
Prof. Ganesh Ramakrishna

Handouts on:

Pumping Lemma, CYK algorithm,
Undecidability, Reduction and

Turing Machines

Pumping Lemma [Bar Hillel lemma]

• For FSMs we used a diagonalization tool called
the pumping lemma

• Similar trick for PDMs may not work
– If 1101001 is accepted by an FSM, then

1101001001001001 should also be accepted
– But same does not hold for PDMs, because the

transitions are determined not only based on tape
symbol but also based on symbol on top of the stack.

• Ironically, you look at pumping lemma for
Context free languages through the grammars
(CFGs) rather than the machine equivalents
(PDMs)

Pumping lemma and parse trees
• Consider the grammar

– A � BC | 0

– B � BA | 1 | CC

– C � AB | 0

• Consider the string 11100001 and the corresponding parse tree

A

B C

A BB A

B C

A B

1

1

C CB C

0001

10

Loop in the parse tree

• Since there are only 3 non-terminals, if we find a path of length >= 4
starting from a leaf, we will find a duplicate

– The first non-terminal that repeats itself on a path form a leaf to the root

marks a duplicate (marked with a * in the parse tree below)

A

B C

A BB A*

B C

A* B

1

1

C CB C

0001

10

Loop in parse tree

• How long should the string be to ensure
duplicates?

• If the grammar has n non-terminals, the
string should be at least of exponential
length (around 2n) to ensure a duplicate in
some path.

• We can hide this 2n conversion by asking
the adversary for m=2n and work directly
with m.

• We can insist that instead of the following
subtree

• We have..

Loop in parse tree

A*

B C

01

A*

B C

A* B1

C CB C

0001

• To get…

• Which is a parse tree for another valid string 11110000001 as against the
original string 11100001

• Any thing that got doubled is marked in green.

A

B C

A BB A*

B C

A*
B

1

1

C C

00

10

B C

A* B1

C CB C

0001

Pumping at multiple places!

• If we repeat this, we will find that two loops on

either side of the center get pumped up an

arbitrary number of times
– 1{1n}10{00}n01

• If the string is long enough, there will be some recursion

– Due to some repeated substitution of some larger tree

– Some substring vwx of uvwxy can get pumped up as vnwxn

– Task: Identify the parts of uvwxy

• Examples of non-CFLs are

– ww

– 0n 1n 0n

Pumping Lemma: Formal statement
[Not a characterization, it is an implication]

• If a language L is infinite and context-free, then

• There exists some integer p > 0 [generally,

exponential in number of states k] such that

• For every w in L with |w| ≥ p (where p is a

pumping length)

• There exists a decomposition w = uvwxz with

strings u, v, x, y and z, such that |vwx| ≤ p, |vx| ≥

1, (Note that both v and x cannot be empty) then

• For every integer i ≥ 0, uviwxiz is in L.

0n 1n 0n is not CFL

• Adversary: I have a CFG of k non-
terminals

– Equivalently pumping length=p=0(2k)

• Prover: Consider the string 0p1p 0p

• Adversary: v= 0q w=0s1t x=1b

– q+s+t+b ≤ p, q+b ≥ 1

– 0p-q-s0q*i0s1t 1b*i1p-b-t 0p is not in L!

• Similarly, for other choices of v, w, x

ww is not CFL

• Adversary: I have a CFG of k non-
terminals

– Equivalently pumping length=p=0(2k)

• Prover: Consider the string 0p1p0p1p

• Adversary: v= 0q w=0s1t x=1b

– q+s+t+b ≤ p, q+b ≥ 1

– 0p-q-s0q*i0s1t 1b*i1p-b-t0p1p is not in L!

• Similarly, for other choices of v, w, x

Argument fails for CFLs!

• Try for palindromes !

• Adversary: I have a CFG of k non-
terminals

– Equivalently pumping length=p=0(2k)

• Prover can consider the string 0p1p 0p or

0p1p 0p1p 0p or any thing else! In each case, you

can pump!

What about

• Adversary: I have a CFG of k non-terminals

– Equivalently pumping length=p=0(2k)

• Prover: Consider the string

• Adversary: v=0a w=0b x=1c

– a+b+c ≤ p, a+c ≥ 1

– 0p^2-(i-1)*k is not in L for some i!

• You need Turing machines for these languages

and others such as 0primes etc.

2

0
x

2

0
p

Pumping property may hold for

non-CFLs!

• Eg: 0composite satisfies pumping lemma

• But it is actually not context free

Use of closure to prove non-CFL

• Context Free Languages are closed under intersection
with regular sets!

–

– You cannot have one stack simulate two stacks, but you can have
one state simulate two states (one from an FSM and another from
a PDM).

– Another example: Let L consist of all strings of a's and b's with
equal numbers of a's and b's but containing no substring abaa or
babb. Then L is context-free, since it is the intersection of the
language accepted a the pushdown automaton with the regular
language

• Recall that PDMs are closed under unions

nnn
Equal 210210)2,1,0(

=∩

*b} babb){a, (abaa*b} {a, - *b} {a, ∪

CYK Algorithm for Parsing

• Deriving a string of length n takes 2n-1 productions using
CNF

• Thus, there are 22n-1 trees that generate strings of length
2n-1
– Brute force: Given a string of length n, try all 22n-1 trees!

Impractical!!

• CYK: efficient algorithm that runs in Θ(n3) time
– Determines whether a string can be generated by a given

context-free grammar and, if so, how it can be generated. This is
known as parsing the string. Uses concept of dynamic
programming

– Avoid repeated computations

• CYK Stands for the author names
– Cocke-Younger-Kasami

• Not used practically – there are more
efficient algorithms

• Can do parsing for LRK, or any form of
CFGs – not restricted to deterministic
subsets of CFGs

• Useful to have the grammar in CNF

– Makes description of grammar consice

CYK: Illustration

• Consider the grammar

– A � BC | AB | 1

– B � AA | 0

– C � CB | 1 | 0

• Consider the string: 110100

• Basic Idea: Determine what parts of the
string can be generated by what non-
terminal

CYK: continued

• We will build all substrings of the string and
determine which non-terminal can generate
them

• Notation V[i,j]: All non-terminals that generate j
symbols of the string s, starting from symbol i.
– E.g: V[4,1]: All non-terminals that can generate the

string of length 1, starting with position 4.
• With CNF, this is easy to determine; it is {A,C}

– Similarly, V[3,1] = {B,C}

• It will be harder as “j” gets bigger
– But V[i,j] will be based on smaller cases of j as j gets

bigger.

CYK continued

• Bottom-up dynamic programming style

– Start from smaller values of j and build V[i,j] for larger j’s
successively.

– Start i from the left.

• Computational Time

– Number of entries to be computed = Θ(n3)

– Computation of each cell requires n computations in worst case
and is therefore Θ(n)

– So total time is Θ(n3)

• Parsing of LRK grammars (which are equivalent to
deterministic PDMs) takes Θ(n) time!

– Determining whether a given CFG is LRK is mechanical but
complicated

Step 1

2 3

1

2

5

(A,C)

i

j

1 4 5 6

3

4

6

(A,C)

(B,C)

(A,C)

(B,C)

(B,C)

Step 2

• V[1,2] depends on two values of V; V[1,1] and V[2,1]
– Only way you can have a non-terminal from {A,C} followed by a non-terminal from {A,C} is B �

AA

• Thus, any value in the second column depends on two adjacent values from the previous
column

• Note that some cells can be empty, corresponding to impossible productions

2 3

1

2

5

(A,C)

i

j

1 4 5 6

3

4

6

(A,C)

(B,C)

(A,C)

(B,C)

(B,C)

(B)

(A,C)

(A)

(A,C)

(A,C)

Step 3

• V[1,3] depends on two values only [because of CNF]
– V[1,1] and V[2,2] OR

– V[1,2] and V[3,1]

• In general, V[i,j] depends on
– V[i,k] and V[i+k,j-k]

• Note how we are using Dynamic Programming to save computations
– We are computing V[1,1] only once, but using it twice

2 3

1

2

5

(A,C)

i

j

1 4 5 6

3

4

6

(A,C)

(B,C)

(A,C)

(B,C)

(B,C)

(B)

(A,C)

(A)

(A,C)

(A,C)

(B,A)

(B)

(A)

(B,A,C)

Step 4

2 3

1

2

5

(A,C)

i

j

1 4 5 6

3

4

6

(A,C)

(B,C)

(A,C)

(B,C)

(B,C)

(B)

(A,C)

(A)

(A,C)

(A,C)

(B,A)

(B)

(A)

(B,A,C)

(A,C,B)

(A,B)

(A,C,B)

Step 5

2 3

1

2

5

(A,C)

i

j

1 4 5 6

3

4

6

(A,C)

(B,C)

(A,C)

(B,C)

(B,C)

(B)

(A,C)

(A)

(A,C)

(A,C)

(B,A)

(B)

(A)

(B,A,C)

(A,C,B)

(A,B,C)

(A,C,B)

(A,C,B)

(A,C,B)

Step 6

2 3

1

2

5

(A,C)

i

j

1 4 5 6

3

4

6

(A,C)

(B,C)

(A,C)

(B,C)

(B,C)

(B)

(A,C)

(A)

(A,C)

(A,C)

(B,A)

(B)

(A)

(B,A,C)

(A,C,B)

(A,B,C)

(A,C,B)

(A,C,B)

(A,C,B)

(A,C,B)

• V[1,6] contains A and hence, we can conclude that

the grammar generates the string s.

Closure + Decision Algorithms for

Context Free Languages
• Closure:

– Useful for determining decidability as well as for determining languages
that are not context free

• Trivial Questions:
– Is the language given by a left linear grammar regular? (trivially yes).

– Is the language given by a context free grammar context free? (trivially
yes).

– Is the complement of a given regular language regular? (trivially yes).

– Is the complement of a given context sensitive language context
sensitive? (it turns out to be true)

• Hard Questions:
– Is the complement of a given context free language context free? (not

trivial, since context free languages are not closed under complement –
it might be, it might not be).

Closure properties of CFLs

• Context Free Languages are closed under union
– Given two grammars for the two CFLs, with start

symbols S1 and S2, create a new grammar with all
the rules of the two grammars along with a new rule,
S� S1 | S2

• Context Free Languages are also closed under
string reversal
– If L is context free then LR ={wR | w Є R, wR is reverse

of w} is also context free

– Can get a CFG GR for LR using the CFG G for L by
reversing the order of symbols on the right hand side
of every production in GR

Closure Property: Summary

Concatenation

Not closed under union

E.g: 0n 1n Ụ 0n 12n is

not deterministic CFL

Reversal

Complement [Toggle final and non-

final states of corresponding deterministic PDM]

Union

Deterministic context free languagesContext Free Languages

Undecidability problems in CFLs:

Bridge to Turing Machines

• One of the highest level of undecidable

problems

– Post Correspondence Problem

– Introduced by Emil Post in 1946

• Many problems in CFL world are undecidable if

this problem is undecidable

– Can be proved using the concept of “reduction”

– If a problem can be reduced to the “Post

Correspondence Problem”, then we know that the
problem is undecidable

Post Correspondence Problem

• The input of the problem consists of two finite lists u1,..., un and v1,...,
vn of words over some alphabet A having at least two symbols. A
solution to this problem is a non-empty sequence of indices,

such that

–

• The decision problem then is to decide whether such a solution
exists or not for any two given finite lists

• Example:

– Consider the following two lists:

– A solution to this problem would be the sequence 1, 4, 3, 1 because

• u1u4u3u1 = aba + bb + aab + aba = ababbaababa = a + babba + abab + a =
v1v4v3v1

– However, if the two lists had consisted of only u1, u2, u3 and v1, v2, v3,
then there would have been no solution.

Post Correspondence Problem contd

• A solution corresponds to some way of laying blocks next to each other so

that the string in the top cells corresponds to the string in the bottom cells.

Then the solution to the above example corresponds to:

Post Correspondence Problem contd

• Consider the following two examples. Which of

them has a solution?

• Note that Problem 2 has an issue which we saw

in the class…

• There are 3k string of length k

010(3)

1010111(2)

1111(1)

List BList AString index

011101(3)

11011(2)

10110(1)

List BList AString index

Problem 1 Problem 2

Decidability: Context free Languages

• Let L be the language generated by a CFG

Nobody knows!UndecidableIs L1 = L2?

Trivially decidableUndecidableIs complement of L CFL?

Is L1 intersection with L2

empty?

Is L the universe?

Is L empty?

Question

UndecidableUndecidable

Closed under

complement. So check if

complement PDM

accepts any string.

Undecidable

Convert CFG to CNF and

see if the only production

is that start symbol goes

to empty symbol

Convert CFG to CNF and

see if the only production

is that start symbol goes

to empty symbol

Deterministic context free

languages

Context Free Languages

Undecidability and Reduction
Empty Intersection Problem [EIP]

• Is L1 intersection with L2 empty?

– L1 and L2 are both context free

• We will prove that if there exists a solution for

EIP, there will exist one for PCP

• Reduction:

– Given a two finite lists u1,..., un and v1,..., vn of words
over some alphabet A having at least two symbols,

we will describe a CFG problem

Reduction Example

• Grammar for Problem1 defining language L1

– SA � 1SA a | 10111SA b | 10SA c | 1a | 10111b | 10c

• Grammar for Problem2 defining language L2

– SB � 111a | 10b | 0c

• a,b and c keep record of which strings were

concatenated
• If there exists a string in common between the two grammar, it

implies that there is a solution to the post-correspondence problem

010(3)

1010111(2)

1111(1)

List BList AString index

Problem 1

So?

• If someone claims that the EIP problem is
decidable, then the PCP problem should
also be decidable!

• Thus, we made use of “reduction” to prove
that a problem is undecidable

Is a CFL L =Σ* (the universe of strings)?

• This problem is undecidable. Let us call
this problem the UNIVERSE problem
– Why not take the complement and check if it

is CFL?

– No! The complement may be a Turing
machine

– Checking for membership in a turing machine
is undecidable!

• Proof: By reducing the PCP problem to the
UNIVERSE problem

Undecidability of the UNIVERSE problem
[In brief]

• Covert a PCP problem to two grammars

• Note that the grammars from PCP reduction are

deterministic context free and closed under complement

– You can define a deterministic push-down machines for these
problems

• That is, in the previous case with
– Grammar for Problem1 defining language L1

• SA � 1SA a | 10111SA b | 10SA c | 1a | 10111b | 10c

– Grammar for Problem2 defining language L2

• SB � 111a | 10b | 0c

• (L1 ∩ L2)c = L1c U L2c

– Give this as input to the EMPTY problem

AMBIGUITY PROBLEM

• Is a given grammar ambiguous

– That is, does there exist a string σ that can be generated using
two different left-most derivations by the grammar?

• It is also undecidable

– Provable by reduction from PCP

• Given a PCP, convert it into the grammars with start symbols SA and
SB as before

• Write a new grammar S � SA | SB

• If this grammar is detected to be ambiguous, it means a string has
two left-most derivations, starting through SA and SB respectively

– Which means the PCP problem has a string/solution!

• Thus proved by reduction!

REGULAR problem

• Is a given CFG “G” regular?

• Solution by reduction from UNIVERSE
problem

• Reduce the particular problem

– Is L == Σ* (the universe of strings)

– To an instance of REGULAR problem

– Is L == {0,1}*

EQUALITY problem

• Given CFGs L1 and L2, is L1==L2?

• Trivial reduction from UNIVERSE problem

– Give it the input L1 and L2 = Σ*

Some more interesting properties

• Let L be a CFG and R be a regular language

– Is ?

• Is an undecidable problem

– Is

• Is a decidable problem!!

• Provable because CFLs are closed under intersection with
regular languages

LR ⊂

RL ⊂

Turing Machines = Decidable

FSM

Turing Machines

• Very robust and powerful model of
computation

• Adding stacks, queues etc to a Turing
machine adds no more power

• Any procedure/computation we write using
CFL is

– E.g.: Procedure to add two numbers is a

turing machine

Church and Turing

• Formalized independently
– Equivalent representations in the form of

Church’s lambda calculus and Turing’
machine

• Church Turing hypothesis
– Anything we do using a procedure is a turing

machine

• You can write Turing machines for all
decidable problems….

Undecidable vs partially decidable

• Partially decidable

– Also called Recursively enumerable problems

– If there exists a program for a problem that

answers `yes’ when the actual answer is `yes’

and may not answer `no’ when the actual

answer is `no’

• Decidable == Turing acceptable

Turing Machines

• Neither finite automata nor pushdown automata can be
regarded as truly general models for computers, since
they are not capable of recognizing even such simple
languages as {anbncn : n > 0}
– Turing Machines are most powerful models of computations that

recognize languages such as {anbncn : n > 0} and many more

• A Turing machine consists of a finite control, a tape, and
a head that can be used for reading or writing on that
tape.

• The formal definitions of Turing machines and their
operation are in the same mathematical style as those
used for finite and pushdown automata.

Turing Machine components

1. A Finite state control Unit
• The control unit operates in discrete steps; at each step it

performs two functions in a way that depends on its current
state and the tape symbol currently scanned by the read/write
head:

1. Put the control unit in a new state.

2. Either:

(a) Write a symbol in the tape square currently scanned, replacing
the one already there; or

(b) Move the read/write head one tape square to the left or right.

2. A tape
• Communication between the tape and the control unit is

provided by a single head, which reads symbols from the tape
and is also used to change the symbols on the tape.

Pictorial representation of a Turing

Machine

Definition of Turing Machine

Example Turing machine that accepts the language
{ }*}1,0{|# ∈= wwwL

Example Turing machine M2 that accepts the language

{ }0|0
2

≥= nL
n

The machine begins by writing a blank symbol over the leftmost 0 on the tape so that it can find

the left-hand end of the tape in subsequent steps

Sample run of M2 on input 0000

• The starting configuration is q10000. The

sequence of configurations the machine enters

appears as follows; read down the columns and

left to right.

