+\theta}\end{array}\right]$ is global $\begin{aligned} & \text { minimum } \\ & \text { (strict) }\end{aligned}$
Use if $\theta=2 \beta$ then $\theta(x+y)=-1$ corresponds to infinite stationary pto. Further, if (line before) $\beta^{2}>\theta^{2} / 4 \& 4 \beta>0$ then we have infinite global minima (c)

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}+\mathbf{x}^{T} b+c \tag{1}
\end{equation*}
$$

（a）$\left\{\begin{array}{l}\text { Suppose you are told that the quadratic function is convex in a particular }\end{array}\right.$ convex domain \mathcal{D} ．That is，$f(\mathbf{x})$ is convex when $\mathbf{x} \in \mathcal{D}$ ．Is it necessary that $f(\mathbf{x})$ be convex in any other convex domain \mathcal{E} ？
What about strict and strong convexity？
b $\left\{\begin{array}{l}\text { What if } f(\mathbf{x}) \text { were any arbitrary function，convex in a convex domain } \mathcal{D} \text { ？}\end{array}\right.$ Is it necessary that $f(\mathbf{x})$ is also convex in any other convex domain \mathcal{E} ？ Prove your claims．

Ans：Strictly speaking，the answer below requires even in quad case that D should NOT have an empty intener in \mathbb{R}^{n} with dimension less than n（Any one who pons this out gets up to 2 more bo rus marks $]$
eg：If $D=\left\{[x, 0 \ldots 0] \mid x_{1} \in \mathbb{R}\right\} \quad f(x)=a_{11} x_{1}^{2}+b_{1} x_{1}+c$ which is（sliretly）converse in x_{1} if $a_{11}>0$
（b） However $\nabla^{2} f(x)=A$ may not be posture definite \＆$\therefore f(x)$ may not be strictly convex un R^{n} \＆its several subsets even if $f(x)$ is convex on

$$
D=\left\{\left(x_{1}, \cdots 0\right) \mid x_{1} \in \mathbb{R}\right\}
$$

Now suppose D has nonempty interior in \mathbb{R}^{n} ．Then （a）f is differentiable \＆doubly differentiable in the interior
of $D \& \therefore D^{2} f(x)=A$
if f is convex on D then $\nabla^{2} f(x)=A \geq 0$
$\Rightarrow f$ is convex on any subset of \mathbb{R}^{n} Ditto for strict convererty \& strong cenvesuts
4. The set of subgradients of a function f at a point \mathbf{x} is called its subdifferential $\partial f(\mathbf{x})$.
(a) Prove that the subdifferential $\partial f(\mathbf{x})$ is a closed convex set.
(b) Prove that if $f(\mathbf{x})=\alpha_{1} f_{1}(\mathbf{x})+\alpha_{2} f_{2}(\mathbf{x})$ with $\alpha_{1}, \alpha_{2} \geq 0$, then

$$
\partial f(\mathbf{x})=\alpha_{1} \partial f_{1}(\mathbf{x})+\alpha_{2} \partial f_{2}(\mathbf{x})
$$

where RHS is element-wise addition between two sets. That is,

$$
\alpha_{1} \partial f_{1}(\mathbf{x})+\alpha_{2} \partial f_{2}(\mathbf{x})=\left\{\mathbf{g} \mid \mathbf{g}=\alpha_{1} \mathbf{g}_{1}+\alpha_{2} \mathbf{g}_{2}, \mathbf{g}_{1} \in \partial f_{1}(\mathbf{x}), \mathbf{g}_{2} \in \partial f_{2}(\mathbf{x})\right\}
$$

Ans: © $\partial f(x)=\left\{g \mid f(y) \geqslant f(x)+g^{\top}(y-x) \quad \forall y \in d m n f\right\}$
if $g_{1}, g_{2} \in \partial f(x) \& \alpha \in[0,1]$
then $\quad f(x)+\left(\alpha g_{1}+(1-\alpha) g_{2}\right)^{\top}(y-x)$

$$
\begin{aligned}
& =\alpha\left(f(x)+g_{1}^{\top}(y-x)\right)+(1-\alpha)\left(f(x)+g_{2}^{\top}(y-x)\right) \\
& \leq \alpha f(y)+(1-\alpha) f(y) \quad\left[\because g_{1}, g_{2} E \partial f(x)\right] \\
& =f(y)
\end{aligned}
$$

$$
\Rightarrow \alpha g_{1}+(1-\alpha) g_{2} \in \partial f(x) \text { 步 } \partial f(x) \text { is convex }
$$

Farther of (x) is intersection of infinite half spaces, each being a closed (convex) set...ne

$$
\begin{aligned}
& \partial f(x)=\bigcap_{y \in d m n f}\left\{g \mid f(y) \geq f(x)+g^{x}(y-x)\right\} \\
& \Rightarrow \partial f(x) \text { is closed }
\end{aligned}
$$

(b) Proof in two parts (the latter is non-trivial \& involves separation theorem \& therefore will be given 3 extra marks if solved. Further, the latter requires more assumptions. So a.counter example to disperse call fetch 2 extra marks)
(i) $\alpha_{1} \partial f_{1}(x)+\alpha_{2} \partial f_{2}(x) \subseteq \partial\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)$

If $g_{1} \in \partial f_{1}(x) \& g_{2} \in \partial f_{2}(x)$ then $\forall y \in d m \cap f_{1} \cap d m n f_{2}$

$$
\begin{aligned}
& f_{1}(y) \geqslant f_{1}(x)+g_{1}^{t}(y-x) * \alpha_{1} \geqslant 0 \\
& f_{2}(y) \geqslant f_{2}(x)+g_{2}^{t}(y-x) * \alpha_{2} \geqslant 0 \\
& \alpha_{1} f_{1}(y)+\alpha_{2} f_{2}(y) \geqslant\left(\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)\right)+\left(\alpha_{1} g_{1}^{t}+\alpha_{2} g_{2}^{t}\right)(y-x) \\
& \Rightarrow \alpha_{1} g_{1}+\alpha_{2} g_{2} \in \partial\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)
\end{aligned}
$$

(ii) $\partial\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x) \subseteq \alpha_{1} \partial f_{1}(x)+\alpha_{2} \partial f_{2}(x)$

Let $g \in \partial\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)$
Let

$$
\begin{aligned}
& S_{f_{1}}=\left\{(y-x, z) \in \mathbb{R}^{n} \times \mathbb{R}: 2>f_{1}(y)-f_{1}(x)-g^{\top}(y-x)\right\} \\
& S_{f_{2}}=\left\{(y-x, z) \in \mathbb{R}^{n} \times \mathbb{R} \mid-z>f_{2}(y)-f_{2}(x)-g^{\top}(y-x)\right\}
\end{aligned}
$$

Requires int $\left(\operatorname{dmn} f_{1} \cap \operatorname{dmn} f_{2}\right) \neq \varnothing$
(c) Derive a generic expression for any element of $\partial f(0)$ for $f(x)=|x|$ where $x \in \Re$.
(d) For a non-differentiable (but let us say continuous on its convex do main D) convex function $f(\mathbf{x})$ defined on $\mathbf{x} \in D$, derive and prove neccessary and sufficient condition for global minimum at $\mathbf{x}^{*} \in D$ in terms of some condition on $\partial f\left(\mathbf{x}^{*}\right)$.

$$
\begin{equation*}
\forall g \in \partial f\left(x^{+}\right), \quad f(y) \geqslant f\left(x^{+}\right)+g^{\top}\left(y-x^{+}\right) \tag{1}
\end{equation*}
$$

Needed: $f(y) \geqslant f\left(x^{*}\right) \forall y \in D$
Obviously: $g=O \in D$ will be a sufficient condition for (2) given (1)
from (1), in fact $g^{\top}\left(y-x^{-}\right) \geqslant 0 \forall y \in D$ is itself a sufficient' condition
Next: Suppose $f(y) \geqslant f\left(x^{*}\right) \quad \forall y \in D$ ie (2) hods Then obviously (1) must hold for $g=0$. Thus $g=0$ ie $0 \in \partial f\left(x^{+}\right)$is a necessary condition as well for x^{*} to be a pt of global minimum
$\therefore O \operatorname{cof}\left(x^{+}\right)$is a necessary 4 sufficient condition
(e) Prove the conjugate subgradient theorem, which states that if f is a closed convex function, then for any $\mathbf{x}_{1}, \mathbf{x}_{2}$

$$
\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle=f\left(\mathbf{x}_{1}\right)+f^{*}\left(\mathbf{x}_{2}\right)
$$

holds if and only if

$$
\mathbf{x}_{2} \in \partial f\left(\mathbf{x}_{1}\right)
$$

where $f^{*}(\mathbf{x})$ is the convex conjugate of $f(\mathbf{x})$

$$
f^{x}\left(x_{2}\right)=\sup _{x \in \lambda}\left\{\left\langle x_{1} x_{2}\right\rangle-f(x)\right\}(1) \rightarrow f^{2 x}\left(x_{2}\right) \geqslant\left\langle x_{9} x_{2}\right\rangle-f(x) \forall x
$$

We hare stated in class that if f is closed convex (ie epi f is closed) then

$$
f\left(x_{1}\right)=\sup _{x}\left\{\left\langle x_{1}, x\right\rangle-f^{d}(x)\right\}(2) \rightarrow f\left(x_{1}\right) \geqslant\left\langle x_{1}, y\right\rangle-f^{2}(x) \forall x
$$

From (1) \& (2) $x_{2} \in \partial f\left(x_{1}\right) \Longleftrightarrow x_{1} \in \partial f^{2}\left(x_{2}\right)$
ie $f\left(x_{1}\right)+f^{+}\left(x_{2}\right)=\left\langle x_{1}, x_{2}\right\rangle$ inf $x_{2} \in \partial f\left(x_{1}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x}) \\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0 \quad \text { for } i=1 \ldots m \tag{2}
\end{array}
$$

where f and g_{i} 's are closed convex functions.
We will discuss two ways of reformulating this problem:
Let $S_{g_{i}}=\left\{y \mid g_{i}(y) \leq 0\right\}$
$S g_{i}$ is a convex for

in) (5 Marks)
(a) (i) We can prove that $\delta I_{g}(x)=\left\{g \mid g^{\top} y \leq g^{\top} x \quad \forall y\right\}$

$$
\left.I_{g}(y) \geqslant I_{g}(x)+\sin \text { grad } d x\right)(y-x) \quad \forall y
$$

齿: $g:(x) \leq 0$ then $0 \geqslant$ subradif $(x)[y-x)$ is necospay \&aryckient
$\underline{\text { Le }} \partial I_{g ;}(x)=\left\{g \mid g^{\top} y \leq g^{\top} x \forall y \in S_{g_{i}}\right\}=\bigcap_{y \in S g_{i}}\left\{g \mid g^{\top}(y-x) \leq 0\right\}=$ intersection of half space $\begin{aligned} & \text { of infinite hyperplane through }\end{aligned}$ origin = closed
\therefore I $g_{i}[x)$ is a dosed convex cone $\forall x!g_{i}(x) \leq 0$

$$
\operatorname{Ig}_{i}(x)=\phi \text { if } x: g_{i}(x)>0
$$

(ii) There are multiple ways to achieve it:-
$\lim _{x \rightarrow \infty} \operatorname{man}_{x} f(x)+\lambda \sum_{i} I_{g}(x)$ Equivalat to redeffing

$$
\begin{array}{ll}
I_{g}(x)=0 & \text { if } g_{i}(x) \leq 0 \\
f_{0} & =\infty
\end{array}
$$

$\min _{x} \max _{x_{i}} f(x)+\sum_{i} \lambda_{i} I_{j} \cdot(x) \quad f$ amy $=\infty \min _{x} f_{f(x)} f+\sum_{i} I_{j} ;(x)$
(III) Necessary \& sufficient conditions for optimality (from Q_{4}): Lat $I_{g_{i}}(x)=0$ of $g_{i}(x) \leqslant 0$

$$
\begin{aligned}
& O \in \partial\left(f(x)+\sum I_{g_{i}} \cdot(x)\right) \underbrace{}_{\partial I_{g_{i}}(x)}=\left\{g \mid g^{\top} y \leq g^{\top} x \quad \forall y: g_{i}(y) \leq 0\right\} \\
& \& \quad \text { if } g_{i}(x) \leqslant 0
\end{aligned}
$$

(b) We define the following Conic Linear Program (Conic LP):

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{x} \in \mathcal{K} \tag{3}
\end{array}
$$

where \mathcal{K} is a closed convex cone. Prove that corresponding to any convex optimization problem of the form (2), there exists a corresponding Conic LP (3) which has the same solution. Your proof is by deriving the conic program corresponding to the convex optimization problem.
Extra and Optional: Now how would you derive the convex conjugate for the Conic LP (3). What is its relation with the dual cone K*?
(6 Marks)

Clan:

$$
\begin{aligned}
& C=\left\{x \mid g_{1}(x) \leq 0 \quad \forall x\right\} \\
& K=\left\{\left(x_{1} y\right) \left\lvert\, y>0 \quad \frac{x \in C}{y}\right.\right\} \underbrace{\text { is a cone }}_{\text {Need to add }} \\
& \frac{\alpha_{1} x_{1}+\alpha_{2} x_{2}}{\alpha_{1} y_{1}+\alpha_{2} y_{2}}= \frac{\alpha_{1} y_{1}}{\alpha_{1} y_{1}+\alpha_{2} y_{2}}\left(\frac{x_{1}}{y_{2}}\right) \\
& \frac{+\frac{\alpha_{2} y_{2}}{\alpha_{1} y_{1}+\alpha_{2} y_{2}}\left(\frac{x_{2}}{y_{2}}\right) \in C}{}
\end{aligned}
$$

We will have:

$$
\begin{array}{r}
g_{i}(x) \leq 0 \quad \forall i \Longleftrightarrow(x, 1) \in K=\{(x, y) \mid y>0 \\
g_{i}(x / y) \leq 0 \\
\forall i\}
\end{array}
$$

Given

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { sit. } g_{i}(x) \leq 0
\end{aligned}
$$

We equivalently formulate

$$
\begin{aligned}
& \min t \\
& x, t \\
& f(x)-t \leqslant 0 \\
& g_{i}^{\prime}(x) \leqslant 0
\end{aligned}
$$

Or equivalently

$$
\begin{aligned}
& m \text { t } \\
& x, t \\
& (x, t, 1) \in\left\{(x, t, y) \left\lvert\, \begin{array}{rl}
f(x / y)-t / y \leq 0
\end{array}\right.\right. \\
& \left.g_{y>0} g_{i}(x / y) \leq 0 \quad \forall i\right\} \\
& \cup\{(0,0,0)\} \\
& \text { A convex cone } K
\end{aligned}
$$

(6) Consider the direct sum of the inner product spaces $\mathcal{I}_{1} \oplus \mathcal{I}_{2}$ given by $\mathcal{I}_{1} \oplus \mathcal{I}_{2}=\left(V_{1} \times V_{2},+_{3}, *_{3},<>_{3}\right)$ such that, for all $v_{11}, v_{12} \in V_{1}$ and $v_{21}, v_{22} \in V_{2}$ and $\alpha \in \Re$

$$
\alpha *_{3}\left(v_{11}, v_{21}\right)=\left(\alpha *_{1} v_{11}, \alpha *_{2} v_{21}\right)
$$

and

$$
\left(v_{11}, v_{21}\right)+_{3}\left(v_{12}, v_{22}\right)=\left(v_{11}+{ }_{1} v_{12}, v_{21}+{ }_{2} v_{22}\right)
$$

Let $K_{1} \subset V_{1}$ and $K_{2} \subset V_{2}$ be closed convex cones. Now answer the following questions:
i. Is $K_{1} \times K_{2}$ a closed convex cone?
ii. Write an expression for the dual cone $\left(K_{1} \times K_{2}\right)^{*}$ in terms of the dual cones K_{1}^{*} and K_{2}^{*}. Prove that your answer is correct.
(7 Marks)
Soln: (1) Yes. For any $\theta \& \lambda \geqslant 0, V_{11}, V_{12} \in K_{1} \quad V_{21}, V_{22} \in K_{2}$

$$
\begin{aligned}
\theta_{23}\left(v_{11}, v_{21}\right)+\lambda_{3} \lambda_{\cdot 3}\left(v_{12}, v_{22}\right) & =(\underbrace{\theta_{1} v_{11}+\lambda_{1} v_{12}}_{E K_{1}}, \underbrace{\theta_{\cdot 2} v_{21}+_{2} \lambda_{\cdot 2} v_{22}}_{E K_{2}}) \\
& \in K_{1} \times K_{2}
\end{aligned}
$$

$\Rightarrow K_{1} \times K_{2}$ is a convex cone. It is also closed

$$
\text { (2) }\left(k_{1} \oplus K_{2}\right)^{x}=\left(k_{1}^{*} \oplus k_{2}^{*}\right)
$$

We prove that

$$
\begin{gathered}
x \in\left(K_{1} \oplus K_{2}\right)^{*}, y \delta\left\langle x_{1} v\right\rangle \geqslant 0 \quad \forall v \in K_{1} \times K_{2} \\
\left(x=\left(x_{1}, x_{2}\right), v=\left(v_{1}, v\right)=\left\langle x_{1}, v_{1}\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \forall v_{1} \in K \& v_{2} \in K_{2}\right.
\end{gathered}
$$

(ie if) $x_{1} \in K_{1}^{\prime} \& x_{2} \in K_{2}^{* \cdot(B)}$

That (B) \Rightarrow (A) is obvious since

$$
\begin{aligned}
x_{1} \in K_{1}^{+} \& x_{2} \in K_{2}^{*} & \Rightarrow\left\langle x_{1}, v_{1}\right\rangle_{1} \geqslant 0 \quad \&\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \\
& \forall v_{1} \in K_{1}, v_{2} \in K_{2} \\
& \Rightarrow\left\langle x_{1}, v_{1}\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2}=\langle x, v\rangle_{3} \geqslant 0 \\
& \Rightarrow x \in\left(K_{1} \oplus K_{2}\right)^{*}
\end{aligned}
$$

To prove (A) $\Rightarrow(B)$ ie $\left\langle x_{1} v_{1}\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \forall \begin{aligned} & v_{1} \in K_{1} \\ & v_{2} \in K_{2}\end{aligned}$ $v_{2} \in K_{2}$

$$
\Rightarrow\left\langle x_{1}, v_{1}\right\rangle_{1} \geqslant 0 \quad \& \quad\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0
$$

Taking $V_{1}=O$ (since $O \in K_{1}$), we get from (A) that

$$
\begin{aligned}
& \left\langle x_{1}, 0\right\rangle_{1}+\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \quad \forall \quad v_{2} \in K_{2} \\
& \Rightarrow\left\langle x_{2}, v_{2}\right\rangle_{2} \geqslant 0 \quad \forall v_{2} \in K_{2}
\end{aligned}
$$

Taking $V_{2}=0$ (since $O \in K_{2}$) we get from (B) that

$$
\begin{aligned}
& \left\langle x_{1}, v_{1}\right\rangle_{1}+\left\langle x_{2}, 0\right\rangle_{2} \geqslant 0 \quad \forall \quad v_{1} \in K_{1} \\
\Rightarrow & \left\langle x_{1}, v_{1}\right\rangle_{1} \geqslant 0 \quad \forall v_{1} \in K_{1}
\end{aligned}
$$

Hence proved if condition

