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Chapter 1

Introduction

Theory of computation (TOC) is perhaps one of the most abstract areas in
the computer science curriculum, but one of the most fundamental area any
computer scientist can know. The really interesting thing in TOC will neither
help you write a program nor build a computer per say. TOC will help you
understand what people have thought for the past 50 years about computer
science as a science. And it is about

1. what kind of things we can compute mechanically,

2. how fast can we do it and

3. how much space in memory does it take us to do it.

And because of that it is called the theory of computation.
Like lots of abstract areas, and areas that have a lot of cool thinking and neat

stuff in it. Especially in computer science, there are lots of applications that
come out of TOC. Things that are pretty much serendipitous. All of compiler
design and theory about building compilers and writing programs to translate
languages comes from theory of computation. It turns out that some of the
models of computation we discuss happen to correspond to programs that help
us write compilers. There are lots of other applications as well. When you talk
about computer architecture, you model a particular process with a finite state
machine. The idea of finite state machine comes from the theory of computation.
The idea of string matching in any word processor or any kind of editor - that
is a finite state machine. When you do any kind of compiling or representation
of a language like XML, you describe it with a grammar. And that grammar is
the next level of model of computation.

This area talks about different models of computations - different kinds of
things you can use to compute stuff. WHat does it mean to compute something?
It is simply to abstract away from the specifics of the machine and all the
specifics of the problem in the following style. You imagine that all you are
dealing with is programs or computations that take an input, the program sits
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4 CHAPTER 1. INTRODUCTION

and thinks and calculates and computes and then says a ‘yes’ or ‘no’. Do I
accept this input or do not accept this input. Whatever number crunching is
involved in only to decide a yes or no.

In order to do that, we think of computing in terms of set or alphabets of
elements. Example alphabets are the binary alphabet {0, 1} or even the uniary
alphabet {1} - consisting on just one symbol. And we consider strings along
that alphabet. An example of strings you might want to compute is

A set of binary strongs that end in 0.

This is not a very hard thing to compute. Given a string, you just need to
see the last symbol in the string. If the string is a 0, your answer is ‘yes’, else
it is ‘no’. And it is very easy to write a program that does this for you. There
are other things that are harder. Suppose every piece of java code is converted
into a binary file. And you are asked to determine if a given binary file is a
legitimate piece of java code. Or is it just a junky binary file that represents
something else. So the question is

Does the given binary file represent a legitimate piece of java
code or not?

How easy is to check if the given binary strings represents a legal Java
program. It must be possible - that is why we have syntax checkers that give
error messages if the java code is not legitimate. The program that checks
syntax in fact, does something more that say ‘yes’ or ‘no’. It actually spits out
the error in the code. And that is what compiler design is largely about.

Going one step further, we can identify an even more challenging problem:

Identify the set of strings that represent legitimate Java programs
that never go into an infinite loop.

Is there a program that will look at your Java program and tell you ‘yes’
iff it is legitimate Java code and will never go into an infinite loop and a ‘no’
otherwise? In fact, there isn’t any such program. It is impossible. There is no
way to compute this, no matter how hard you try - it is not going to work. Even
if someone attempts such a program, it might either give you the wrong answer
or it might never give you any answer - it might simply go into an inifite loop.
Your program that you write to try and do this does not exist.

That is what we will be talking about in the following two chapters. What
can you compute? And what can’t you compute? And what kind of models do
you need to do this kind of computations? Your own sense of how to do com-
putation now might be a programming language - C++, scheme, java, etc.. We
are going to abstract away all details and get to the root of what a programming
language really is. The most popular way to view a programming language with
everything stripped away is called a Turing machine, invented by Alan Turing.

The Turing machine is a very simple machine which we will not delve into
right now. In fact, we will build up to the Turing machine. But Alan Turing,
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in the 1936’s, when he invented the Turing Machine (he died in the 1950’s),
invented a mathematical abstraction that he thought was a complete represen-
tation of how we might do computation. To the extent that, anything you do
on a normal computer with a normal programming language could be done on
his machine – you could write a program for his machine that does the same
thing. The machine is very very abstract and simple. But because of its power,
we can prove really interesting things about it. Like the fact that you can never
have a program to solve the problem stated above.

When Alan Turing tried to abstract away what we mean by computation, it
was the first attempt to describe it rigorously. He showed the difference between
thinking and logical computation. The word computation got a rigorous meaning
only in the 30’s and 40’s of the 20th century.

What we are going to do in this tutorial is work our way up from a much
lower level. One question to be asked when you define something very abstractly
with arms and legs and head, etc. is: what if you cut off one of its arms or legs.
Will it be able to do everything it did before but just taking a bit longer? Or
is it actually handicapped and will not be able to somethings it used to be able
to do. For example, consider again the problem of constructing a program to
answer the question

Does the given binary file represent a legitimate piece of java
code or not?

We know that we can write a program to accept such strings. Therefore,
we know that we can write a program for a Turing machine that would accept
those. What if we cut off the left arm of the Turing machine (metaphorically)?
Will it be that we cannot do the above computation any more? Is it that we
have cut off actual power. Or is it that it will take machine much longer to do
the computation? How much can I chop off from a Turing machine and still be
able to do the computation. Those are the kind of questions people ask in the
Theory of computation.

We will start off from the lowest level of abstraction - the Finite state machine
and will build our way up to the Turing machine. And then start exploring
problems in the twilight zone which cannot be even computed by a Turing
machine.

Figure 1.1 gives a blue-print of the area of theory of computation. We will
summarize the set of machines we will cover using the picture in Figure 1.1,
typically referred to as the ‘Bull’s eye’. The Bull’s eye is more or less the
Chomsky hierarchy, which Noam Chomsky presented in the mid 50’s. The
simplest kind of machine we are going to consider is one that does not have as
much power as programming languages - one that is simpler, called the Finite
State Machine (FSM). That is the smallest and simplest level lying the center
of the bull’s eye. FSMs can compute can compute certain kinds of sets and
decide certain kind of things - like whether there is a zero at the end of a
string. But they cannot do things mopre complicated, like figure out whether
something is a legal Java program. There are many other interesting things
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Figure 1.1: The Bull’s eye: Blue-print of TOC
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they cannot do. If you add some power to FSM, you get a class of sets called
Context Free Language1 (CFL) that can be identified only by a more powerful
machine. Context free language includes the language corresponding to FSMs2

The second circle (from inside) that includes the first one, represents CFLs. All
the set of strings that correspond to legal Java programs are inside the CFL
circle.

Then we bump up another level to Turing machines. Turning machines
represent full-level computation. Anything that can be really computed by a
computer using any normal programming language can be computed by a Turing
machine. And problems in the twilight zone (corresponding to the last ring) are
called undecidable. There is not program anywhere that figure out the answer,
mechanically, to undecidable problems in general - they are no algorithms to
figure out the answers to these problems.

The work on FSMs was primarily done in the 1950’s as well as early 1960’s,
more than a decade after Alan Turing’s work on Turing Machines. The work
on context free grammars was done primarily in the late 1960’s and early 70’s.
These topics developed more out of mathematical and intellectual interest. And
at the same time there was the serendipitous application in the form of compilers
and programming languages.

This is a blue-print for the area of theory of computation. As we progress, the
blue-print will become more refined. There are sub-circles, overlapping circles,
all sorts of relationships between circles. Within the turning machine level itself
there are hierarchies. P and NP are both inside the turing machine level - P
would be an inner sub-circle while NP would be an outside sub-circle. There is
an entire hierarchy of complexity theory that takes place in the turning machine
world.

We will also see the there are different ways of describing languages. One
way is description using machines with different amounts of power. Another way
is by specifying grammars. A third way that works only on some levels is by
expressions. So there are different ways of describing these classes of languages.

In particular, the circle of context free languages can be split into two. by
throwing in extra power. By throwing in the same extra power into the FSM
and Turing Machine circles, though, we do not get a more expressive language.

1A set of strings is often called a language. This should not be confused with a programming
language. A language is nothing more or less than a set of strings.

2We will later study the language corresponding to FSMs called the Regular language.
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Chapter 2

Finite State Machines

We will get down to some details of theory of computation by first addressing
the innermost circle of the bulls eye. While trying to get the ideas accross,
we might compromise on rigour so that ideas do not seem to be really more
complicated than they are.

We will see what a finite state machine is by looking at an example and
then pointing out in the example what the real traits are. Let us start with an
example - the set of binary1 strings that have an even number of 0’s. We will
describe finite state machines by actually implementing one for this problem.

Problem 1 Construct an FSM that accepts only strings that have an even num-
ber of 0’s.

An intuitive definition of the class of finite state machines is “Anything you
can solve by remembering a finite amount of information”. If you use that gut
instinct rule, you will be almost able to identify whether or not a given problem
can be solved by a finite state machine. An FSM has states or memory. We will
construct our first FSM by giving a semantic meaning to each state. Imagine
that we also have a tape on which characters get streamed. The machine will
have a head that will look at one symbol at a time and strictly move left to
right across the tape. The movement of the head from one symbol to the next,
corresponds to the movement of the machine from one state to another. And
the movement from one state to another is based on a transition function of
the observed symbol. This is the simplest possible computation you could have.
The following figure shows our first finite state machine.

The state A will capture strings with an even number of ‘0’s. The state
B will capture strings with an odd number of ‘0’s. Before we have seen any
characters in the string, we have zero (an even number of) ‘0’s. Therefore, we

1The alphabets can be very large in general. for example, Java programs are over an
alphabet of A . . . Z, 0 . . . 9, punctuations, etc. But for the purpose of understanding the
abstractions to be discussed in the class, we will not need to consider alphabets that have
more than two symbols. Two symbols give you kind of an exponential jump over an alphabet
of one symbol and after that it is kind of convenience.

9



10 CHAPTER 2. FINITE STATE MACHINES

Figure 2.1: Our first finite state machine

will start at the state ‘A’. Every finite state machine should have one arrow
coming out of each state for each symbol in the alphabet. For binary strings,
we should therefore have two arrows coming out of each state. When we see
a ‘0’ in state A, we switch over to state B. When we see a ‘1’ at state A, we
remain at that state (indicated by a self loop).

In fact, if you write the structure and design of finite state machines in
this way by (a) writing the states down first without any arrows, modeling the
problem semantically by giving information in the states and (b) then only later
throwing in the arrows, you have a much easier time doing it. And if you have
trouble deciding what information is to be thrown into the states, that is where
you need to stop and think, not after putting in arrows which could perhaps get
you on the wrong track.

The state you could begin with is the start state. In Figure 2.1, the start
state A is marked with an incoming arrow −→. The subset of states where the
machine ends up when it finishes reading the string and tells us that the string
has been accepted is termed as the set of final states. In the above example,
state A is a final state. And if the machine ends up in any non-final state, the
string is not accepted by the finite state machine. We will represent each such
state by putting a double circle round that state. That gives us a complete finite
state machine - a machine that accepts all binary strings with an even number
of 0’s and rejects every binary string that does not have an even number of 0’s.
We could run the FSM on any string to determine its membership to the class
for which the FSM was designed.

Note that this FSM gives only ‘yes’ and ‘no’ answers. It is hard enough a
computation to deal with ‘yes’ and ‘no’ questions for many problems. At the
Turing machine level, we will discuss the problem of producing an output. In
computer architecture, you will find versions of FSMs that have outputs, called
Mealy machines, Moore machines, etc. We will find some such examples in
exercises. For the most part, we will not need to discuss such machines in our
tutorial.



2.1. DETERMINISTIC FINITE STATE MACHINES 11

2.1 Deterministic Finite State Machines

We will now provide a formal definition of deterministic finite state machines.

Deterministic Finite State Machine A deterministic finite state machine
consists of:

1. A finite set. of states, often denoted Q.

2. A finite set of input symbols, often denoted E.

3. A transition function that takes as arguments a state and an input
symbol and returns a state. The transition function will commonly
be denoted δ. In our informal graph representation of automata, δ
was represented by arcs between states and the labels on the arcs. If
q is a state, and a is an input symbol, then δ(q, a) is that state p such
that there is an arc labeled a from q to p.

4. A start state, one of the states in Q.

5. A set, of final or accepting states F . The set F is a subset of Q. A de-
terministic finite automaton will often be referred to by its acronym:
DFA. The most succinct representation of a DFA is a listing of the
five components above that is a ”five-tuple”: A = (Q,Σ, δ, q0, F )
where A is the name of the DFA, Q is its set of states, Σ its in-
put symbols, δ its transition function, q0 its start state, and F its set
of accepting states.

Let us look at a few more examples of FSMs.

Problem 2 Construct an FSM that accepts every string with an even number
of 0’ and even number of 1’s.

Let us design such a machine by first outlining our plan. What should the
states of such a machine be? One way to go about it is design four states, each
for an even/odd combination of 0’s and 1’s. We will represent the even (e)/odd
(o) nature of 0 and 1 in a string as a tuple < x, y >, where x, y ∈ {e, o}. Thus,
< e, e > represents an even number of both 0’s and and 1’s. Figure 2.2 shows
the corresponding FSM.

When the FSM gets a 0 in state < e, e >, it toggles to < o, e >. When it
receives a 0 in < o, e >, it toggles back to < e, e >. Similarly, it toggles between
< e, e > and < e, o > on receiving the symbol 1, between < e, o > and < o, o >
on receiving symbol 0 and between < o, o > and < o, e > on receiving symbol
1. The state < e, e > is the start state as well as final state.

Notice that there need not always be a single final state. Suppose, we had
to design an FSM that accepts only strings having an even number of 0’s and
an even number of 1’s or having an odd number of 0’s and an odd number of
1’s. Such an FSM can be easily designed from the previous one by assigning the
status of final state to the < o, o > state in addition to the < e, e > state. This
yields the FSM in Figure 2.3.
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Figure 2.2: Finite state machine that accepts only strings with an even number
of 0’s and an even number of 1’s

Figure 2.3: Finite state machine that accepts only strings having an even number
of 0’s and an even number of 1’s or having an odd number of 0’s and an odd
number of 1’s
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Figure 2.4: Finite state machine that accepts only strings having an even number
of 0’s and an even number of 1’s or having an odd number of 0’s and an even
number of 1’s

It is interesting to note that insisting on a single final state takes away power
from a deterministic machine2 (it is almost akin to cutting off half the brain of
a finite state machine). There is no obvious characterization of the subset of the
regular language that has finite state machines with the number of final states
restricted to 1.

Let us consider another variant of the above problem:

Problem 3 Design an FSM that accepts only strings having an even number
of 0’s and an even number of 1’s or having an odd number of 0’s and an
even number of 1’s.

Again, such an FSM can easily leverage the FSM in Figure 2.1 by making
state < o, e > a final state in addition to state < e, e >. This yields the FSM
in Figure 2.3.

Is this the smallest machine? What is the logically equivalent description of
the set of strings that have: An even number of 0’s and an even number of 1’s
or an odd number of 0’s and an even number of 1’s ?

It is simply, the set of strings that have an even number of 1’s! Thus,
the FSM in Figure 2.4 is not the smallest FSM. The states < e, e > and <
o, e > could be compressed into a single state < −, e > to generate the FSM in
Figure 2.5.

This example helps us realize us that given a set of strings, there could be a
set of more than one FSMs that accept the strings. If this set had cardinality
more than 1, there will be a canonical minimal FSM. And this is a very nice
thing to have about a machine. Because there is no canonical minimal program
for the set of programs you write in your computer architecture course or your
programming language course. However, for finite state machines, you have this

2Exercise.
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Figure 2.5: Finite state machine that is smaller than the FSM in Figure 2.3
although equivalent.

nice property. And there is a very rigorous dynamic programming algorithm
that does that minimization (we will talk about that later in the tutorial).

Next, we will look at another problem:

Problem 4 Design a finite state machine that accepts only binary strings that
are divisible by 4.

How do we solve this problem in daily practice? One bad way is to convert
the binary number to base 10, divide the number in base 10 by 4, observe
the remainder and if the remainder happens to be 0, we know that the binary
number is divisible by 4. It is like tying one’s hands behind and then trying to
tie the shoe. It is much easier to look at the binary number directly and decide
divisibility by 4 - in fact any division by a power of 2 in binary is obvious. It
is as easy as determining if a number in base 10 is divisible by 100 - you just
look at the last two digits and if they both happen to be 0’s, you know that
the number is divisible by 100. Similarly, you have to just look at the last two
symbols of the binary number to determine its divisibility by 4 - if the last two
symbols are 0’s, then you know that the binary number is divisible by 4. Thus,
we are looking for an FSM that identifies binary strings ending in 00.

We will try to derive some hint from a slightly different problem; it is easier
determining an FSM that accepts only binary strings beginning in 00 (Fig-
ure 2.6).

Problem 5 Design a finite state machine that accepts only binary strings be-
ginning with 00.

You need four states - one for no zeros (A), another for the first zero (B),
the third (accept state) for the second zero (C) and a fourth dead state where
you go if you encounter a ‘1’ as one of the first two symbols.

To construct an FSM that accepts only binary strings ending in 00, we will
start by retaining states A and B above, while slightly changing their semantics;
state A captures all strings that do not end in 0, state B captures strings that
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Figure 2.6: Finite state machine that accepts only binary strings beginning in
00.

Figure 2.7: Finite state machine that accepts only binary strings divisible by 4.
(i.e., ending in 00).

end in one 0 and state C captures strings that end in two 0’s. If the FSM
encounters a 1 in any of the three states, it goes back to state A. Figure 2.7
shows the FSM that accepts only binary strings that are divisible by 4. Note
that state A is an accept state because every empty string (represents 0) is
divisible by 4. Also note that since we want the empty string as well as the
string with a singleton 0 to be accepted by the FSM, we have made state C the
start state3.

2.2 Closure: A Brief Introduction

We could have done the design of the last FSM faster if we had known something
in advance. Let us say you knew that if you could accept a particular language,
you knew how to accept its reverse, that is, any time you knew how to design a
machine for a language, we had a mechanical process for designing an FSM that

3One might think - how will one know to design FSMs for problems harder ones than
these? The answer we will give straight up in the beginning. This is a design process. There
is no algorithm for developing an FSM for a given description of strings. There is practice
involved in designing FSMs! The discovery process could take more time for some problems
and less time for some others.
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Figure 2.8: Finite state machine that accepts only binary strings containing the
pattern 110110.

accepts only strings that are reverse of strings in the first language. For example,
we were able to easily design an FSM for the set of strings that start with 00.
Is there a mechanical process for designing an FSM for the set of strings that
end in 00? The answer is fortunately yes. In fact there a bunch of operations,
called closure operations such that if there is an FSM for a set of strings, there
is an FSM for the set of strings that are obtained by applying the operation on
each member of the set. Examples of closure operations are (a) string reversal
(b) complement (c) union and (d) intersection. The closure operation is a key
property that is studied under models of computation, not just because it is
interesting mathematically, but because it gives an entire repertoire of tools to
determine if a set of strings will be accepted by any model of computation and
how to construct such a model.

For instance, what if toggle all the final and non-final states of the FSM
for problem 5? Whatever used to be not accepted will now be accepted and
vice versa. That actually is a good enough truth - FSMs are closed under
complement. This is an informal closure proof pertaining to complementation.

Some of the big applications of FSMs are in string searching tools. Once the
FSM is designed, it could be implemented as a program. There are no obvious
ways to do the programming - there are clever and bad ways to do it. There are
a host of programs to string matching, the first of which was by Knuth, Morris
and Pratt. Next, we will consider a problem in this domain.

Problem 6 Design a finite state machine that accepts only binary strings con-
taining the pattern 110110.

We can have a series of states that represent how much of the string we
have seen. When we have seen the entire string, we will put a double circle
(representing the accept state). We will use an ε to represent an empty string
(some books instead use λ), which means we have no string at all. State A
represents empty strings, state B represents the fact that the FSM has seen a
1, state C a 11 and so on. Figure 2.8 shows the corresponding FSM.

Given, this how do we construct an FSM that accepts only those strings that
do not contain the string 110110?

Problem 7 Design a finite state machine that accepts only binary strings that
do not contain the pattern 110110.

The way to do this is to flip the accept and non-accept states of the FSM for
problem 6. It is very hard to explicitly construct an FSM for problem 7 from
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Figure 2.9: FSM that accepts only strings that have at least two 0’s following
every 1.

scratch. And it actually happens to contain 6 accept states. If we try giving
meanings to each of these accept states, it would take a lot more time!

We will keep this example in mind, because when we later add on an ex-
tra arm called non-determinism to the above machine, we are going to give it
power4. If we give it power, it turns out not to help it all, but just helps us
write easier machines. We will need a proof that a machine with the power of
non-determinism can always be converted back to something without the power.
There is always a way to write some of the fancier machines to something with-
out the fancy stuff.

Let us do another problem.

Problem 8 Design a finite state machine that accepts only binary strings such
that every 1 is followed by at least two 0’s.

We are doing this example, because in this machine, it is difficult to give
semantics to the memory of each state right away. It is much more of a real
time, left to right processing machine - it is not a recursive idea.

In Figure 2.9, we give a first cut solution to this problem. Notices that
states A and D, are for all purposes, identical; state A embodies the semantics
of state D which is: the machine has not yet seen a 1 that has not been followed
by two 0’s. We are pointing it out because that is the idea of minimizing
machines (which we will discuss later). Minimization involves noticing groups
of states that actually do the same thing, irrespective of where you start and
merging them. Thus merging states A and D, we get he minimized machine as
in Figure 2.10.

Keep in mind that there is no single finite state machines that alone accepts
a set; there are infinite number of machines that will accept a set if at all there
is one. There is a unique minimum machine though.

We will do one last example, before moving on to the next topic of non-
determinism.

4Exercise
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Figure 2.10: Minimized FSM that accepts only strings that have at least two
0’s following every 1.

Problem 9 Design a finite state machine that accepts only binary strings that
are not divisible by 3.

Now you really have to do division in some sense on the binary string. Typ-
ically, in division, you have to store a lot of information; you have to remember
results that are proportional to the size of the string. And that does not seem
like a constant! Real division of a longer string will take a larger amount of
space and hence cannot be done with a finite state machine. So how do we go
about solving this problem? We really do not have to perform division. We just
need to figure out whether or not the string is divisible by 3. In order to do that,
we just have to figure out what the remainder is (which is not generally taught).
This essentially implies that you need as many states as there are remainders.
But do you need to convert the binary number to base ten to get the remainder?
It turns out that the answer is ‘no’.

This is a much harder problem and you might sit on it for a few hours if you
do not get the idea. Is the binary number ‘1’ divisible by 3? So if the machine
sees a 1 and the input stopped with that, the remainder will be 1. So that is
what we will remember. Continuing from there, let us say we see a 0. So what
we have seen now is 10, which is 2 in base 10 and is not divisible by 3. Let
us not calculate this way. Rather, let us calculate how the remainder changes
when we put a 0 at the end of a string which already leaves a remainder 1 when
divisible by 3. Putting a 0 at end of a string, the value doubles and so does it
remainder! Thus, the remainder of the new string will be 2, which we will store
in another state.

Let us move on to the third spot. Suppose the next symbol we see is a 1.
The new remainder (for 101) is obtained by doubling the previous remainder
and adding 1. This yields 2 × 2 + 1 = 5 which implies the new remainder will
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Figure 2.11: FSM that accepts only strings that are not divisible by 3.

be 2 (2 = 5 mod 3). Now let us say the fourth symbol is a 1. The remainder
for 1011 can be again determined by only using information about the previous
remainder, which happens to be (2 × 2 + 1) mod 3 = 2. Thus 1011 is also not
divisible by 35.

In Figure 2.11, we implement the above logic in an FSM that will determine
when an input binary string is not divisible by 3. There is beautiful symmetry
in this machine.

We did a whole bunch of examples that are accepted by finite state machines.
A set of strings that can be accepted by a finite state machine is called regular.
They are called regular because they tend to grow in regular intervals (we will
learn more about the regularity property in the following sections). Regular
sets are really well understood. There are machines and grammars that describe
them. And there are also regular expressions that describe them. You encounter
regular expressions very often in web development tools where you need to
search for patterns such as specific urls, etc. Thus there are different ways of
describing these machines. We will show equivalence between these different
representations and nail down regular sets as best as they can be.

2.3 Examples of Non Regular Sets

Let us try to come with some simple examples that are not regular. The reason
we are touching upon this topic is because we will not be able to appreciate
moving up to context free grammars or turing machines, if we are under the
impression that finite state machines could do everything. Why have unbounded
memory if all you need is finite memory? Why make up a turning machine if
finite state machines represent a computer? Finite state machine is actually like
a computer with half its brain cut out. What kind of strings cannot be accepted
by finite state machines that are easier to describe than just Java programs?
Let us look at some famous ones.

What we cannot do with finite machines is count! We cannot count to an
arbitrary number. In the FSM for problem 9, we counted up to 3. Even in the
case of substring matches, we had a finite number of conditions and therefore had
a finite number of counts. But determining a machine that accepts only binary
strings having an equal number of 0’s and 1’s requires counting and hence cannot

5You could confirm that the number 1011 in base 10 is 11, which leaves a remainder 2
when divided by 3.
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Figure 2.12: The strange FSM that accepts only binary strings containing the
reverse of pattern 110110.

be modeled by a finite state machine. Even a simpler set of strings represented
by 1n0n n ≥ 0 cannot be modeled by a finite state machine6.

How do we prove that there is no FSM for a given set of strings? Do we keep
trying to come with one till we are exhausted? We need to prove this formally.
And there is a really wonderful proof that there are sets that are not acceptable
by finite state machines. This is proof technique is called diagonalization and
it is used over and over again at the higher levels. The proof technique comes
with a very abstract set. We will get to that in great details some time later in
this chapter.

However, for finite state machines, there is an even easier method of proof
that even strings as simple as 1n0n cannot be accepted by any FSM. This proof
will be very constructive7.

2.4 Non Determinism

What if we reverse all the arrows of the FSM in Figure 2.8? And switch the
roles of the start state and accept state? We observe that there are two outgoing
arrows on a symbol ‘0’ for state G. We get a machine in Figure 2.12 that does
not even make any sense! And how wrong can it be when it does not even make
any sense? This nature of a machine can be actually ascribed semantics, and is
called non-determinism.

Similarly, where would the start state for the FSM in Figure 2.11 be if we
reverse the machine? The start state could be either of the two existing accept
states B and C! This brings up another difficulty with reversing machines. We
could define a dummy start state D and have ε transitions from that state to
B and C. That is, you could go from the start state to either of states B or
C without seeing any symbols. These are called ε-transitions (or sometimes
λ-transitions). They also make a machine non-deterministic, because you do
not know what the machine is going to do when the machine is at such a state.

The above idea of reversing really begs us to ask the question: What does it
mean to have a choice on the same symbol? If we can make some sense of what

6Exercise: Another example set of strings that cannot have an FSM representation is the set
of Fibonacci numbers. The nth Fibonacci number is computed as F (n) = F (n−1)+F (n−2).
Since determining the nth Fibonacci number entails some computation, these numbers cannot
be modeled by any FSM.

7In general, the proofs in this tutorial are very constructive. They do not involve a lot of
difficult mathematics but instead use very straightforward arguments.
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Figure 2.13: The strange FSM that accepts only reverse of binary strings that
are not divisible by 3.

that means, may be the method actually does work? And it turns out that it
does work. We just need to explain what it means to have the same symbols on
two outgoing arcs on the same state. This idea again leads to non-determinism.

Non-determinism helps us realize that we can compute things faster than
we used to realize without it. Non-determinism however does not give any new
power; you could take any non-deterministic machine, and convert it back to
a deterministic machine without having these funny duplicates. This is a nice
thing to know because it lets us use these facilities without taking us out of
the universe of finite state machines. It is the equivalent to learning machine
language as your first programming language. And you understand program-
ming through that, to the extent that you can completely program anything.
And then somebody teaches you Scheme. And then you realize that you can do
recursion much easier using Scheme. But there was not anything you could not
have done with machine language that you can do with Scheme, though it is a
lot easier to use. They are equivalent in power, though not equivalent in ease
of use. That is the same case here. If we tack on non-determinism to a finite
state machine, they have equivalent power, but one is much easier to use and
can save us a lot of time.

We will now provide a formal definition of non-deterministic finite state
machines.

Non-deterministic Finite State Machine An NFA is represented essentially
like a DFA: A = (Q,Σ, δ, q0, F ) where:

1. Q is a finite set of states.

2. Σ is a finite set of input symbols.

3. q0, a member of Q, is the start state.

4. F , a subset of Q, is the set of final (or accepting) states.
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Figure 2.14: The non-deterministic FSM that accepts only binary strings that
contain the pattern 110110.

5. δ, the transition function is a function that takes a state in Q and
an input symbol in δ as arguments and returns a subset of Q. Notice
that the only difference between an NFA amt a DFA is in the type
of value that δ returns: a set of states in the case of an NFA and a
single state in the case of a DFA.

.

As an example, we will design a non-deterministic machine for problem 6
with much ease. We restate problem 6 here for convenience.

Problem 10 Design a finite state machine that accepts only binary strings that
contain the pattern 110110.

Somewhere in this string, if there is an occurrence of 110110, we should
accept it (without explicit knowledge of where in the string this pattern occurs).
We we will keep reading in the symbols till we get to the beginning of that
pattern. When when we do get to that pattern, we will read it using states B
through G and accept that string in state G. That is how simple it can become
using non-determinism! Figure 2.14 shows the non-deterministic machine for
problem 6.

We need to rigorously define what this strange machine means and what it
really accepts. How do we really interpret what strings coming into the machine
should be accepted or rejected? And then we will convince ourselves that we
can turn such machines into regular deterministic machines.

The definition is: If you look at any string that is given to you as a candidate
and figure out some choice through the machine that ends up in a final state,
then you accept that state.

There can be lots of choices that do not end up in a final state. But if you
can find one set of choices that end up in a final state, then we accept the string.
For instance, for an input string, 1111011000. What if you tried the following
sequence of state transitions: AAAAABCD - you are dead when you reach the
8th symbol. That was a bad choice and in general, you can potentially hit upon
many bad choices. But that does not mean that the string should be rejected;
ending up in a rejection state on one choice of moves does not mean you reject.
Here is one choice of the sequence of state transitions that will accept this string:
AABCDEFGG.

The only way you reject a string is if none of the choices get you to the final
state; if a choice gets you to the final state, you accept the string. If none of the
choices get you to the final state, you reject the string. In the above example,
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since there was a transition of states AAAABCD that lead to the final state, the
machine can be understood to accept the string 1111011000. In general for any
string that contains the pattern 110110, the machine can keep looping around
in state A, till the pattern is observed and transition through the sequence of
states B through G, when the sequence 110110 is observed. Thereafter, the
machine keeps looping in the state G. On the other hand, if any string does
not contain the sequence 110110, the machine cannot sneak to the final state G,
using any possible sequence of state transitions and hence will not accept the
string.

2.5 Computational Comparison of Determinis-
tic and Non-deterministic Machines

Non-determinism takes a little time to get used to. Lot of things that work
with determinism, do not get quite analogous with non-determinism. Here
is one. What if we toggled all the states in a non-deterministic finite state
machine? That is, we change all final states to non-final states and all non-final
states to final states? When we do this in deterministic machines, we get a
machine that accepts only the complement of the set that was accepted by the
original machine. What does a non-deterministic machine such as in Figure 2.14
accept if you toggle the final and non-final states? It will accept every possible
string! Therefore complementing in non-deterministic machines does not work
by toggling the states. The only way you could get the complement for a non-
deterministic machine is to first convert it into a deterministic machine and
then complement it. The reason is that the semantics of a non-deterministic
machine is not symmetric; you accept something if there exists a way to get to
the final state and do not reject it if there is a way that does not lead to the
final state. So it is this asymmetry in a non-deterministic definition that makes
this complementing not work.

For the example problem 6, we will pictorially compare the computations on
the string 1110110 of the deterministic finite state machine in Figure 2.8 with
the equivalent non-deterministic finite state machine in Figure 2.14). The com-
parison is shown in Figure 2.15. Note that the string has 7 symbols. The finite
state machine moves sequentially from one state to another through exactly 7
states till it reaches the accept state. The equivalent computation for the non-
deterministic machine can be represented as a tree, where a 2-way branching
at each node represents the choice of move that the machine has. The com-
putation for the non-deterministic finite state machine looks like a tree that
represents all the parallel computations that can be going on at the same time;
non-determinism lets you do ’or’s in parallel. The string will be accepted if there
is a path somewhere down that ends up in a final state. You do not accept the
string when all the paths from the root have no accept state at the bottom. In
all this non-deterministic machine need to perform 20 computations.
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Figure 2.15: Comparison of the number of computations by the deterministic
(left) and non-deterministic (right) finite state machines (for problem 6) on the
input string 1110110.

2.6 Conversion From Non-deterministic to Equiv-
alent Deterministic Machine

As another example, consider problem 11.

Problem 11 Design a finite state machine that accepts only binary strings that
end in 00.

We will make a non-deterministic machine for the above problem. And then
we will convert it into a deterministic machine by a very mechanical process that
we could write a program to do. This will illustrate that any non-deterministic
machine can be converted into a deterministic machine and therefore that a non-
deterministic machine gives us convenience but no extra power. This machine
will be similar to what did for the previous problem; it will have one state (the
start state) A that will chew up as many zeros as it wants8. And whenever the
non-deterministic machine sees a sequence of two ending zeros, it will land in
the accept state C. Note that it is often easy to construct a non-deterministic
machine that will accept all strings it is supposed to and also accept some strings
that it is non supposed to. One has to be very careful about this point while
constructing non-deterministic machines. In the machine in Figure 2.16, since
there are no outgoing arrows from state C, we can be rest assured that the
machine cannot accept any string that does not end in 009.

We will now present a mechanical process for converting the above non-
deterministic machine (NDA) to an equivalent deterministic machine (FSM).

8This is similar to trying them all at the same time and therefore non-determinism is very
often referred to as guessing.

9Leaving out an out-going arrow from a particular state in a non-deterministic machine
means that any symbol observed while at that state would lead to a non-accepting state and
implies that the sequence of guesses that lead to the state was bad. The symbol corresponds
to something like an ‘interrupt’ or an ‘unknown instruction’.
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Figure 2.16: Non-deterministic FSM that will accept only strings that end in
00.

Figure 2.17: Deterministic FSM that will accept only strings that end in 00 by
keeping track of the set of states the equivalent NDA in Figure 2.16 might be
after reading any number of symbols.

The way to do this is to first label the states so that you have some way to refer
to them. The states in the above machine are already labeled.

We will construct an FSM that we keeps track of the set of states the NDA
might be in after reading any possible string. Let us say we start at state A in
the NDA. Where will the NDA be when it sees a 0? It could be in either A or
B. We will remember that in a new state in the FSM, denoted A,B. When the
NDA gets a symbol 0 in A,B, it could transition to either A or B or C. We
will represent this possibility in a new state A,B,C in the FSM. On observing
a symbol 1 on A,B, the NDA could transition only to state A. If in A, B or C,
the NDS gets a 0, it will go back to one of A, B or C and therefore, the FSM
will have a loop on the state A,B,C for the symbol 0. Similarly, on a 1 while in
state A,B,C, the FSM will transition to state A. Figure 2.17 is a deterministic
machine for problem 11 by keeping track of where the NDA in Figure 2.16 might
be after reading any number of symbols, assuming it does not crash. To make
the FSM accept exactly and only those strings that are accepted by the NDA,
all those states in the FSM that include at least one accept state from the NDA
are designated as accept states. This is because of the semantics of acceptance
of a string in a non-deterministic machine: If there is any sequence of state
transitions that could lead to an accept state in the non-deterministic machine,
the string is accepted by the non-deterministic machine.
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Note the subtle difference between this machine and the machine in Fig-
ure 2.7 for problem 4. While the FSM in Figure 2.7 accepted even empty
strings, this FSM does not.

Let us run through an example string 0110. Running this string through the
NDA, the only states you could land up in are A or B. Running the same string
through the deterministic machine, the only state the machine will possibly be
when it is done is in A,B. We see a correspondence here.

The above process of converting a deterministic finite state machine to an
equivalent non-deterministic machine can always be done. When we did this
process, the number of states remained the same and therefore there was no
trade off. We got the advantage of determinism owing to the conversion. There
could be a trade off though and the number of states in the deterministic ma-
chine could explode. By how much could the number of states explode? This
can be answered by examining, what is represented in the states of the deter-
ministic machine; the states in the deterministic machine represent all subsets of
states that the non-deterministic machine could be in. If the non-deterministic
machine has n states, the number of possible subsets are 2n. In the above ex-
ample, we had only three subsets from a collection of 23 = 8 subsets which was
very modest.

In general, the payoff for going from non-determinism to determinism is an
exponential growth in the number of states. We do not really care about this
explosion if it is finite. But when we talk about machines in the Turing Machine
layer, the exponential trade off in states turns into exponential growth in time,
though it is the same idea. That is why, we convert non-deterministic algorithms
to deterministic algorithms, we end up getting exponential time deterministic
algorithms when we had polynomial non-deterministic algorithms to start with.
In this chapter, we saw this trade off in its most trivial form.

Let us formally prove the equivalence:

Every NFA has an equivalent DFA: PROOF: If a language is recognized
by an NFA, then we must show the existence of a DFA that also recognizes
it. The idea is to convert the NFA into an equivalent DFA that simulates
the NFA. Let N = (Q,E, δ, q0, F ) be the NFA recognizing some language
A. We construct a DFA M = (Q′, E, δ′, q′0, F

′) recognizing A. Before
doing the full construction, let’s first consider the easier case wherein N
has no ε arrows. Later we take the ε arrows into account.

1. Q′ = P(Q).
Every state of M is a set of states of N. Recall that P(Q) is the set
of subsets of Q.

2. For R ∈ Q′ and a ∈ Σ let δ′(R, a) = {q ∈ Q|q ∈ δ(r, a) for some r ∈
R}. If R is a state of M , it is also a set of states of N . When M
reads a symbol a in state R, it shows where a takes each state in R.
Because each state may go to a set of states, we take the union of all
these sets. Another way to write this expression is
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δ′(R, a) =
⋃
r∈R

δ(r, a)

.

3. q′0 = {q0}.
M starts in the state corresponding to the collection containing just
the start state of N .

4. F ′ = {R ∈ Q′|R contains an accept state of N}.
The machine M accepts if one of the possible states that N could be
in at this point is an accept state.

2.7 Closure

Closure A family of sets is called closed under an operator if the application
of the operator on all the elements of a set will yield another set in the
same family.

Regular sets are closed under some operations. The more are the number
of closed operations10, the easier it will be to determine whether or not a set
of strings is regular. We touched upon closure under complementation in a
previous section. We will delve on it in some more details in this section.
We will also address closure under string reversal as well as under union and
intersection of regular sets.

Recall problem 8:

Problem 8 Design a finite state machine that accepts only binary strings such
that every 1 is followed by at least two 0’s.

The reason we want to go over this is because it gives another review of an
example of a finite state machine. And then, we will try to make up a machine
that accepts the reverse of this language. In English, the reverse of this language
can be described as:

Reverse Language of Problem 8 Set of binary strings such that every 1 that
shows up has at least two 0’s preceding it.

Instinctively, if we started with the above reverse problem, it would seem
a lot harder than the original problem. But that instinct is actually wrong;
it is easy to do the reverse problem though one might not be able to figure

10Exercise: You will find that for every new exam, the instructor makes up a new operation.
Other operations are union, intersection, min, max, prefix, suffix, half, log, square root. At
one point in the late sixties or early seventies, there was a paper that basically enumerated
a list of operations under which finite state machines are closed under and then tried to
characterized them. For your own knowledge, finite state machines are pretty much closed
under any operation you can think about except a few. The bottom line is that you are pretty
safe with finite state machines.
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Figure 2.18: Minimized FSM that accepts only strings that have at least two
0’s following every 1.

that out at first glance. However, we had found the solution to problem 8 very
naturally in Figure 2.10. The fact that knowing the FSM for a set helps you
figure out the FSM for its reverse makes the second problem a lot easier and
mechanical. This is an advantage of understanding the closure properties. The
problem of reversing a machine, is a very general idea. But in doing this, we will
come up with a non-deterministic machine again, which is a good motivation
for non-determinism.

Below (in Figure 2.18), we reproduce the FSM for problem 8 from Fig-
ure 2.10. For the following pedagogical reason, we will refer to the non-minimized
bigger machine (Figure 2.9) instead of the equivalent minimized machine (Fig-
ure 2.10) - the example reversal procedure we will do next becomes a little more
involved and general if the machine is bigger.

We will now go ahead and try to reverse the above machine, using it as a
template to show the general procedure for designing a machine that accepts
the reverse of a language. It is not straightforward doing this surgery to get a
deterministic machine straight up. However,

1. reversing the arcs of the deterministic machine in Figure 2.18 and

2. swapping the start and accept states

is a completely general mechanical process for reversal that yields a non-
deterministic machine, as in Figure 2.19.

Does the presence of two start states give any extra power over the deter-
ministic machine? No, and that is what we need to ensure. We will replace the
two start states with a single one and enable transitions to these two states from
the new start state on empty transitions. Moreover, the vertex Dead with its
accompanying transition arcs is its own strongly connected component, i.e., it
has no incoming edges from any of the remaining vertices and there is no need
to draw it. We modify the non-deterministic machine in Figure 2.19 along these
lines to the non-deterministic machine in Figure 2.20.
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Figure 2.19: Non-deterministic machine that accepts only strings that have at
least two 0’s preceding every 1.

Figure 2.20: Modified non-deterministic machine that accepts only strings that
have at least two 0’s preceding every 1.
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The reversal of a deterministic machine yielded a non-deterministic machine.
Mimicking the method from the previous section, we will try to convert the
non-deterministic machine in Figure 2.20 to a deterministic machine that is
equivalent. We will then try to interpret the deterministic machine. By the
mechanics of the reversal process, we will come up with a deterministic machine
that actually accepts the reverse language of problem 8. This idea can get
very deep when you can actually come up with solutions to problems that you
would not have otherwise thought of. There is a really interesting thing about
reversing machines and it relates to the fact that some times when you reverse
machines, pieces get cut off.

Note that by applying the mechanical procedure for reversal to the minimal
finite state machine for this problem (as in Figure 2.10 we could have constructed
a non-deterministic machine that has fewer states than in Figure 2.20. We
will mention here is that there is no notion of a minimal non-deterministic
machine as is there with a deterministic machine (where you have a unique
minimum). Because, in the case of non-deterministic machines, you could have
several equivalent machines that have the same number of states.

Next, we will convert the non-deterministic machine in Figure 2.18 into a
deterministic machine using the completely mechanical process described in the
previous section. The procedure involves keeping track of exactly where the non-
deterministic machine might be after reading any sequence of symbols. Where
might the machine end up if the first symbol it sees is a 0? Depending on where
it chooses to start from (one of states A or D), it will land up in a possible
one of any state from the set {A,D,C}. When it sees a starting symbol of 1,
there is none of the states were it might end up. Or in other words, on seeing
a starting symbol 1, the machine will end up in one of the states in the empty
set ε. This empty set is what corresponds to the dead state φ. The only place
to continue exploration from is {A,C,D}. Thus, keeping track of the possible
states of the non-deterministic machine, we can come up with the equivalent
deterministic machine in Figure 2.21.

Since A is an accept state, the state corresponding to the set {A,D,C} will
also be an accept state. This is very important to realize; the deterministic
machine should accept a string whenever the non-deterministic machine could
be in one or more final states on seeing the same string. Along similar lines of
reasoning, the start state should also be an accept state. One could also associate
semantics with each of the states in the deterministic machine in Figure 2.21:
(a) State {A,C,D} represents that one 0 has been seen, (b) State {A,B,C,D}
represents that two 0’s have been seen.

Here is an interesting folklore about theoretical computer science that deals
with the reversal technique11. If you want to minimize a minimal finite state
machine, reverse the machine, convert the non-deterministic machine to a de-
terministic machine, reverse it again and finally convert the non-deterministic
machine again into a deterministic machine; the final machine is equivalent to
the machine we started with, it is deterministic and is always minimal! As far

11Exercise
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Figure 2.21: Deterministic machine that accepts only strings that have at least
two 0’s preceding every 1 and is equivalent to the non-deterministic machine in
Figure 2.20.

as it is known, this fact is not published anywhere. However, you have to be
careful to chop off all the disconnected components at every step of the con-
version process. Reversal can introduce the loss of dead states as well as other
things. Characterizing exactly what it is that you lose, you end up losing states
that are identical. Though this is not a very efficient process for minimization,
it always works nevertheless! There are polynomial time algorithms for mini-
mization that we will deal with in the remainder of this chapter and that will
give us a more efficient recipe for minimizing deterministic machines.

2.7.1 Closure under Union

The proof for closure under reversal is a tough proof that lead us into all sorts of
alleyways. We will now do some that are easier (closure under complementation
was already covered and was quite easy).

Suppose we are given two sets of strings

Set11 Set of strings having even number of 0’s.

Set2 Set of strings containing the sequence 101.

Both the above sets are regular sets and have finite state machines. You
could easily draw them and let us say they are FSM1 and FSM2 for Set1 and
Set2 respectively12. FSM1 should have 2 states and that for the latter should
have 3 states.

What if we want a finite state machine FSM3 for the following set, Set3?

Set3 Set of strings that either have an even number of 0’s or contain the se-
quence 101.

12Exercise
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Figure 2.22: Non-deterministic machine that accepts the union (Set3) of the
set of strings (Set1 and Set2) by utilizing the finite state machines FSM1 and
FSM2 as black boxes.

If you try to do this from scratch, you need to keep track of two things simul-
taneously. And you can get confused. But if you raise your level of abstraction
a little bit and think of Set3 as a union of Set1 and Set2, you can conjure up
the non-deterministic finite state machine FSM3 mechanically without caring
for what FSM1 and FSM2 actually look like as in Figure 2.22. One only needs
to know what the initial and final states of FSM1 and FSM2 are to accomplish
this. When the machine is done with any of the two individual finite state ma-
chines, it jumps to the final state of the combined machne (concentric circles
situated outside the yellow boxes).

Converting this to deterministic machine might make the resulting machine
look a little ugly. If you went through the trouble of converting this non-
deterministic machine to a deterministic machine, you will do exactly what is
called the product13. All that product does is pair states together from the two
machines in every possible way. But if you take the simple mechanical route
above, you need not bother about the product of two machines!

There is one more power of non-deterministism. We can see that union is a
closed operation without dealing with any complicated arguments, such as the
fact that non determinism is equivalent to determinism, etc.

2.7.2 Cosure under Concatenation

Consider the problem of constructing a finite state machine that accepts only
the following set of strings:

Set4 Set of strings such that each string is a concatenation of a string from
Set1 and a string from Set2.

13Exercise: Tutorial
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That is, we require an FSM that accepts only those strings that have a prefix
with an even number of 0’s and a suffix containing the sequence 101. The FSM
can be constructed easily as follows: Construct the FSMs FSM1 and FSM2 for
Set1 and Set2 respectively. Connect all the accept states of FSM1 with an ε
move to the start states of FSM2. The ε move is very powerful; it lets you stay
in FSM1 as long as required and then jump from the accept state of FSM1,
looking for a string in Set2. The accept state of the ‘concatenation’ machine
will be the accept state of FSM2. If you get rid of the non-determinism, the
machine can become really complicated14.

2.7.3 Closure under Complement

Complementat is very straightforward, in which you just toggle all the final and
non-final states. This was already discussed earlier.

2.7.4 Closure under Intersection

For any sets A and B, let us recollect the DeMorgan’s law:

A ∩B = A ∪B

The law is all about boolean algebra. The key thing is if we have two
machines, one for A and another for B, we can get a machine that does their
intersection by a simple application of the DeMorgan’s law.

1. We can complement the FSMs for A and B (since we already learnt how
to complement deterministic machines)

2. then union the resulting two FSMs to get a non-deterministic machine (we
just did union!)

3. convert the non-determinstic machine into a deterministic machine (which
we studied earlier)

4. and finally completement the deterministic machine.

Note that step 3 is required because we learnt to complement only deter-
minstic machines. There is more work for intersection, but it can definitely be
done. Thus, regular sets are closed under intersection.

We should know that for any language, we cannot have closure under just
two out of the three properties of union, intersection and complement, by virtue
of the DeMorgan’s law. Thus, if the union and intersection of two sets in the
language belongs to the same family, so will complement and so on. Either the
language is closed under all of them or just one of them. And this is going to
happen in the levels above FSMs. As mentioned earlier, FSMs are closed under
most operations.

14Exercise: construct the non-deterministic and deterministic machines for this problem
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Figure 2.23: Deterministic machine that accepts the set Set1 of strings.

Figure 2.24: Deterministic machine that accepts the set Set2 of strings.

The above method for intersection is not the nicest way to execute it though.
Any time we have to move from non-determinism to determinism, there is an
exponential potential. We will see a better and direct way to perform intersec-
tion15 using the notion of product of FSMs16. This will reinforce the notion of
non-determinism one more time.

Figures 2.23 and 2.24 show two FSMs.
We will keep track of what both these machines are doing as they read

symbols. When they start, these machines are in the pair of states, < A,X >.
Let us forget about final states for now and simulate the condition of the two
machines at any point of time. On encountering a 0, the machines transition to
the pair < B,X > and on a 1, they transition to < A, Y >. From < B,X >,
on a 1, it will transition back to < A,X > and so on. When you finish this way,
you get a deterministic machine.

How do we interpret this to do union or intersection in a way that is very
different from how we did before. The above procedure keeps track of where
both the machines are. If you want a machine that is a union, that is, it accepts
any string that is either accepted by machine 1 or 2, then the final state of
the resultant machine should be any state that has either a final state from the
first machine or a final state from the second machine (Figure 2.25). But if
you wanted the intersection of the two, the final state of the resultant machine
should be all the states whose ‘representation as a pair’ corresponds to a pair
of accept states in the two respective machines (Figure 2.26).

How big might this get? Every new state in the new machine will correspond
to a pair of states in the old machine. If there are M states in the first (here 2)

15Tutorial and Exercise
16Pedagogical tools for Theoretical Computer Science at Duke University developed with

NSF project. You can download the tools and play around.
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Figure 2.25: Deterministic machine that accepts the union of Set1 and Set2 of
strings.

Figure 2.26: Deterministic machine that accepts the intersection of Set1 and
Set2 of strings.

and N in the second (4 in this case), there will be M ×N (here 8) states in the
worst case with the resultant machine. Note that if you build a non-deterministic
machine for the union or intersection operators using the technqiues discussed
earlier, the number of states will most probably explode exponentially when you
convert the resultant (from union or intersection) non-deterministic machine to a
deterministic machine. The key is in noticing that while performing intersection
or unions, the subsets always pairs.

Figure 2.26 shows the resultant machine.

2.7.5 Alternating Finite State Machines

A salient feature of non-determinism is that it mixes well with ORs (union) and
not with ANDs (intersection). And this going to come all the way up in Turning
machines. Recall that in non-determinism, you could have two outgoing arcs
from a single state on the same symbol. And we defined the semantics as: you
accept if there is some way to get to the final state. In other words, every state is
an OR state. This definition makes non-determinism more ameanable to ORs.
If we define it in terms of getting to a final state from all the paths (by defining
every state as an AND state), the machine will bear more natural relationship
with ANDs.

People do definte finite state machines with ”AND” states. Some times
people mix the two nodes; some states are labeled OR and some are labeled
AND. These machines are called alternating finite state machines. And you
define whether the machine accept a language in the following terms: for any
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string that goes through an OR state, there should atleast be one path that
leads to a final state and for any string that goes through an AND state, all the
paths passing through that state should lead to the accept state. And it turns
out that these alternating machines are no more powerful than the deterministic
finite state machines. This alternating idea goes up to Turning machines about
which we may talk much later in the tutorial.

2.8 Equivalent Representations of Regular Sets

To summarise the discussion so far, we discovered that non-deterministic finite
state machines can be converted into deterministic finite state machines. Either
of them are appropriate ways of looking at the set of finite state machines. We
will sketch a bigger picture of where we are heading for the rest of this chapter.
In web programming and pattern matching, we see regular expression very often.
Regular expression is another way of defining the set that finite state machines
can accept. This is not obvious. We will see how any deterministic finite
machine can be converted into a regular expression. But this does not complete
the equivalences. We will complete the triangle by showing that any regular
expression can be converted into a non-deterministic machine. These are three
different windows to the same picture. And in computer science you desparately
want different views to the same thing. Depending on the requirements, one of
the alternatives will seem easier. And more the number of tools, the easier it
will be to cater to a requirement.

But there is a fourth thing to these three, called regular grammars, which
are sometimes also called linear grammars. These are also equivalent to all the
three other representations. We will fit regular grammars into the picture by
showing their equivalence to deterministic machines. Thus, we will be able to
look at finite state machines from all the different possible viewpoints. There
is no such thing as an analog for regular expressions as we go up the hierarchy
- it simply disappears. But there is such a thing as non-determinism and their
grammar as well as machine analogs. Grammar and machine analogs rise all
the way up the hierarchy up to the Turning machine. And this grammar and
machine parallel all the way up to Turning machines is called the Chomsky
hierarchy. The interesting thing is that grammars and machines do not look
alike but they always come in pairs!

2.9 Non-regular Sets and Introduction to Pump-
ing Lemma

What about characterization of the set of strings that cannot be modeled by a
finite state machine? Fibonacci numbers in binary cannot be acceptable by a fi-
nite state machine. Fibonacci numbers form a sequence defined by the following
recurrence relation:
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Figure 2.27: Equivalent representations of regular sets.
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F (n) := 0 if n = 0
1 if n = 1
F (n− 1) + F (n− 2) if n > 1

(2.1)

Similarly, strings containing an equal number of 0’s and 1’s cannot be ac-
cepted by a finite state machine. Anything that requires counting and arith-
matic with more than finite storage cannot be captured using FSMs. Then the
question is what can be captured by finite state machines? Definitely, problems
for which you can write regular expressions can be modeled using finite state
machines. It will also be nice to show an example which cannot be accepted by
a finite state machine.

Proving you cannot do something is much harder than proving that you can
do it. Because potentially we will require an infinite number of trails. Hence,
to do this efficiently, you will need a trick.

Consider the set17 0n1n|n ≥ 1. This set includes the empty string ε, 01,
0011, 000111, etc. Our claim is that there is no finite state machines that
accepts this set. We can try to make one but keep in mind that the FSM should
not include strings it is not supposed to accept. Remember that in general, the
more an FSM includes, the more it is likely to make a mistake. You will find
that you will have to make the finite state machine more and more powerful in
order to accept this language. And what do you get when you make an FSM
more powerful by allowing an infinite number of states (by giving some external
data structure to work with)? If the data structure happens to be an array, you
get a turing machine. If the data structure is 2 stacks, you again get a turing
machine! If you give it a single stack, you get a push down automaton.

Can we systematically convince ourselves that there can be no finite state
machine that accepts the set 0n1n|n ≥ 1?18. Let us say some one (Adversary)
does come up with a machine for this problem. Then we will refute this claim
through a simple dialogue:

Question: Tell me the number of states in your machine.
Adversary: The machine has 24 (or any other fixed number) of states.
Question: Ok do me a favour. Take the string 024124 and run it through

your machine. You would admit that since there are 24 0’s here, somewhere in
those 24 symbols, you have to encounter the same state twice. This is because
when you start from the initial state and keep going to new states, you have
only 23 moves before you encounter a state for the second time. Can you tell
me how many zeros got read before the loop (path between the first and second
encounters of the state).

Adversary: There were 17 zeroes before the loop, 3 zeroes within the loop
(note that the loop could be just one 0) and 4 zeroes after the loop.

17In this tutorial, exponentiation will almost always mean repetition.
18If a student goes home and spends all night trying to build a machine for this problem and

informs his friends that he has obtained a machine for this problem, he is probably deluded
because of lack of sleep!
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Question: So let us split the string as 0170304124. There are three parts
to the computation of the string; the part before the loop, the loop itself and
the part after the loop. Now that you have admitted, try this string on your
finite state machine: 017030304124. What will your machine do? It is going
to do the same thing it did before on the first 17 symbols, loop on the next 3
just like it did earlier and then again loop on the next 3 (since it sees the exact
string again) and thereafter continue with the earlier path. If the earlier string
leads to the final state, the new string should also lead to a final state. What
is wrong with this? You were supposed to accept only those strings that have
an equal number of 0’s and 1’s. You started out with 024124. And now I have
convinced you without even looking at your machine that the machine has to
accept the string 017+3+3+4124 that is 027124. Therefore your machine is bogus
- not because it does not accept all strings 0n1n but because it accepts more
than it is supposed to.

Note that the dialogue is important - the number of states are asked apriori
and cannot be changed when faced against the wall. The argument here forces
somebody to come up with a hypothetical machine and in a dialogue forces them
to admit: Oh! I might have accepted all the strings that you want. But you
seem to have convinced me that the machine accepts more than I really want.
And this idea is the heart of something called the puming lemma which we will
discuss next. It is called so because here you pump up the loop. In the same
vein that regular sets are termed so because you want to pump up substrings
at regular intervals and obtain other members of the set. Regular sets string
out at very linear intervals. Therefore anything that grows faster than linear is
never regular. Following this logic, we can guess that 0n

2
is not regular because

n2 is not linear.
This pumping lemma is also referred to as diagonlization and is a jack ham-

mer of a tool that always can spit out a set outside of its collection. We could
apply diagonalization on FSMs and discover that there is a set of binary strings
that represent FSMs that do not accept themselves. And that set could not
possibly be accepted by any FSM19.

2.10 The Pumping Lemma

Pumping lemma is used to prove that a set is not accepted by any finite state
machine; that the set exists outside the horizon of finite state machines. And
it works in the following way. It turns out that if a set is accepted by a finite
state machine, it should have the property that we should be able to pump it
up somehow. In what follows, we will get more specific about this point. Any
set that does not have the pumping property, it could not have come from a
finite state machine. This lemma is usually written down in the forward way,
that is, regular set⇒pumping property.

Pumping Lemma: Let L be a regular set, and let FSM be the corrresponding
19This idea is akin to the case of a barber who can shave everybody except himself



40 CHAPTER 2. FINITE STATE MACHINES

finite state machine with number of states given by |FSM |. The pumping
lemma states that ∀z ∈ L where |z| (the number of symbols in z) is greater
than or equal to |FSM |, ∃v, w, x such that |vw| ≤ |FSM | and |w| ≥ 1,
and ∀i ≥ 0, vwix is also20 in L.

Note that exponentiation here is simply repeated concatenation. It is much
harder to understand the lemma this way than through the dialogue form dis-
cussed in the previous section. In words, the lemma states that there exists a
way to split z into three parts where the first part v is the sequence of symbols
that occur before the first loop, w is the substring that corresponds to the first
loop (the first loop cannot get past the first |FSM | symbols)21 and x is the rest
of the string such that repeating w any number of times yields a string in the
regular set L.

In practice, the lemma is used in its equivalent contrapositive form: If you
present a set, and if it does not have the pumping property, we can conclude
based on the pumping lemma that it cannot be a regular set. That is, ¬pumping
property⇒¬regular set. The contrapositive can be precisely stated as follows.
Recall that pushing a not sign into an existential quantifier yields a universal
quantifier.

Contrapositive of Pumping Lemma: ∀n which equals the number of states
in any machine for a set L, if the following conditions hold, L can not be
a regular set. The conditions are: ∃z ∈ L, |z| ≥ n, such that ∀v, w, x with
z = vwx, and |vw| ≤ n, |w| ≥ 1, ∃i ≥ 0 such that vwix /∈ L.

In other words, no matter how you split up z into three pieces, the prover
does not get to choose where to split, but the adversary gets to choose the split.
In the proof, we have to be able to make our argument based on the fact that
the loop might appear anywhere, and the adversary has to tell us where the
split is. We need to corner the adversary so that he do not have too many cases
to choose from22.

The pumping lemma is used in the above form to prove that a set is not
regular; any set that cannot be pumped up at regular intervals is not a regular
set. Note that there are non-regular sets that have the pumping property. Thus,
one cannot always use the pumping lemma to prove that a set is not regular.
It is not enough to examine the pumping property of a set to prove that it
is regular. An if and only if condition exists only for regular sets that have
an alphabet of a single symbol (say 0); there is a linear characterization for
all regular sets with a single symbol alphabet23. The characterization is that

20i = 0 means you avoid the loop altogether. There are occassional examples where the
pumping number i you use is 0.

21There are versions of this lemma statement that do not insist on w corresponding to the
first loop

22It is like a boxing fight where you want to give the opponent the least maneuverability
possible. The opponents represent the universal quantifiers while the boxer in first person
represents the existential quantifier.

23Exercise: Extra Credit Problem.
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each string should look like 0mx+b, where x is a variable and m and b are real
constants.

Example 1: Palindromes

We want to show that the set of palindromes, strings that read the same from
both left to right and right to left, does not satisfy the pumping property. We
will follow the dialogue as illustrated earlier.

Question: Tell me the number of states in your machine.
Adversary: The machine has k states (for any k).
Question: Consider the string 0k10k. This choice nails the adversary be-

cause the only choice of vw is 0p where p ≤ k. For any choice v = 0p−p1 ,
w = 0p1 , where w is a loop and p1 ≥ 1, vwix = 0(p−p1)0(i×p1)0(k−p)10k is not a
palindrome24.

Thus, by the contrapositive of the pumping lemma, the set of palindromes
is not regular.

Example 2: Quadratic Strings

Consider the set of strings over the single symbol alphabet {0}, given by L =
{0k2 |k ≥ 0}25. We will show that this set is not regular.

Question: Tell me the number of states in your machine.
Adversary: The machine has n states (for any n ≥ 1).
Question: Consider the string 0n

2
, which is in the language L and which is

longer than n symbols (|0n2 | ≥ n). Let 0n
2

= vwx, where |vw| ≤ n and |w| = m
such that n ≥ m ≥ 1. The value of m is determined by the substring of vw that
contains the loop. We need to pick an i and pump it up and our choice will be 2.
vw2x = 0n

2+m. Claim: n2 +m is not a square, or in other words, 0n
2+m 6= 0k

2

for any k. We will prove this by proving that n2 < n2 +m < (n+ 1)2. That is
n2 < n2 +m < n2 +2n+1, or 0 < m < 2n+1, which is true because 0 < m ≤ n.

Example 3: Strings of composite length

Consider the langauge of strings L = {0n|n is a composite number}. The
language actually obeys the pumping lemma and therefore we will never be able
to prove the contrapositive of the pumping lemma, even though the language
is actually not regular. So this is an example of a language that is not regular
and yet obeys the pumping lemma. You can however use the pumping property
to prove that the language L′ = {0p|p is prime}, is not regular26. You can
next note that the L and L′ are complements of each other. That is the idea

24Note that 0d
k
2 e10d

k
2 e is a bad choice for trying to prove that the set of palindromes does

not satisfy the pumping lemma. Because a choice of v = 0d
k
2 e, w = 1 and x = 0d

k
2 e, respects

|vw| ≤ k, |w| ≥ 1 and implies that all strings 0d
k
2 e1i0d

k
2 e are palindromes (that is they belong

to L), ∀i ≥ 0.
25The equivalent of identity in string concatenation operations is the empty string ε = 00.
26Exercise
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of closure. We know that the complement of a regular set is regular. Since the
complement of L is not regular, we can infer that that set L we are dealing with
is also not regular. So we have used proof by contradiction using the closure
property. This illustrates another use of the closure property.

Example 4: Strings with equal number of 0’s and 1’s

Let us consider the language L consisting of strings that have an equal number
of 0’s and 1’s. We note that {0n1n|0 ≤ n} = L ∩ {0n1m|0 ≤ m, 0 ≤ n}. Since
regular sets are closed under intersection and since we know that {0n1m|0 ≤
m, 0 ≤ n} is regular while {0n1n|0 ≤ n} is not regular (we proved that as our
first application of pumping lemma), the set L cannot be regular. For, if the set
L were regular, its intersection with another regular set {0n1m|0 ≤ m, 0 ≤ n}
should have been regular, which is not the case. Thus, we used a combination
of pumping lemma and closure under intersection along with the technique of
proof by contradiction to prove that L is not regular.

Example 5: Strings that represent legitimate FSMs

We could represent a finite state machine as a binary string as follows:

0n10(state[1,0])10(state[1,1])1 . . . 10(state[n,0])0(state[n,1])110(acceptState[1])1 . . . 10(acceptState[k])

where, n is the number of states in the machine, k is the number of ac-
cept states, 1 is the default accept state, state[i, g] returns the id of the state
that the FSM goes to on a transition from state i on seeing the symbol g and
acceptState[u] returns the id of the uth accept state. For instance, the string
representation for the FSM in Figure 2.23 is

001001010100110

So the above string represents a legal finite state machine. But does

0310101

represent a legal finite state machine? No, because it is supposed to have
three states, but does not specify what the transitions for the second and third
states should be. Nor does it specify the accept states. There are lots of strings
that are legal FSMs and many that are not. Let LFSM = {M |M is a legitimate FSM}.

Can we figure out using a program whether a given string belongs to LFSM?
Can we have an FSM that does the job27? In other words, does there exist
an FSM that recognizes one of its own kind (another FSM)? As a mundane
example, a human being can recognize which of the entities in a room are
actually humans28.

27This is different from a previous problem which addressed if an FSM recognizes itself or
not. Here we are concerned with the problem of determining whether a FSM can recognize
another legal FSM.

28Or a sane can identify who in a class room are sane and who are not.
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The answer is that the set LFSM is not regular. Can we prove this formally?
We will prove it again on the strenght of the contraposition of the pumping
lemma in the form of a dialogue.

Question: Tell me the number of states in your machine that accepts LFSM .
Adversary: The machine has n states (for any n ≥ 1).
Question: Consider the string 0n 101010 . . . 10︸ ︷︷ ︸

n pairs of 01

11. You should split the

string into three parts vwx. No matter what you do, the first v will be stuck
in the first n symbols, i.e., in 0n. Suppose v = 0p, 0 ≤ p < n, w = 0q, 1 ≤
q ≤ n − p. Then pumping up w by a factor m, we get the string vwmx =
0p0(mq)0(n−p−q) 101010 . . . 10︸ ︷︷ ︸

n pairs of 01

11 which is 0(n+(m−1)q) 101010 . . . 10︸ ︷︷ ︸
n pairs of 01

11. This string

is not a legal FSM because the string is prefixed by (n+(m−1)q) 0’s indicating
n + (m − 1)q states ∀m ≥ 1 and ∃q ≥ 1, whereas, it has only n pairs of ‘10’s
following.

So this encoding of FSMs is too hard for FSMS to accept. So it is not
surprising that it is hard to construct a FSMs that accepts itself. There is
however the Turing machine that could do all this. The higher levels can not
only understand and recognize FSMs but also simulate them, answer questions
about them. The higher levels may not be smart enough to answer questions
about their own kind though. Turing machines are powerful enough to recognize
their own kind. That is what compilers are. What they are not power enough
to do is to recognize any interesting properties about automata of their own
kind. They cannot, for example say that ‘Here is a Java program that never
infinite loops’ or ‘Here is another Java program that accepts exactly 5 inputs’
or ‘Here is another Java program that does not accept anything’. The compiler
could simulate the program but the program might run forever and we might
never know the answer. If the answer is ‘yes’, we obtain it after some time. But
if the answer is supposed to be a ‘no’, we will wait forever.

Example 6: An alternative encoding of legitimate FSMs

There is an encoding of FSMs that makes them recognizable by themselves.
Every FSM has a binary number associated with it. Let us order all FSMs
according to size. The first one is the smallest one, the one with a single state.
And we will re-label all FSMs such that the smallest one is called 0, the next
will be 1, the next will be 10 and so one. Thus, every single FSM has a binary
number associated with it. And every single binary number (0 + 1)∗ is taken
care of has an associated FSM. In such an event, it is easy to develop an FSM
that accepts them all; a single state that loops back on 0 as well as 1 and is also
the accept state.

Thus, the discussion in example 5 entirely depends on the encoding scheme.
It is normal to construct encodings so that every single encoding means some-
thing. As an example, suppose we map every string that does not correspond
to an encoding of FSMs discussed on example 5 to an FSM that does not have
any accept states (that is it accepts the empty set), then every binary string
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Figure 2.28: Finite state machine for L(odd 1′s).

will again correspond to a legitimate FSM. That is every single binary string
will have some semantics as an FSM.

2.11 Linear Grammar

This is a self-contained, short topic. It connects ‘regular expressions’, determin-
istic FSMs and non-deterministic FSMs to linear grammars. It adds in a new
way of looking at sets based on ‘grammars’. As the levels of sets go up, the
‘grammar way’ of looking at a set becomes at least as important, if not more
important than the ‘machine way’ of looking at a set, which is very different
point of view. Finite state machines are not generally expressed at the level
of grammar, whereas, compilers and programming languages are mostly repre-
sented using grammars. The grammar point of view is very easy and transparent
to make sense out of it. The best way to define a linear grammar will be start
with an example.

2.11.1 From Finite State Machine to Linear Grammar

Consider the language L(odd 1′s)

L(odd 1′s) = {x|x is a binary string consisting of odd no. of 1s}
Figure 2.28 gives the FSM for L(odd 1′s).
We will create a grammar, which is a formalism that neither accepts nor

rejects strings; rather it generates strings. Any string that is accepted by the
FSM can be generated by the grammar while any string that is rejected by the
machine cannot be generated by the grammar.

As in the FSM, we will have a start symbol, A. And A can generate strings
that the FSM can accept. Hence, A should be able to generate a 0 followed by a
string that A can generate again. This production can be succintly represented
as A→ 0 A. Secondly, we should also be able to generate a 1 and then continue
with B, that is, A→ 1 B. Once in B, we should be able to generate a 0 and stay
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in B or generate a 1 and go back to A, which are represented by B → 0 B and
B → 1 A respectively. The candidate set of production rules are listed below.

A → 0 A
A → 1 B
B → 0 B
B → 1 A

(2.2)

Let us use these productions to generate some strings using a sequence of
substitutions in the grammar. A sequence of substitutions in the grammar to
create a string, is called a derivation. We will start and when we find that we get
stuck up, we will complete this production table. The start symbol is A (though
the usual notation for the start symbol is S). Starting from A, we could use the
production A → 0 A. The A on the right hand side can be further expanded
using the production A→ 1 B. A legitimate next substitution for the B on the
right hand side is, B → 0 B.

A→ 0 A→ 0 1 B → 0 1 0 B

What about termination? We are not generating any string as long we
have some capital symbol left over on the right hand side. The capital symbols
are called non-terminals, and they should not be present in a terminal string.
The terminal symbols are symbols in the alphabet Σ = {0, 1} and the final
string should consist only of terminal symbols. Note that B is an accept state
and therefore, it could disappear in the production sequence. Based on this
observation, we add a production rule B → ε (remember that ε is the empty
string. The updated set of production rules is listed below.

A → 0 A
A → 1 B
B → 0 B
B → 1 A
B → ε

(2.3)

This is called a linear grammar. Here is a definition of linear grammars.

Linear Grammar A linear grammar consists of:

1. a finite set of symbols Σ that form the strings of the language being
defined. The elements of this alphabet are also called the terminals,
or terminal symbols.

2. a finite set of variables, also called sometimes nonterminals or syn-
tactic categories. Each variable represents a language; i.e., a set of
strings. One of the variables represents the language being defined; it
is called the start symbol. Other variables represent auxiliary classes
of strings that are used to help define the language of the start symbol.
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3. a finite set of productions or rules that represent the recursive defi-
nition of the language. Each, production consists of: (a) A variable
that is being (partially) defined by the production. This variable is
often called the head of the production. (b) The production symbol
→. (c) A string of zero or more terminals and variables. This string,
called the body of the production, represents one way to form strings
in the language of the variable of the head. In so doing, we leave
terminals unchanged and substitute for each variable of the body any
string that is known to be in the language of that, variable. The string
on the right hand side is restricted to have one of two forms:

• it has either a single terminal symbol, such as in A→ 1 or
• it has a single terminal and a single non-terminal symbol, such

as in A→ 0 A.

When the single terminal appears before the non-terminal, the grammar is
called left linear. When the single terminal appears after the non-terminal,
the grammar is called right linear. Left and right linear grammars are
equivalent. Linear grammars generate regular languages. Linear gram-
mars are a special case of context free grammars (to be discussed in chap-
ter 3). Context free grammars allow any sequence of terminals and non-
terminals on the right hand side of each production. .

Now we are equipped to continue the derivations above. Using this produc-
tion, we could get a legitimate string using derivations.

A→ 0 A→ 0 1 B → 0 1 0 B → 0 1 0

This is a derivation of the string 010, starting from the start symbol A, going
through some intermediary steps. The intermediary steps are called sentential
forms. In general, we should be prepared to stop further productions when we
are on an accept state. Therefore, a production of the form < Final State→ ε
will be required.

What we showed above was not example of a grammar. It was an example
demonstrating how to take an FSM and convert it to a grammar. We could
have done this with any finite state machine < Σ, Q, S, F, δ >. The procedure
is

1. Each state q ∈ Q is interpreted as a non-terminal symbol Sq.

2. Each transition arrow δ(q1, a) = q2 is interpreted as a production Sq1 →
a Sq2 .

3. Each final state f ∈ F is interpreted as an empty production Sf → ε.

What if we had started with a non-deterministic machine? Could we have
done this? And the answer is a ‘yes’. We could have carried out the same set
of steps. Because the ‘or’s in a non-deterministic machine end up being the
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‘or’s in the interpretation of the grammar. Of course, we could always convert
the non-deterministic machine to a deterministic machine and follow the above
procedure. But we do not really need to do that.

The above example should convince us that if we had a deterministic ma-
chine, we could represent the language corresponding to the machine as a left
linear grammar. In what follows, we will discuss how a finite state machine
could be induced from a left linear grammar.

2.11.2 From Left Linear Grammar to Finite State Ma-
chine

The mapping between left linear grammar to finite state machines is one to one
(as might be evident from the discussion in the previous subsection).

1. Each non-terminal symbol Sq is interpreted as a state q.

2. Each production Sq1 → a Sq2 is interpreted as a transition arrow δ(q1, a) =
q2.

3. Each empty production Sf → ε is interpreted as a final state f

We will do one example of the reverse procedure and see if there are any
pitfalls. Consider the grammar

S → 0 A
A → 1 B
A → 0 B
A → 0 S
B → 1 S
A → 1
B → 0
S → 1
A → ε

(2.4)

A must be a final state, since it gives an ε production. What should we
do with single terminal productions such as S → 1? One legitimate solution is
to have a transition from A, S and B to a new final state F on symbols 1, 1
and 0 respectively. But this gives us a non-deterministic machine (Figure 2.29).
Actually grammars, are by nature, non-deterministic. For instance, one does not
know apriori whether to continue generating 1 B from A using the production
A→ 0 B or stop using the production A→ 1 to be done! As long as there is a
way to generate a string, we should be able to accept it using the corresponding
non-determinstic machine. Actually, this is one more motivation for the idea of
non-determinism. It fits in naturally with the ‘or’ness of grammars.

The above discussion prompts us to define a new set of steps for transforming
a linear grammar to a finite state machine.
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Figure 2.29: Finite state machine for the linear grammar in (2.4).

1. Each non-terminal symbol Sq is interpreted as a state q.

2. Each production Sq1 → a Sq2 is interpreted as a transition arrow δ(q1, a) =
q2.

3. Each empty production Sq → ε is interpreted as a final state q

4. Each singleton production Sq → a is interpreted as a transition to a final
state f from state q on symbol a.

2.12 Traingle of Equivalance for Finite State Ma-
chines

We had proved the equivalence between deterministic and non-deterministic
finite state machines. In the previous section, we discussed the equivalence
between non-deterministic finite state machines and linear grammars. By tran-
sitivity of the equivalence relation, we get equivalence of deterministic finite
state machines with linear grammars. This gives us the triangle of equivalence
as in Figure 2.30.

2.13 Mimization of Finite State Machines

The fundamentally neat thing about finite state machines is that once you create
one, there exists a unique finite state machine that is equivalent to the machine
while being equivalent to the original. Therefore, if may people develop their
own finite state machines for a given problem, all could minimize it to obtain
a unique machine. This does not hold for turning machine programs or for
pushdown automata that fall somewhere in the middle of the bull’s eye. They
do not have the notion of a minimum machine. The presence of a minimal
machine let one understand finite state machines really one. Minimization is
at the core of the so called decision algorithms about finite state machines. To
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Figure 2.30: The Traingle of Equivalence.

explain this idea, we will go of on a little tangent and hope to get the intuition
behind minimization of FSMs. Subsequently, we will get into greater details of
finite state machines. We will conclude with a couple of example minimizations.

2.13.1 Intuition for Minimization

Suppose you are stuck in a cave. The cave has rooms that look like the states of
an FSM. Each room has little doors out of them, leading to other rooms. Each
door is labeled with a 0 or a 1. You do not have any map of this cave; somebody
just transports you into one of the rooms. You want to map the cave with a little
piece of paper and a pencil in your hands. You want to make a map because it
turns out there is water/food in some of the rooms in the cave. You want to be
able to figure out which rooms have food/water and be able to back and forth
from one to the other without getting lost. This has semblance with adventurous
dragon games. In these games, you often find yourself in a maze like this. You
basically map up the maze so that later on when you are running through the
program, you can figure out where you are, which is very difficult to tell from
the description of the program. Suppose you walk from one room to another
in the cave. How do you know that a room you walk into a new room or one
of the visited rooms? You do not really know of sure. You have no idea where
these paths go, no sense of direction. When you are done traversing the map for
a long time and notice the pattern of rooms you visited, you suddently realize
that the room you visited just now is functionally very similar to another room
you visited some time back. And you should perhaps collapse the two rooms
together. The map was possibly mistaken and you repeated the same room
couple of times. Perhaps you visited the same room with food/water at two
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Figure 2.31: A non-minimal finite state machine.

different instances of time and plotted them as different locations on the map
and therefore these states should be merged. When you tend to do this instead
of creating a huge map, you create a smaller map, that is just as good but much
simpler. The complicated map (traversed with no information of direction) is
the like a large finite state machine and the real map where every room has just
one circle for representation is the minimal finite state machine.

With this intuition in mind, we will do an example. Consider the finite state
machine in Figure 2.31. Let us say the FSM in the figure is what we obtain as
a result of wandering around the cave. The accept states (states with circles),
represent the rooms that store food/water. Can we discover rooms/states in
the machine that are functionally identical? What does functionally identical
mean in the first place? We will point out some states that could not possibly be
functionally identical while some others that seem to have common functionality.

1. Two states that can be functionally identical or those that can be confused
are the two accept states B and E.

2. By definition, final and non-final states are different. In terms of food/water,
one has food/water in it and other does not. Hence they cannot be merged
together without disturbing the functionality of the machine. Thus, A is
distinguishable from E the empty string ε; on an empty string, the FSM is
at A and does not accept the string, whereas, E is an accept state, which
you cannot reach on an empty string.

3. Consider the states D and C. What if for every sequence of symbols, that
lead to D or C, the next symbol 0 leads to an accept state? and whenever
we did not accept at D, we did not accept at C. And this is what happens.
Then what is the point of having two different states? We might as well
merge them into one state.

We can expand a little here. Is it true that D and C are equivalent29?
Starting at C as well as D, 0 is accepted while the string 00 is not accepted.

29If they are, we need to rigorously decide how to go about merging them; simply eyeballing
is not sufficient.



2.13. MIMIZATION OF FINITE STATE MACHINES 51

Figure 2.32: The table for the minimization procedure for FSM in Figure 2.31
filled up through base cases.

Can we come up with any string that distinguises C from D, from the point of
view of accepting/not accepting? It turns out if you can distinguish two states
in this FSM using a string, the string must have six symbols or less (where six
is the number of states in the FSM). Because after six symbols, you will revisit
some states. Therefore, there is no need to go for ever looking for distinguishing
strings. This gives a mechanical, brute-force procedure for distinguishing states
from each other. We will present a more efficient procedure for this task.

2.13.2 An Efficient Algorithm for Minimization

Our base case will be that accept states can be distinguished from non-accept
states. We will create a different picture that represents the depedency as well as
the distinguishing states in Figure 2.31. The picture is supposed to represent all

combinations of every state with every other state. In all, there are
(

6
2
)

= 15

combinations of pairs of states, avoiding repetitions of pairs. We will detect
whether to distinguish one from another. For every pair of states that are
distinguishable from one another, we will mark a cross ‘X’. We will mark all
non-final (non-accept) states A, C, D and F as distinguishable from the final
(accept) states B and E. What we would like to do is fill in chart. If we are
able to fill in this chart completely, and discern distinguishable states, we could
collapse the states that are indistinguishable into single states. So if turns out
that there is no cross ‘X’ for the pair (B,E), the states B and E could be
collapsed. Figure 2.32 shows the table filled up for the base cases.

Let us try to determine whether a cross should go into any of the other blank
squares of the table in Figure 2.32. How would you decide that A and F are
distinguishable from one another? THe base case does not work for this pair,
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since they both are non-final states. Let us try to refine our information by
adding in a single symbol that starts in A and F simultaneously and see where
it ends up. For the symbol 0, we end up in B and E respectively. Are B and E
distinguishable? Not yet. If B and E were distinguishable, what would we have
known about A and F? The answer is that they are also distinguishable. That
is because we had just tacked on a ‘0’ to the string that landed in A and F to
arrive at B and E respectively. When we add the symbol 1 at the states A and
F , we land at D and C respectively which are again not distinguishable so far.
Later on, however, if we discover that D and C are distinguishable, it will imply
that A and F are distinguishable. Similarly, distinguishability of (A,D) depends
on distinguishability of (B,E) through symbol 0. Also, the distinguishability of
(A,D) depends on distinguishability of (A,D) (itself) through symbol 1. But
you do not bother writing this dependency. In fact, such a dependency only
means that with respect to the symbol 1, A and D are indistinguishable. (A,C)
depends on (B,B) through symbol 0; whenever you have such cases, where the
distinguishability of two states depends on the distinguishability of the same
state, such as here, the two states are definitely not distinguishable. Therefore,
we leave out this redundant dependency. In order to do all this, here is how the
algorithm actually functions.

1. Go through all the empty squares one at a time to determine and register
all dependencies in corresponding boxes. In order to avoid registering
cyclic depedencies, we will start traversing from the top left box, toward
the right and then down. An entry will be made in the box corresponding
to a pair only if the dependency refers to a pair that occurs before this
pair during the traversal. Thus, the entries for (D,F ) and (C,F ) will not
be made in the box for the pair (B,E). For instance,

• go into the box for (B,E) pair and put an (A,F ).

• go into the box for (C,D) and put in an (A,F ) there too.

• place the entry (A,D) in the box for (B,E).

• place the entry (A,C) in the box for (D,F ).

• place the entry (B,E) in the box for (C,F ).

This will give us information about states that might be distinguishable
based on strings consisting of single symbol each.

2. The semantics of registering such dependencies is that later on, if we
happen to put an ‘X’ in either of (B,E) or (C,D), we will backtrack and
put an ‘X’ in (A,F ) box as well. And at that time, we will wind up further
from (A,F ), if there are any pairs registered in its box. So as the second
step, go through every box and backtrack if required.

3. After executing step 2, we will go back to step 1. Registering dependencies
now using step 1 will gives us information about states that might be
distinguishable based on strings of length 2. This can go on. The amount
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Figure 2.33: The table for the minimization procedure for FSM in Figure 2.31
filled up after one step of the algorithm for minimization.

of the backtracking (limited by the number of states in the machine) will
determine the size of the string that distinguishes between pairs of states.

The minimization problem is really a graph searching problem in disguise.
The above algorithm is based on the idea of equivalence relations. Deciding
whether one set is distinguishable from another is an equivalence relation. We
do not want states that are equivalent to be represented separately in the finite
state machine. Since equivalence relations are transitive, we could iteratively
continue the steps (1) and (2) above. Figure 2.33 shows the table updated after
the first step of the above algorithm.

We observe that none of the boxes that had dependencies registered have
been marked as distinguishable. Which means we cannot go any further in
finding distinguishable states. Equivalence relations are transitive and they
induce a partioning. In this particular case, the equivalence relation partitions
the set of states into two: the indistinguishable set of non-final states and the
indistinguishable set of final states. Thus, the FSM in Figure 2.31 is actually
equivalent to the minimal FSM in Figure 2.34. And it is surprising to note that
all the complicated FSM in Figure 2.31 was doing was accepting only strings
that have an odd number of 0’s! It is evident from this example that it can be
a lot better working with minimum FSMs.

When designing an architecture for a computer, you have a big FSM that
represents the micro-code and how it is all going to distributed. And you want
to define the micro-code without worrying about minimizing it. But when you
want to implement the micro-code and turn it into hard ware, while being
small and compact, you would minimize it. The minimization algorithm is very
commonly used. You could certainly eye-ball redundancies in a large FSM, but
the minimization algorithm we discussed could be mechanically performed by
any machine.
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Figure 2.34: The minimal finite state machine that is equivalent to the FSM in
Figure 2.31.

Figure 2.35: The dependency graph corresponding to dependency entries in
Table 2.33.

We before we go on to the next example, we will briefly talk about the
dependency graph and how it relates to which states are distinguishible. Fig-
ure 2.35 shows the dependency graph corresponding to the dependency entries
in Figure 2.33.

Second degree dependencies are obtained in the dependency graph by travers-
ing two edges. Thus, (C,D) is dependent on (C,F ) by a string of length 2. All
you have to do to determine distinguishibility is to take the ‘X’s marked on
certain nodes (base cases) and flood them through the graph in the reverse di-
rection of the arrows and see where the ‘X’s can reach. Any node the ‘X’s can
reach will be marked with an ‘X’ and will be considered to be distinguishible.
This can be done using any search algorithm that goes through a graph, such as
depth first search or breadth first search. The algorithm takes time proportional
to the number of edges in the graph. Since there are two edges out of every
single node, and since the number of nodes in the dependency graph is

(n
2
)

, the

time taken for this algorithm is 2
(

6
2
)

= (n− 1)n. Thus the time taken by this
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Figure 2.36: Another non-minimal finite state machine.

algorithm should be no more than n2.

Example

Consider the finite state machine in Figure 2.36 and the corresponding Table
in Figure 2.37 marked with base case crosses ‘X’. The base cases correspond to
eight isolated nodes.

Next, we traverse the boxes, starting with (A,D). We get dependence (for
distinguishability) of (A,D) on (B,D) and (C,D) for the input symbols 0 and
1 respectively. But neither (B,D) nor (C,D) are marked with a ‘X’ and hence
we can only note down the dependence for possible resolution in the future.
However, for the next pair of (A,C), we note its dependence on a distinguishible
pair (B,F ) for the input symbol 0. We cannot have the A and C be functionally
identical and they must be functionally distinguishible. (A,C) will therefore get
marked with a ‘X’. Once we get distinguishability on 0, we do not both checking
distinguishability on 1 (which was otherwise a dependence on (C,D)). Going
further to (A,B), we note its dependence on a 0, on (B,E), which again happens
to be distinguishable. Thus (A,B) again gets an ‘X’. (B,D) depends on (D,E)
for symbol 0, and note that (D,E) is crossed and is distinguishable. Moving
forward to (B,C), it depends on (E,F ) for symbol 0 and on (D,D) for symbol
1, both of which are indistinguishable. Finally for (C,D), its dependency on
the distinguishable pair (D,F ) should fetch it a distinguishability certificate.

Figure 2.38 shows the table after application of the first step of the algo-
rithm. Figure 2.39 shows the same table after application of the second step,
which involves propagation of ‘X’s in the reverse direction of arrows. Finally,
Figure 2.40 shows the table after application of the first step in the second it-
eration to mark the pair (A,D) as distinguishable. This leaves two pairs as
indistinguishable, viz., (B,C) and (E,F ). These two could be collapsed into
one state each as in Figure 2.41.
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Figure 2.37: The table for the minimization procedure for FSM in Figure 2.36
filled up through base cases, that is final states are distinguishable from non-final
states.

Figure 2.38: The table in Figure 2.37 after first step of the minimization algo-
rithm.
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Figure 2.39: The table in Figure 2.38 after the second step of the minimization
algorithm.

Figure 2.40: The table in Figure 2.39 after the first step in the second iteration
of the minimization algorithm.
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Figure 2.41: The minimal finite state machine that is equivalent to the FSM in
Figure 2.36.

What does the minimal in Figure 2.41 do? It is lot easier to analyze now.
It accepts every string that does not have a 1 in the second position!

2.13.3 Comutational Complexity

Let us analyze how long this algorithm will take for computing a minimal finite
state machine. The dependency graph has 2n2 edges and the time taken to
travese it is 2n2. But that is not exactly what we do in the algorithm. The
table in Figure 2.39 has

(n
2
)

= (n−1)n
2 cells We look at each box exactly twice

(once corresponding to each of the two symbols) during the forward traversal
and this implies a time of (n − 1)n, which is of the order of n2. But there is
the backtracking and that adds some extra time. The worst thing that could
happen is that the algorithm has to backup at every single step. And when it
backtracks, it might go through n levels, backtracking up at every single stage,
making the time for computation, n ∗ n2 = n3 in the worst case. But such a
case can never happen. The above analysis was quite careless.

How can we never require to backtrack at every single stage for every single
value? Everytime, we backtrack, Let us ask ourselves, how many times will some
cell get visited to be marked with an ‘X’ during backtracking? The answer
is that every single cell might get visited twice during backtracking; once in
the backward direction of an arrow marked with ‘1’ and once in the backward
direction of an arrow marked with ‘0’. So on the whole, every cell can be visited
twice (once during the forward traversal and twice during backtracking). Thus,
the overall time for computation will be 3n

2

2 , which is again in the order of n2.
Thus, the algorithm is an n2 algorithm.

The algorithm is often taught in a simpler to understand manner, which
turns out to be n3 in the worst case. It works as follows: It starts off drawing
the graph completey (the

(n
2
)

states). It marks the final and non-final states.
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Next, it propagates the ‘X’s. In doing so, it looks at each of the n2 vertices, n
different times, making it an n3 algorithm. This is really an inefficient algorithm.
There is also an algorithm by Hopcroft and Ullman that runs in nlog(n).

2.14 Decision Problems about FSMs

What questions can we answer about finite state machines, i.e., regular sets?
The suite of algorithms that answer yes or no are often called decision algo-
rithms. The inputs are binary strings that represent finite state machines. You
might be given an FSM and asked, ‘Does this machine accept any string of length
10?’. Of you could be presented with two FSMs and asked, ‘Do they accept the
same language?’ ‘Or do the two FSMs have anything in common they accept?’
These are questions about FSMs; questions you would write an algorithm or
program for. And the input to the program is a finite state machine. The most
obvious question you might want to ask about a FSM (one that we already
addressed) is, Here is an FSM. Here is an input string to the FSM. Does the
FSM accept this input string?’ Even a beginner in computing class could write
a program for this, by setting up an array. There is a built-in utility in Linux
called Lex that does this. You can specify a FSM, provide it a string and Lex
can tell you whether or not the FSM accepts the string. In fact, Lex can do
more that simply answer the decision question.

The reply is that we can answer almost all questions about FSMs. We will
do a couple of them.

2.14.1 Membership Question

Given an FSM F for a regular set L, and an input string x, is x generated by
F? In other words, is x ∈ L? How do you write an algorithm to answer this
question? We will begin with specification of the data structure required. The
data structure could be either a graph or a multi-valued array, where the states,
paired up with symbols from the alphabet are the indices and the values inside
are other states. You seek a row, and traverse the row to set your next state
and this way, you could use the data structure to simulate the FSM F on the
input string. You could also change the decision problem into a matrix algebra
problem which is also computable.

2.14.2 Equivalence of Two Finite State Machines

Given two finite state machines F1 and F2 for some unknown languages L1 and
L2 respectively, can we determine if they accept the same language? That is
do they accept exactly the same set of strings and reject the same set? The
solution is simple. You could minimize F1 to get M1 and minimize F2 to get
a minimal machine M2. If M1 and M2 are the same, we can conclude that F1

and F2 accept the same language. To decide if M1 and M2 they are the same,
we should not just naively compare the two, state by state, since the states
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may not be numbered/named in the same order. The problem of determining
if two graphs are the same is called the graph isomorphism problem. The brute
force solution is to relabel the graphs with every possible relabeling and see if
any of the relabelings are the same. For a graph with n states, the number of
possible relabelings is n!. The brute force solution takes exponential time and
is definitely not efficient, but it is a solution nevertheless. As far as the decision
problem is concerned, the answer is a ‘yes’, that is, it is possible to determine
if two FSMs are equivalent.

Is there any more efficient way to check for graph isomorphism? In this
particular case, we could relabel each state using the sequence of symbols on
the shortest path from the start state to the state under consideration. And
this is an efficient algorithm.

There is another efficient idea to check the equivalence of two FSMs. If the
language of two FSMs are equal, their symmetric difference (L1 − L2) ∪ (L2 −
L1) = (L1∩L2)∪ (L2∩L1) should equal the null set φ. The finite state machine
F(1=2) for the the language (L1∩L2)∪ (L2∩L1 can be constructed by following
the sequence of steps below:

1. Find the complement of the machine F2 using the procedure in Sec-
tion 2.7.3. This is linear in the number of states.

2. Find the intersection F(1−2) of the machines F1 and the complement of
F2 using the procedure discussed in Section 2.7.4. The computation time
for this algorithm equals the product of the number of states in the two
machines.

3. Similarly, construct the FSM F(2−1) for the language (L2 ∩L1. Construct
the FSM F(1=2) as the union of F(1−2) and F(2−1).

4. Minimize F(1=2). If the minimal machine has a single non-accept state,
the two machines F1 and F2 can be confirmed to be equivalent and the
answer is a ‘yes’. If the minimal machine has an accept state, the two
machines F1 and F2 are not equivalent and the answer is a ‘no’.

This entire idea of using set theory to construct a new FSM and then mini-
mize it is a very commonly used tool in decision algorithms. And you can know
pretty much anything you want about two FSMs using such tools.

2.14.3 Is the language of an FSM Infinite?

Let us say, we are given an FSM F for some regular set L and we want to know
if L is infinite? Is it sufficient to see if there is a loop on the machine? Actually
no. There shoud be a loop or more generally, a cycle, involving a node that has
a path to a final state. This takes us back to the territory of graph algorithms.

There are also other ways of doing this. The FSM could be converted into a
regular expression and then we could check for the kleen operators ‘*’ and ‘+’
in the regular expression. If the regular expression involves any one of these
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kleen operators, we could conclude that the regular set is infinite. This is a safe
procedure.

We should note however, that the problem of determining whether two reg-
ular expressions are equivalent is NP-complete in the size of the regular ex-
pression. There is no minimum regular expression. The only way to determine
equivalence of regular expressions is to convert them into NFAs, convert the
NFAs back to DFAs and then follow the procedure in Section 2.14.2. Regu-
lar expressions are hard to deal with. Almost all problems involving regular
expressions are NP-complete with respect to the size of the regular expression.

2.14.4 Is Regular Set A contained in regular set B?

Say we have an FSM FA for some regular set A and an FSM FB for some regular
set B. And we have to answer the question: ‘Is every string that A accepts also
accepted by B?’ Recall from discrete mathematics that A ⊆ B is the same as
x ∈ A⇒ x ∈ B, which is equivalent to (x /∈ A)∨ (x ∈ B) or A∪B = Σ∗. Thus,
A∪B = Σ∗ represents the logical statement A ⊆ B. That is if we build an FSM
for A∪B, minimize it and find that it is a single state machine, with the single
state being an accept state, then we know that A ⊆ B.

2.15 Moving Forward

Decision algorithms care about whether a problem can be done or not; is there
an algorithm that answers ‘yes’ or ‘no’? We do not usually care so much about
the complexity of implementing these algorithms. The reason that we focus
more on whether the problem can be done or not is because the moment we are
up to the next level of push-down machines and context free grammars, almost
everything you want to know about them, you cannot know! If you are given
two context free grammars or two compilers and are asked, ‘do they generate
the same language’, or ‘do they accept any language in common’ it is simply
undecidable. There is no way to write a program to check that. The only thing
we can do at the next levels is the membership problem, which happens to be
the compiling problem itself. Given a grammar and a program, to determine if
the grammar generates the program is the task of a compiler. That is the only
problem you can do at the next level! When you get up to Turing machines,
there is essentially nothing that is decidable. There is actually a theorem called
the Rice’s Theorem which states that: Every non-trivial property of Turing
machines is undecidable. A trivial property of a turning machine is how many
states it has. That is decidable for instance. On the other hand, there are no
undecidable problems that are interesting about finite state machines.
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Chapter 3

Context Free Languages

Context free languages form the second layer of the ‘Bulls Eye’. Instead of
starting with machines, as we did for FSMs, we will describe them in terms of
grammar (recall the left and right linear grammar description for FSMs). We
will subsequently describe the equivalent machine description for this class of
langauges.

We will first draw the big picture of context free languages (CFL). We will
refine the CFL layer into two layers;

1. The deterministic push-down machines (DPDM) on the inside layer. DPDMs
have less power than CFLs and represent a subset of context free lan-
guages. The grammar of DPDMs is very difficult to describe easily, but
is very important. The grammar of DPDMs is called LRK grammar.

2. The non-deterministic push-down machines (NPDM) on the outside layer.
Context free languages are equivalent to NDPMs. Unlike the case of the
FSM where non-determinism gives the same machine in disguise, non-
determinism in PDMs adds more power. Note that all deterministic PDMs
are contained in the non-deterministic counterpart.

Most compilers are built from LRK grammars; any programming language
is almost always described using an LRK grammar. The implication is that if
you have an LRK grammar, then the compiler is easy to build around it. If you
have just a general CFL, the compiler could be very difficult to build around it.
You need determinism to build a compiler.

We will first focus on context free grammar and their terminology. A context
free grammar is any grammar, such that the left side of every production has a
single non-terminal symbol. The sequence of symbols on the right hand side is
completely unrestricted. Grammars with more than one symbol on the left side
are much more powerful. On the other hand, linear grammars that were covered
earlier are much more restricted than context free grammars. Linear grammars
have a single non-terminal on the left, but are restricted on the right to have a
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terminal followed by a non-terminal (in the case of left-linear grammars) or a
non-terminal followed by a terminal (in the case of right-linear grammars).

3.1 Context Free Grammars and Derivations

It is hard to predict with a grammar, what all it is capable of doing. There are
a lot of techniques for designing grammars, for understanding grammars and for
making the connection between grammars and parsing, the second important
stage of a compiler.

3.1.1 Example 1

Here is our first context free grammar.

S → 0 S 1 | ε (3.1)

The vertical line saves us space; instead of having two different productions
with the same left hand side, we have a single production with a single left hand
side and a vertical line separating two productions on the right hand side. What
kind of strings does the grammar generate? The first production can be

S → 0 S 1

Applying this production recursively, we get

S → 0 S 1 → 0 0 S 1 1

We could stop this at any point and let S go to the empty string and get a
full derivation of a string. If we stop the derivation above, we get

S → 0 S 1 → 0 0 S 1 1 → 0 0 1 1

This grammar actually generates a string of 0’s followed by an equal number
of 1’s. In other words, the language is

L = {0n1n|n ≥ 0}

That was the first language we found to be non-regular! Thus, right off
the back, if we had a context free grammar, unrestricted on the RHS (which
every CFG can be), we immediatly get a set that is definitely not regular. This
illustrates that we have expanded our universe beyond regular sets. Next, we
will formally define context free grammars:

Definition of Context Free Grammar: A context-free grammar G is a quadru-
ple (V,Σ, R, S), where:
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• V is an alphabet,

• Σ (the set of terminals) is a subset of V ,

• R (the set of rules) is a finite subset of (V − Σ)× V ∗, and

• S (the start symbol) is an element of V − Σ.

The members of V − Σ are called nonterminals. For any A ∈ V − Σ,
and u ∈ V ∗, we write A →G u whenever (A, u) ∈ R. For any strings
u, v ∈ V ∗, we write u⇒G v if and only if there are strings x, y ∈ V ∗ and
A ∈ V −Σ such that u = xAy, v = xv′y, and A→G v′. The relation ⇒∗G,
is the reflexive, transitive closure of ⇒G. Finally, L(G), the language
generated by G, is {w ∈ Σ∗ : S ⇒∗G w}; we also say that G generates
each string in L(G). A language L is said to be a context-free language
if L = L(G) for some context-free grammar G.

3.1.2 Example 1

Here is another grammar1 that should look familiar again.

S → 0 S 1 | S S | ε (3.2)

What kind of of strings does this grammar generate? It represents strings
that have balanced parentheses, 0 being the opening parenthesis and 1 repre-
senting the closing parenthesis. The rule says:

• If you want something to be generated by S, it should either be just the
empty string, (which has balanced parenthesis),

• Or if you have already something generated by S, you could put 0 on
the left and 1 on the right, which corresponds to putting open and close
parenthesis around something that is already balanced,

• Or concatenate two sets of balanced parenthesis.

According to the recursive thinking, this grammar should generate all string
with balanced parentheses. We will look at this in some more details.

Pretend that we are writing a compiler. Consider the language described in
(3.2) that accepts certain strings and rejects certain strings. Given the string
σ = 00100110110011, can we determine if the grammar in (3.2) can generate
this string? And in fact the answer is a ‘yes’. How do we figure this out? One
strategy could be to traverse the string from left to right and find the first match
with the right hand side of one the productions. This can be done by writing a
program that stacks2 up the symbols one by one and backtracks when it finds
a match to the right hand side of some production. How does this program

1The first couple of grammars will have only one start symbol.
2Recall that a stack is last-in first-out.
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connect to the derivation sequence used to derive any string using the grammar
(for instance the derivation of σ, if at all it can be derived using the grammar).
Can we start with S and end up with the string σ?

For the first production, we have three choices. The third production (pro-
duction to an empty string) is a bad choice to start with. What if we started
with the first rule S → 0 S 1 → 0 0 S 1 1? We will never be able to generate
the string 1001101100 starting from S.

Coming to the second production, are there substrings of σ that by them-
selves correspond to a balanced set of parentheses? And the answer is yes!

0010011011︸ ︷︷ ︸
σ1

0011︸︷︷︸
σ2

Both σ1 and σ2 can be derived starting with the production S → 0 S 1 as
follows. If we always choose to first substitute the right-most non-terminal on
the left hand side at every stage, the derivation is called a right-most derivation.
Very often, to keep the derivation organized, we fix expansion on either the left-
most non-terminal or the right-most non-terminal. This makes comparison of
derivations easier; two derivations are the same only if their left-most derivations
are the same and two derivations are different only if their left-most derivations
are different. The same holds true for right-most derivations. However, mixing
left and right derivations do not yield different results; intervening derivations
only makes comparisons difficult.

Another canonical way of representing the derivation is as a parse tree, in
which case, the order of derivations (left or right-most) becomes immaterial.
Figure 3.1 shows a parse tree for the string σ using the grammar in (3.2). The
parse tree derivation is equivalent to the left-most and right-most derivations.

The strings σ1 and σ2 can be derived starting with the same rule S → 0 S 1.
At the next level, for the left subtree, S → S S is a derivation that is applicable,
following which, there are two options for deriving from each S as shown in the
derivation trees 3.1 and 3.2. When we are done with a derivation or parse tree,
non-terminals end up as internal nodes and all the terminals in the string end
up as leaves. How do we print the leaves of the tree in an order that corresponds
to the string that was parsed, i.e., σ? You recursively print the left subtree at
every node, then the right subtree. A simple in-order traversal of the tree will
reveal that the string generated by the derivation is the string that was parsed.

Having two parse trees for the same string is a bad feature to have in the
derivation; to not know which rule should be used next in the derivation in order
to eventually obtain the string under consideration. Also, given a legitimate
string in the language, it is not a good feature for compilers if there exists more
than one derivation for the string. We say a grammar is ambiguous, if any string
in the language has two or more parse trees. A grammar is unambiguous if and
only if each and every string in the language has a unique parse tree. In fact, the
problem of determining if a given grammar is ambiguous or not is undecidable;
it is impossible to obtain an answer to this problem for any given arbitrary
grammar. It is a really nice problem to have an answer to. Given an arbitrary
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Figure 3.1: A parse tree for the string σ = 00100110110011 using the grammar
in (3.2)

Figure 3.2: An alternative parse tree for the string 00100110110011 using the
grammar in (3.2)
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Figure 3.3: A parse tree for the string 3 + 4 ∗ 5 using the grammar in (3.3)

number, we could read it in and try all derivation trees using depth first search
on every possible string. Sooner or later, we should be able to deduce if some
string can be derived by two different ways. The program will give the right
answer, if the answer is that the grammar is ambiguous; it will eventually find
a string with two trees that are different. But if the grammar happens to be
unambiguous, the program doing simple simulations will run for ever. It cannot
ever tell us a ‘no’ if it happens to be unambiguous. Thus, the simuulation is
actually not an algorithm at all.

The tree derivation provides a semantic interpretation for the string as pro-
vided by the grammar. In this example, the two interpretations of the string
provided by the derivations were not different. In the next example, we will see
how different derivations could provide drastically different interpretations for
the string based on the grammar.

3.1.3 Example 2

Consider the famous grammar in 3.3. We will continue sticking to a single
non-terminal.

S → S + S | S ∗ S | 0 | 1 | 2 | . . . | 9 (3.3)

The +, ∗, 0, 1, 2 . . . , 9 are terminal symbols. This grammar generates strings
over the twelve symbol alphabet Σ = {+, ∗, 0, 1, 2, . . . , 9}. This grammar gener-
ates strings that can appear on the right side of assignment statements in any
programming language. Normally, instead of the terminals being 0, 1, 2, . . . , 9,
we have something called an identifier, which could be either a variable or a
number. The variable itself may have been defined elsewhere in the code. Can
we determine a parse tree for the string 3+4∗5 using this grammar? Figure 3.3
shows one parse tree which is obtained by starting with the rule S → S + S.

Can we come up with another parse tree? Instead of starting with S →
S + S, if we start with S → S ∗ S, we get the alternate parse tree in
Figure 3.4.
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Figure 3.4: An alternative parse tree for the string 3 + 4 ∗ 5 using the grammar
in (3.3)

The two parse trees are completely different; you cannot find an isomorphism
between them. Thus, the grammar is ambiguous and in fact for almost any
string, it will generate more than one parse tree. Why does this matter? It
is because the compiler has to use these trees not just to say ‘yes’ or ‘no’, but
often in the next stage, to ascribe some semantic interpretation or meaning to
the string it just read. When the compiler reads the string according to the
parse tree in Figure 3.3, it assumes that the expression is (3+4)∗5 = 7∗5 = 35.
You could write a nice simple recursive program that evaluates parse trees by
recursively going down to a node, doing an operation at the node on its two
children and finally propogating the values back up.

What will the interpreation of the string on the lines of the parse tree in
Figure 3.4 yield? It will yield 3 + (4 ∗ 5) = 3 + 20 = 23! Which of the two is
correct? What do we normally mean by 3+4∗5? We normally mean 3+(4∗5),
which conforms to the parse tree in Figure 3.4. This is because of the precedence
of ∗ over +. If the parsing is done as per Figure 3.3, no precedence is assumed for
∗ over +. And because of that, the semantic interpretation of the parsing gets
lost. This is undesirable. This example emphasises the flip side of ambiguity.

3.1.4 Example 3

How do we fix the ambiguity in example 3? There are many ways to fix it. One
way is to add two additional symbols to the alphabet, viz., ( and ). We will also
redefine the grammar with a slight modification in (3.4).

S → ( S + S ) | ( S ∗ S ) | 0 | 1 | 2 | . . . | 9 (3.4)

Now when we generate strings in the alphabet, we have to generate them
with the brackets. Thus, the string 3 ∗ 4 + 5 is no longer a legitimate string
in the language. What is then a legitimate string? The strings (3 ∗ 4) + 5 and
3 ∗ (4 + 5) are certainly legitimate strings. Both the strings have unique parse
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Figure 3.5: A parse tree for the string (3 + 4) ∗ 5 using the grammar in (3.4)

Figure 3.6: A parse tree for the string 3 + (4 ∗ 5) using the grammar in (3.4)

trees. Figure 3.5 shows the unique derivation tree for the string (3∗4) + 5 while
the unique parse tree for 3 ∗ (4 + 5) is shown in Figure 3.6.

We got the ambiguity out of the grammar by forcing the programmer to
write the program with semantic interpretation of the strings. This is one way
of removing ambiguity. There are other ways too. The purpose of this exercise
was to illustrate that we could have different grammars generate the same string
such that one grammar is ambiguous and another is not ambiguous.

3.2 Techniques for Writing Context Free Gram-
mars

We will take more examples of context free grammars, focussing not so much
on ambiguity and derivations but focussing more on how to build context free
grammar for a given problem. It is harder than building FSMs. Grammars tend
to challenge people more than the challenge of writing machines. Machines are
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processes and most people can write programs, figuring out at each step what
to do next. The process of writing machines is iterative. But grammars tend to
be very elusive in pinning them down. We will mention two common practices
adopted for writing context free grammars.

Semantic meaning for non-terminals: The first idea has some commonal-
ity with writing machines; assign to each non-terminal a semantic meaning
and keep that semantic meaning consistent. This is tougher than writing
machines though.

Recursive definition: The second style of writing grammars is to use a re-
cursive idea and define the grammar recursively.

We will take some examples, where we will build grammars using the tech-
nique of ascribing semantic meanings to non-terminals.

3.2.1 Example 4

Write a grammar that generates the following language L#.

L# = {x|x is made up of an equal number of 0′s and 1′s}

The 0’s need not come before the 1’s as in 0n1n. We have already proved
that this set is not regular. We have to be sure that every string in L# is
generated by the grammar and that every string not in L# is not generated by
the grammar.

We will start by ascribing semantics to the start state. The start state S
should generate any string that has an equal number of 0’s and 1’s. We could
start with a 0 or 1 at S. Let us say that if we start with a 0 at S, we enter
a new semantic state A and if we start with a 1, we enter a new semantic
state B. Alternatively, S could also generate the empty string. The semantic
interpretation of A is that it generates all strings that have one more 1 than 0.
On the other hand B generates every string that has one more 0 than 1. The
first set of productions are therefore:

S → 0 A | 1 B | ε (3.5)

How easy it is to describe these new non-terminals in terms of the existing
non-terminals3? A has two choices; any string it generates could start with a
0 or a 1. When A generates a 1, it should continue with a string that has an
equal number of 0’s and 1’s, which is generated by S! Thus one production
from A is A→ 1 S. But when A generates a 0, it should continue with a string
that has two zeros more than 1’s. Such a string can always be decomposed into
two strings; one string that has an extra 1 followed by another string that has

3We do not want to keep creating new non-terminals for ever.



72 CHAPTER 3. CONTEXT FREE LANGUAGES

an extra 1. Thus, the second production from A is of the form A → 0 A A.
We will finish off the whole grammar by enumerating productions from B next.
On similar lines as for productions from A, the productions from B will be
B → 0 S|1 B B.

Thus the overall grammar is:

S → 0 A | 1 B | ε
A → 1 S | 0 A A
B → 0 S | 1 B B

(3.6)

This is one way to write a grammar - think about semantics of the non-
terminals and keep defining new non-terminals till they wrap around. Is this
grammar ambiguous? If one thinks that the grammar is ambiguous, one needs to
identify the place of ambiguity. The production A→ 0 A A is actually ambigu-
ous; the sequence of symbols A A represents a string that has two extra 1’s. If a
string has two extra 1’s, the can be many ways the string can be split into two
substrings, each having an extra 1. For instance, the string 11001100110011 can
be split into four possible pairs as 11001 and 100110011 or 1 and 1001100110011
or 110011001 and 10011 or 1100110011001 and 1. Similarly the sequence B B
in B → 1 B B also represents an ambiguous choice.

3.2.2 Example 5

We will illustrate with an example, the idea of defining grammars recursively.
Consider the grammar:

S → S A B | ε
A → 0 S 1 | ε
B → 1 S 0 | ε

(3.7)

What strings does the grammar in (3.7) generate? Every string generated
by the grammar definitely has an equal number of 0’s and 1’s. How do you
prove this? It is by induction4. Inductive proofs are very useful in the context
of grammars because by their very nature they are recursive. Intuitively, every
time a 0 is introduced in the string, a 1 is also introduced, thus maintaining an
equality between the number of 0’s and 1’s.

But does the grammar generate all strings that have an equal number of 0’s
and 1’s? For instance, can the string 00011011 be generated by the grammar in
(3.7). The answer is actually yes. In fact there are an infinite number of parse
trees for the string 00011011 using the grammar in (3.7). Two parse trees are
shown in Figures 3.7 and 3.8.

In fact, the grammar in (3.7) generates exactly all strings with equal number
of 0’s and 1’s! Thus, the grammar in (3.7) is actually equivalent to the grammar

4Exercise.
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Figure 3.7: A parse tree for the string 00011011 using the grammar in (3.7)
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Figure 3.8: A parse tree for the string 00011011 using the grammar in (3.7)
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in (3.6). And the problem of determining if two grammars are the same is
undecidable! The only problem decidable about a grammar is the problem:
Does this grammar accept the empty set?. Each rule in the grammar has only
two choices on the right hand side; one involving a non-terminal and another
involving an empty production. But this choice is enough complexity to make
every simple question about these kind of grammars undecidable and make
them very hard. There are few things that are easier about CFGs than regular
grammars. But for a Turing machine, we cannot even decide if the turing
machine accepts nothing. But with a context free grammar, we can at least do
that - whether it generates an empty set. But the problem of deciding whether
a given CFG accepts all strings is undecidable.

How do we interpret the recursive grammar in (3.7)? S can have any strings
A’s and B’s. A and B are also strings of equal 0’s and 1’s. A has 1’s after 0’s
with a string defined recursively by S in the middle. B has 0’s after 1’s with a
string defined recursively by S in the middle. Taking forward these semantics
recursively, we could convince ourselves that the grammar generates exactly all
the strings that have an equal number of 0’s and 1’s.

In general, grammars can be very elusive. There is a pumping lemma
for languages generated by context free grammars (somewhat similar to the
pumping lemma for regular languages) which can prove that certain languages
cannot be context free. An example language that cannot be context free is
L = {0n1n0n|n ≥ 0}; triple counting is not context free, just as counting in
general was outside the purview of finite state machines.

3.2.3 Example 6

Consider the language L = {0n1n0n}. As mentioned in the previous section5,
this language cannot be generated by any context free grammar. We will present
one example of a powerful extension to context free grammars, known as context
sensitive grammars. We will see that context sensitive grammars look very much
like machines and are very powerful; machine computations for context sensitive
grammars can be somewhat directly simulated with the grammar itself. And
this connection does not work quite as well for context free grammars.

The grammar is somewhat long, though not complicated. As a motivation,
think of an amusement park; in amusement parks you are enticed into a game
which you cannot possibly win. And one of the games in an amusement park
is a shooting game, where some object/target is moving by in a zig-zag path.
Imagine the grammar moving from the left set of 0’s to the right set of 0’s
in {0n1n0n} and as it performs its movements, it will generate strings in the
language. Let non-terminals L and R serve as the left and right ends of the
shooting gallery and let non-terminal T represent the target that is moving
back and forth. A, B and C are non-terminals that will respectively eventually
turn into and 0’s 1’s and 0’s.

S → L T A B C R

5Will be proved in a following section.
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The idea is that as the target moves from the left to the right, and sees an
A, it doubles the A. Similarly, as it sees a B and C, it will go ahead, leaving
two Bs and Cs behind respectively. When it sees an R, it goes right back in
the beginning beside L. The sequence of doubling As, Bs and Cs can continue
thereafter. At any point along the way, if it makes it back to the left end to give
the pattern, L B, it could terminate but turning the A’s into 0’s, the B’s into 1’s
and the C’s into 0’s. This grammar can only generate a string if it moves all the
back to the beginning leaving behind an equal number of terminals produced
using the As, Bs and Cs.

The idea of moving the target forward proceeding with the computation
appears in the form of the rules L T A → L A A T . This rule has more than
a single symbol on the left hand side and is definitely not context free. In
fact, it is context sensitive. We cannot just substitute L A A T for a single
A. The substitution can take place only in the presence of L and T preceding
A. Another rule in the grammar should be A T A → A A T - the target
can pass through the A’s if no extra context is specified. On similar lines, we
introduce the rules B T B → B B T and C T C → C C T Another rule is
A T B → A B B T ; when the target finally hits a B in the presence of an
A, it moves forward after doubling the B’s. Similarly, B T C → B C C T is
introduced. We need one production to handle when T hits the R and send
back the target to the beginning. We achieve this by painting the target with a
non-terminal E to remember that the target has turned around left-wards, i.e.,
T R→ E R. What do we want E to do? It should pass by all the non-terminals
left-ward and get back to L. This yields the following set of rules: C E → E C,
B E → E B and A E → E A. Finally, when E hits L, it should recover its
original identity as T , that is, L E → L T . Finally, we have some rules that
take non-terminals to terminals, viz., A→ 0, B → 1, C → 0. To get rid of the
R, L and the target T , we note that R could turn into the empty string at any
point of time using the rule R→ ε. Only when T comes back to the beginning,
can you shut down the machine as follows: L T → ε. The grammar is presented
in (3.8).



3.2. TECHNIQUES FOR WRITING CONTEXT FREE GRAMMARS 77

S → L T A B C R
L T A → L A A T
A T B → A B B T
B T C → B C C T
A T A → A A T
B T B → B B T
C T C → C C T
T R → E R
C E → E C
B E → E B
A E → E A
L E → L T
R → ε
L T → ε

(3.8)

We will briefly contrast context free grammar against context sensitive gram-
mar. A rule like L T A → L A A T above appears as if involving the reading
of a tape; we are in a certain state when we see an A and move the T to the
other side leaving an extra A behind. This brings us closer to the computation
of a Turing machine that reads inputs on a tape and is capable of inserting and
writing new entries on the tape. Turing machines will be covered in Chapter ??.
Context sensitivity gives much more control and lets you define grammars that
look like machines. Rules in a context sensitive grammar could always be in a
context free form. But a context free grammar cannot contain context sensitive
rules.

The context sensitive grammar in (3.8) generates all strings in the language
L = {0n1n0n} and helps us appreciate the connection between grammar and
computation.

3.2.4 Example 7

Consider the language L = {0n1n0p|n ≥ 0, p ≥ 0. The context free grammar
for this language is as follows:

S → NM
N → 0 N 1 | ε
M → 0 M | ε

(3.9)

This example hints that context free grammars could be closed under con-
catenation. Given a grammar G1 with start symbol S1 and a set of rules that
include S1 → . . . and another grammar G2 with start symbol S2 and a set
of rules that include S2 → . . ., the concatenation of the two grammars can
be generated by a grammar G consisting of a start state S with a production
S → S1S2 along with all the productions of G1 and G2. This new grammar
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precisely generates all strings in the union of the languages of G1 and G2. To
prove that a grammar G generates precisely all strings in a language L, one
needs to prove that for every string σ ∈ L, there exists parse for σ using the
grammar G and that there is no string σ /∈ L that can be parsed by G. It might
happen that the grammar is not efficient for parsing L, but that does not affect
the discussion here.

3.2.5 Closure under Intersection and Complement

Can we construct a context free grammar for the language LR = {0q1n0n|n ≥
0, q ≥ 0? Yes, we can.

S → A B
A → 0 A | ε
B → 1 B 0 | ε

(3.10)

Note that the grammar in (3.10) is a concatenation of two grammars, one
with a start state M and another with start state N . What is the intersection
of LR = {0q1n0n|n ≥ 0, q ≥ 0 and L = {0n1n0p|n ≥ 0, p ≥ 0? In fact,
L ∩ LR = {0m1m0m|m ≥ 0}! We have already seen that we could write only a
context sensitive grammar for L∩LR (in fact the language is not context free as
will be proved using the pumping lemma), wheres L and LR are both context
free. Thus, context free languages are not closed under intersection (proof by
couter example).

Are context free languages closed under complement? Context free languages
are closed under union, but not under intersection. Thus, they are not closed
under complement. The complement of some specific context free grammars
is context free. For instance, the complements of L = {0n1n|n ≥ 0} and L =
{x|x is a palindrome} are context free. Strangely, while the language L =
{ww|w is a string} is not context free, its complement is context free! However,
the problem of determining if the complement of a grammar is context free is
itself an undecidable problem.

3.2.6 Closure under Union

It is very easy to determine the closure of context free grammars under union.
Given a grammar G1 with start symbol S1 and a set of rules that include
S1 → . . . and another grammar G2 with start symbol S2 and a set of rules
that include S2 → . . ., the union of the two grammars can be generated by a
grammar G consisting of a start state S with a production S → S1|S2 along
with all the productions of G1 and G2. This new grammar precisely generates
all strings in the union of the languages of G1 and G2.
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3.3 Relationship to Compiling and Programming
Languages

So far we mainly used the alphabet Σ = {0, 1} in describing examples of context
free languages. Can context free languages be expressive enough to describe pro-
gramming languages? If so, what is the alphabet. In this section, we will make
this connection explicit by relating CFGs to programming language syntax.

Let < stmt > be our starting non-terminal representing a statement in a
programming language. String enclosed in angle brackets will indicate non-
terminals. A statement in a programming language could mean an (a) assign-
ment statement (< assgn >) (b) if-then statement (< if − then >) (c) if-then-
else statement (< if − then − else >) (d) begin-end block (< begin − end >).
This can be represented using the following rule:

< stmt >→< assgn > | < if−then > | < if−then−else > | < begin−end >

The < if − then > statement will have some terminals:

< if − then >→ if < expression > then < stmt >

While the < if−then−else > statement is an extension of the < if−then >
statement:

< if − then− else >→ if < expression > then < stmt > else < stmt >

We can similarly write the other statements:

< begin− end >→ begin < stmt− list > end

The last statement sounds more like a declaration for the Pascal6 language (C
uses open curly and close curly braces instead of ‘begin’ and ‘end’ respectively).

With < stmt− list >, we will have to invoke a recursive definition7:

< stmt− list >→ begin < stmt− list > < stmt >

< assgn >→< ID > < expression >

The < expression > in the above rule is principally different from the <
expression > for the < if−then > rule, but we will not focus on this distinction
for the time being.

A typical identifier in a programming language looks like a letter followed
by a sequence of letters or digits.

< ID >→< ID > < letter > < temp >

< temp >→< temp > < letter > | < temp > < digit > | epsilon
< letter > goes to one ofA,B, . . . , Z and< digit > goes to one of 0, 1, 2, ldots, 9.

6The entire grammar specification for Pascal will take only two and half pages - Pascal is
that simple.

7We could instead write a syntax grammar with a single loop around < stmt− list >
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• This part of scanning < ID > is typically performed in compilers by the
scanner, which is a finite state machine implementation. A finite state
machine can pull out tokens such as ‘if’, ‘else’ as well as IDs. Scanner
forms the first component in the compiler pipeline. The tool for scanning
is called LEX.

• The second component in the pipeline is called the parser, which checks
the syntax of the program using parsing based on context free grammar
rules such as the ones listed above. Tokens are potential strings in the
context free language. The tool for parsing is called YACC (Yet Another
Compiler Compiler).

• The final component in the compiler pipeline generates code that is exe-
cutable. This component deals with symbol tables and other issues that
come up with the different possible ways of writing a program. This will
not be addressed.

3.4 Normal Forms

It is very useful to be able to take an arbitrary context free grammar and
transform it into a form that has a more specific structure. We already saw
that CFGs have a single non-terminal on the left but any arbitrary sequence
of terminals and non-terminals on the right. It will be nice if, without any
loss of generality, we could specify a form for the right hand side of each rule.
An imposition such as ‘the right hand side should be a terminal followed by a
non-terminal’ does restrict the grammar and takes us back to the finite state
machine level. Is there something in between where we could restrict the right
hand side without losing any power of context free grammar? Yes, there are
many such forms, a prominent one being the Chomsky Normal Form. Another
normal form is the Greibach Normal Form.

3.4.1 Chomsky Normal Form

Chomsky normal form is a very useful form for at least four different reasons.
The actual detail of converting between chomsky normal form and the most
general form for CFGs is probably the driest part of the whole topic and is
relatively starightforward with some subtleties. The motivations for chomsky
normal form8 are:

1. Every string of length n is derivable in 2n− 1 steps. Given any arbitrary
CFG, if you try to derive a string with k symbols, you have no idea of
the number of steps it might take; it could take 100 × k or it might take
2 × k. You have to keep trying till the string is produced. There is no
upper-bound on the number of steps it might take. But if the grammar is
represented in Chomsky normal form, every string of length n is derivable

8Chomsky normal form was originally motivated by linguistics.
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(if at all you can derive it) in 2n−1 steps. This is a very useful fact to know,
because the question of ‘whether we can write an algorithm to decide if the
grammar really derives a given string’ (for example the parsing algorithm
in a compiler) can be immediatly answered. The algorithm for deriving
a string using a grammar expressed in chomsky normal form does not
look very neat though - the algorithm is to simply try every sequence of
2n − 1 steps and if you do not get the string, you decide that the string
cannot be derived. How long does this trial take? Let us say there is an
average of p productions from every non-terminal. Then the number of
possible trees is O(p2n−1). This is a horrible exponential time algorithm
and we will show that we can do much better than this. But this at least
immediatly implies that there is an algorithm for deriving the string and
that the problem is not undecidable.

2. Chomsky normal form enables easy proof of the pumping lemma for con-
text free languages. This is much more complicated than the pumping
lemma for regular sets. Recall that the proof for the pumping lemma was
based on a machine definition for finite state machines (using the idea of a
loop). But the analogy does not carry to grammars that are context free.
The loop will be in the form of discovering a non-terminal in the parse
tree repeating itself repeatedly.

3. Context free grammars are equiavalent to non-deterministic push down
machines9 (NPDM) and they can be converted from one to the other.
However, their equivalence is nowhere close to obvious like we discovered
at the level of finite state machines. However, the fact that ‘every CFG
has an equivalent NPDM’ can be proved easily if we have the grammar
represented in the chomsky normal form. The other part of the equiva-
lence, that is, for any given NPDM, there is an equivalent CFG is subtle
and a bit difficult.

4. When the CFG is represented in chomsky normal form, there is a reasobly
efficient algorithm to determine membership of strings to the grammar.
The algorithm is not very practical but it is better than exponential. It
is a dynamic programming algorithm called the CYK algorithm. It is
very easy to describe if the grammar is in Chomsky normal form. It is
an O(n3) algorithm. Nobody uses this algorithm in real compilers, given
that there are linear time algorithms for compilers, that work with LRK
grammars, a special subset of context free grammars. LRK grammars
correspond to deterministic context free grammars, a subset of context free
grammars. These are unambiguous grammars used in practical compliers
for programming languages.

9A non-deterministic push down machine is a non-deterministic finite state automaton
with an additional stack data structure that it can manipulate, such that every time it moves
from one state to another, it can push or pop an arbitrary symbol on a stack. If you give an
FSM two stacks, you give it the power of a turing machine.
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Definition: Every single production in Chomsky Normal Form (CNF) has one
of the following two forms

1. < Non−Terminal >→ < Non−Terminal > < Non−Terminal >
2. < Non− Terminal > → < terminal >

3. < Start−Non− Terminal > → ε. This production will be a part
of the grammar for a language only if the empty string ε is in the
language.

Note that empty string productions are not allowed from any non-terminal
except the start symbol, in the chomsky normal form10. This is simple, yet offers
enough flexibility to capture any context free language. Any given context free
grammar can be converted into a grammar with rules that have chomsky normal
form. If we replace any one of the non-terminals on the right hand side of the
first rule with a terminal, we immediatly restrict the grammar to a left or right
linear grammar, which is equivalent to regular sets (as shown in the previous
chapter).

How do we show that any grammar can be converted into the chomsky
normal form? We will show the precise steps involved in the transformation.
Consider the grammar below, which is not completely in CNF.

S → 0 A 1 B | C | D E F
A → ε | C C

(3.11)

What kind of productions are challenging for transformation? An example
is S → C. Another example is the empty production A→ ε. How do we fix the
productions that are not in CNF, without losing the semantics of the grammar?
To start with, we can introduce non-terminals Z and X that represent 0 and 1
respectively, through the productions

Z → 0
X → 1 (3.12)

This gives us the following set of productions:

S → Z A X B | C | D E F
A → ε | C C
Z → 0
X → 1

(3.13)

10This is the reason why we can produce a string in 2n − 1 steps; at every string, we can
only increase the length of the string produced - we are not allowed to erase symbols.
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The productions in (3.13) can be divided into two categories, viz., produc-
tions that are too long and productions that are too short. The sequence of
non-terminals A X B can be grouped into a new non-terminal M and a new
production from M can be introduced. Similarly, the sequence of non-terminals
X B can be grouped together into a new non-terminal N and a new production
from N can be introduced. M and N are simply place-holders; while introduc-
ing them we need to ensure that they do not already appear in the grammar.
Similarly, the sequence E F can be grouped into a new non-terminal P .

S → Z M | C | D P
A → ε | C C
M → A N
N → X B
P → E F

(3.14)

The productions that are too short are slighty more tricky to handle. Short
productions are of the form

Unit production: < non− terminal >1→< non− terminal >2

ε-production < non− terminal >1→ ε

For every rule of the above two forms, we could generate all possible re-
placements for occurences of < non− terminal >1 on right hand side of other
productions with < non−terminal >2 as well as replacements with ε. Applying
this procedure to (3.14), we obtain,

S → Z M | D P
A → ε | S S
M → A N
N → X B
P → E F

(3.15)

Consider another set of productions that will help us point out subtleties
while handling ε productions and unit productions for transforming an arbitrary
CFG to chomsky normal form.

S → 0 | X O | Z Y Z
X → Y | ε
Y → 1 | X

(3.16)

The sequence of substitutions will be as follows:

1. Get rid of useless productions.
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2. We will first do substitutions for ε productions before the substitutions for
the unit productions, because we get unit productions when we substitute
for ε productions.

3. However, it is not a good idea to substitute for ε productions in rules
that have a single non-terminal on the right hand side. For example,
substituting X with ε in Y → 1 | X does not make sense, since it only
yields another ε production in the form Y → 1 | ε and substituting for
Y → ε in X → Y yields X → ε again! Instead, a set of non-terminals,
called the nullable set is maintained which contains non-terminals that can
sooner or later disappear (not necessarily in one step). Every non-terminal
that can produce an ε following some ε-substitution is added to the nullable
set. For example, X is initially nullable, and after an ε substitution for X
in the rule with Y on the left hand side, Y is also added to the nullable set.
The nullable set can be computed by working our way backwards by (a)
adding ε producing non-terminals to the nullable set and (b) iteratively
adding non-terminals that have unit productions to the nullable set.

4. Once the nullable set is determined, all ε productions are removed. For
every production of the form < non−terminal >1→< non−terminal >2

< non − terminal >3, if < non − terminal >2 happens to be nullable,
a corresponding new rule < non − terminal >1→< non − terminal >3

is added. Similarly, if < non − terminal >3 happens to be nullable, a
corresponding new rule < non − terminal >1→< non − terminal >2 is
introduced.

S → 0 | X O | Z Y Z | O | Z Z
X → Y
Y → 1 | X
Nullable set = {X,Y }

(3.17)

5. To get rid of a unit production, such as X → Y , we keep track of all unit
productions that originate at X. create a production from X for each
production from Y , with the right hand side of the production for X set
to the right hand side of the corresponding production from Y .

S → 0 | X O | Z Y Z
X → 1 | X

(3.18)

But there are some subtleties with substitutions for unit productions.

Consider the grammar:
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S → A | 1 1
A → B | 1
B → S | 0

(3.19)

We do not want to add new unit productions.

S → 1 1 | 1
A → 1 | 0
B → S | 11 | 1

(3.20)

But there is a mistake in this; S can actually produce 0, whereas our
series of substitutions for unit productions has made it impossible for S
to generate a 0! This does not happen so often; it happens when you
have chains of recursion. The subtlety here is that you need to keep track
of non-terminals that can result from a non-terminal X using only unit-
productions. This looked ahead for extended unit productions is akin to
keeping track of nullable non-terminals where you had to look at extended
ε productions. You will have a list of single non-terminals that any X can
get to, by more than one step. The set of non-terminals, reachable using
a series of unit productions from a non-terminal X will be represented as
UX . Thus, US = {A,B}, UA = {B,S} and UB = {S,A}. For any non-
terminal X, we will place all the right hand sides of the productions from
UX on the right side of productions from X. Thus, the above grammar,
after this modification, should look like:

S → 1 1 | 1 | 0
A → 1 | 1 1 | 0
B → 0 | 1 1 | 1

(3.21)

6. Get rid of long productions, as illustrated with the first example. In (5),
there are no long productions and the grammar is already in CNF.

7. Get rid of useless productions. The original grammar in (3.19) was capable
of generating three strings, viz., 1 1, 0 and 1. There was no useless produc-
tions or non-terminal in (3.19). However, in (5) there are useless symbols
in the form of A and B (since you cannot even get to them starting at S)
as well as useless productions in the form of the last six productions in
(5). Thus, the grammar in (5) is equivalent to the grammar in (7)
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S → 1 1 | 1 | 0 (3.22)

How do we get rid of useless non-terminals? There are two steps to this
process. First of all, when is a symbol useless?

• A symbol is useless, if it cannot be reached from the start symbol S
(as in the case of A and B above).

• A symbol is also useless, if does not terminate. For example, if we
had a production S → C C in (7), but had no productions originat-
ing with C (that is, we could do nothing useful with C), then this
additional production would be useless.

The steps involved in eliminating useless productions are:

(a) Find all productions that can generate strings. Eliminate all other
productions. This can be determined in a manner similar to de-
termination of nullable non-terminals; we start with terminals, keep
track of the list of all useful non-terminals that produce terminals,
then iteratively keep track of non-terminals that produce useful non-
terminals. All non-terminals that do not get included in the list
are useless non-terminals. Thus productions such as S → C C and
S → B C will get eliminated. The latter gets eliminated, because B
is hitched up with C, which will lead us nowhere.

(b) Find all non-terminals that can be reached from the start symbol
S. This can be done using a similar iterative procedure as discussed
above. Eliminate all other non-terminals and any production that
involves them.

Both the procedures described above, as well as the procedure for deter-
mining nullable non-terminals, takes time proportional to the number of
non-terminals. On the other hand, the step for substituting information
based on nullable non-terminals can take time that is exponential in the
number of nullable non-terminals in a production. Thus, if N is a nullable
non-terminal and S → A N B N C N D is a production, the time taken
for substituting for N in this production is 23, which is exponential in the
number of occurences of the nullable non-terminal on the right hand side
of a production.

Consider the simple example grammar below:

S → A B | 0
A → 0 (3.23)
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Following the two steps for elimination of useless productions:

(a) B is obviously a useless non-terminal and therefore the production
S → A B can be eliminated.

(b) With elimination of this production, the non-terminal A and its cor-
responding production A→ 0 are also rendered useless and can also
be eliminated. Therefore, the only production that will remain in an
equivalent grammar is

S → 0 (3.24)

The order of the two steps is very important. If we first eliminate all
non-reachable non-terminals and their corresponding productions, A and
its production A→ 0 will remain; only the production S → A B will get
eliminated in the second step. What will remain is

S → 0
A → 0 (3.25)

While we pretended to have eliminated all useless productions, the non-
terminal A is actually useless and so is the second production. Thus shows
the fallacy in reversing the order of the elimination steps.

3.5 Does a CFG Generate any String

One question that is decidable about CFGs is the membership question; is a
given string σ generated by a given CFG G? Another question that is also
decidable about CFGs is does a given CFG G generate any string at all? Or in
other words, does the given grammar G generate an empty set of strings? The
procedure for determining if a CFG G generates any string at all is simple:

1. Convert G to Chomsky Normal Form GF .

2. If the start symbol of GF is useless, then G generates no strings. That is,
if GF has no productions, then the set of strings generated by G is empty.

On the other hand, the question ‘does a given CFG G generate all strings?’
is undecidable.
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Figure 3.9: Schematic diagram of a pushdown automaton.

3.6 Pushdown Machines

We will switch gears now, while retaining our focus on the broad family of
context free languages. We will introduce the machine equivalents for context
free grammars, called non-deterministic machines. We will also distinguish
between these machines and deterministic pushdown machines.

A pushdown machine is just like a finite state machine, except that we put
in an extra piece of power in the form of a stack. The machine, while making
a move from one state to another state on observing a symbol on the tape, can
also manipulate a stack by pushing a symbol on the stack or popping a symbol
off the stack. It is pictorially more abstract than the FSM and is shown in
Figure 3.9.

The arrow represents a pointer that the FSM uses to keep track of a cell
on the input tape. The pointer always moves unidirectionally, left to right on
the input tape, step by step. It does not have the power to go back and forth
on the tape. A finite state machine that is allowed two way movement of the
pointer on the tape will have more power and will be dealt with later in the
form of a Turing Machine. The PDM also has a stack on which symbols are
stored. The stack is a last-in first-out data structure. When we write a program
to simulate a PDM like this, we need to represent the machine using transition
tables. To formally define a PDM, we just need to extend the notation used
for FSMs by merely adding the stack and the stack alphabet to the existing 5
tuple. Moreover, the transition function takes as an input, the current state,
and an input from the top of the stack to return a state and a stack symbol
(which again goes into the stack). Formally, we define a push-down automaton
as follows

Push Down Automaton: A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F ),
where Q, Σ, Γ, and F are all finite sets, and
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Figure 3.10: Pushdown automaton that accepts the language L = {0n1n|n ≥ 0}.

1. Q is the set of states,

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.

3.6.1 Example 1

Consider the language L = {0n1n|n ≥ 0}. We know that L is not regular.
We will construct a PDM that accepts L. We need to manipulate the stack
depending on the symbol at the top of the stack as well as the current state.
To start with, we read the tape and as long as we see 0’s, we keep pushing X’s
(one X per 0) onto the top of the stack, and when we start seeing 1’s, we start
popping off X’s from the top of the stack. And while popping off X’s, if we
encounter 0’s, we crash (that is, we hit a dead state).

We will have a ‘push state’ with the semantics that we stay on the state
as long as we encounter 0’s and keep pushing X’s on the stack. The triplet
< 0, Z,XZ > (Z represents the bottom of the stack) means a push; it means
when the next symbol on the tape is a 0 and the stack is empty, then push the
symbol X on top of the stack to yield XZ. Similarly, the triplet < 0, X,XX >
also means a push; it means when the next symbol on the tape is a 0 and there
is an X on the top of the stack, then push another symbol X onto the top of
the stack to yield XX. If we see a 1 in the start state (‘push state’), we go into
popping mode by transitioning to the ‘pop state’, while popping an X. The
triplet < 1, X, Pop > means that if the next symbol on the tape is 1 and X is
on the top of the stack, then pop out the X from the top of the stack. Once
in the ‘pop state’, we keep popping an X to match every input 1. However, if
the input is exhausted while on the ‘pop state’, and there is no X on the top
of the stack, then the PDM goes into the accept mode by ε transitioning to the
‘accept state’.

For FSMs, whenever we had an ε move, the machine automatically became
non-deterministic. In PDMs, the presence of an ε move does not necessarily
imply that it is non-deterministic. Intuitively, non-determinism means that at
a particular configuration, you do not know what to do, since you have some
choices. In the case of FSMs, an ε move indicates a choice. But in the case
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Figure 3.11: Pushdown automaton that accepts a special language of palin-
dromes, L2 = {w2wR|w ∈ (0 + 1)∗}.

of PDMs, since the transition is based not only on an ε input, but also on the
symbol at the top of the stack, you have to look at the combination, before
you decide the next move. If we put an < ε,X, Pop > on the loop on the ‘pop
state’, it will yield non-determinism, since there will be a choice for an input
symbol 1 with XX at the top of the stack; we could either loop around twice,
once for an ε and then for a 1 or alternatively, loop around directly for a 1.
The summary of the discussion is that if there is no choice of next state for any
configuration of the PDM, then the machine is deterministic, else the machine
is non-deterministic.

YACC simulates a pushdown machine. Note that if the stack alphabet is
restricted to be always of size 1, then we cannot handle context free languages
such as palindromes11.

3.6.2 Example 2

We will do another example that will force us to use more than one symbol on
the stack. Consider the language L of even length palindromes L = {wwR|w ∈
(0+1)∗}. We can read the first half w of the string wwR and as we keep reading
in symbols of w, we keep pushing them onto the top of the stack12. And then
as we read symbols from wR, we pop symbols from the top of the stack, and
when the stack empties we move to the accept state. But how do we know
when w ends and wR starts? Let us say we slightly modify the language to
L2 = {w2wR|w ∈ (0 + 1)∗}. This is a similar but much simpler problem. The
problem of designing a PDM for L2 is simpler because we can now detect the
start of wR. The corresponding PDM is shown in Figure 3.11.

Here is how we build a PDM that accepts the language L = {wwR|w ∈
(0+1)∗} without the intervening 2. We do this by introducing non-determinism;
when we see a 0 or 1, the symbol could potentially be a part of w or of wR. So
by substituting < ε,X,X > for < 2, X,X >, we can ensure that all palindromes
will be accepted by the modified PDM. The only subtle issue could be that by
making this substitution, other strings (that is non-palindromes), that were not

11But for single alphabet languages, it can be the case that a single alphabet stack is
powerful enough to capture CFLs.

12The stack alphabet, in this case, will be the same as the alphabet of the language.
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Figure 3.12: Pushdown automaton that accepts even length palindromes, L =
{wwR|w ∈ (0 + 1)∗}.

Figure 3.13: Pushdown automaton that accepts even as well as odd length
palindromes.

accepted by 3.11 might get accepted. But by inspection, we can ward off this
danger. Figure 3.12 shows a PDM that accepts only even length palindromes.

By introducing < 0, X,X > and < 1, X,X > along with < ε,X,X >, we
get a PDM that accepts even as well as odd length palindromes.

There is no PDM that accepts L = {ww|w ∈ (0 + 1)∗}. If we try inserting
the symbols of the first half, w and then try popping them out based on the
second half, we simply will not be able to, because the data structure is last-in
first-out. Could we do this if we had two stacks? Yes we could. We could also
do this with a 2-way machine (a machine that can read backward as well as
forward on the tape). However a 2-way PDM machine is not as powerful as a
Turing machine. Some things that 2-way deterministic PDMs can do, NPDMs
cannot do and vice-versa. Figure 3.14 shows a high level overview of the power
of different PDMs.

What about a queue? Can a queue simulate one or more stacks? Even with
a single queue, a queue automata is equivalent in computational power to a
Turing machine. Hence a queue automata cannot be simulated by a one stack
automata (the pushdown automata). Although one stack is too little to simulate
a queue, with two stacks, the simulation is quite efficient. A deque automata
can be efficiently simulated by a three stack automata. The converse ques-
tion, simulating a (one) stack machine by a queue machine is not satisfactorily
resolved.
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Figure 3.14: High level overview of the power of different PDMs.

3.6.3 Example 3

Can we design a PDM for the language L = {wwR|w ∈ (0 + 1)∗} - the com-
plement of even length palindromes. We saw that CFLs are not closed under
complementation. We cannot just toggle the final and non-final states of the
PDM in Figure 3.13. Why is that so? If it were a deterministic machine, we
could do so. In general, deterministic machines (including deterministic PDMs)
are closed under complement. Thus, we if take the complement of the states of
a DPDM for a CFL, you get the DPDM of the complement of the CFL. But
this does not hold for the NPDM for a CFL. Recall that the trick of toggling
states did not work for a NFA either.

Nevetheless, this discussion does not mean that L = {wwR|w ∈ (0+1)∗} has
no PDM - it only means that we are not automatically in the ballpark. Recall
that context free languages are closed under union. On the other hand, the
language defined by deterministic PDMs (DPDMs) is not closed under union;
to define union, you need a language with a machine equivalent that supports
non-determinism. Here is a classic case L+ = {0n1n|n ≥ 0} ∪ {0n12n|n ≥ 0}.
L+ can be accepted only by an NPDM13, whereas both {0n1n|n ≥ 0} and
{0n12n|n ≥ 0} can be accepted by DPDMs. And this is a counter-example to
the hypothesis that the subset of CFL defined by DPDMs is closed under union.

To start, all odd length strings are elements of L. To detect odd length
strings, we do not even require the stack and can make a non-deterministic
choice to the upper half of the machine. In the lower half of the machine, we
look for mismatches, and transition to the accept state the moment we find
one. However, we cannot transition to the accept state until we confirm that

13Exercise.
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Figure 3.15: PDM that accepts the complement of the set of even length palin-
dromes.

the mismatch was legitimate or in other words, that the mismatch was found
exactly after moving to the ‘Pop state’ half way down the string. This can
be done by transitioning to a ‘balancing state’ before moving to the accept
state and looping around in the ‘balancing state’ till the end, making sure that
the number of incoming symbols equal the number of symbols on the stack.
Figure 3.15 shows the PDM for this problem.

This is not the only way of doing this problem; we will solve this problem
in a different but powerful way, that will extend the repertoire of techniques
we know for constructing PDMs. This alternative will make more efficient use
of non-determinism. The odd length handling (upper) part of Figure 3.15 will
remain the same. To determine a palindrome-mismatch in the string, all we
need to find out is a symbol β1 on the left half of the string that does not match
a symbol β2 in the right half of the string. And we note that the number of
symbols to the right of β2 should equal the number of symbols to the left of
β1. We will count the symbols (in the ‘Seek Beta 1’ state) by pushing a count
symbol X on the stack, corresponding to every input symbol on the tape, as
we go from left to right. And at some point we are non-deterministically going
to guess a symbol that is β1. We will remember β1 on the top of the stack and
move to a ‘Seek Beta 2’ state. And then we will move across the tape, ignoring
everything we see until we non-deterministically guess in the ‘Seek Beta 2’ state
that we got a match with β2. If β2 6= β1 (where β1 is on the top of the stack),
then we verify that we made the right guess by checking if the number of slots
after β2 is the same as the number of symbols on the stack (besides) β1. This
avoids many of the inner loops we had in Figure 3.15. The new equivalent PDM
is shown in Figure 3.16.

Note that while we make the guesses non-deterministically, a machine im-
plementation will require deterministic guessing, which will take us to the world
of NP-complete problems later in the sequel.
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Figure 3.16: An alternate PDM, richer in non-determinism, that accepts the
complement of the set of even length palindromes.

3.6.4 Simulating a stack with a queue

You can simulate a stack with queue, by keeping a pointer to the last ‘pushed’
symbol. And when you need to ‘pop’ it out, you deque all symbols appearing
before the pointer and enqueue them from the back. A single push and pop
is a linear operation with the stack, whereas the push or pop when simulated
through a queue will require time proportional to number of symbols currently
in the queue. You can simulate a stack using a queue, but you have to pay for
it in terms of time. Can a queue simulate two stacks? Yes, it can even simulate
two stacks.

3.6.5 Example 4

This example will be a really hard problem. It is kind of a puzzle. We will
sketch the machine for this, without going into the details. We discussed that
the language L = {ww|w ∈ (0 + 1)∗} is not context free, that is, it has no PDM
implementation. We did not prove it though we will prove it soon using the
pumping lemma (you can do it with a queue FSM though).

What is really cool is that you can build a PDM for the complement of
L = {ww|w ∈ (0 + 1)∗}, i.e., LC . But we cannot build the PDM for LC

building on a PDM for L, because L is not context free! We need a completely
different way for building the PDM for L.

Mimicking the second solution for example 5, we can make guesses for the
two halves of the string. We require that the if the string is σ and has length n
and σi is the ith symbol in the string, then some property should be satisfied by
σk and σn

2 +k. We will push symbols on the stack, as before, remembering how
many symbols it took to get at any particular position. And then we randomly
move along, guessing where the middle is. Subsequently, we will start popping
symbols from the middle. But how do we count till the middle and balance it
using the symbols appearing after the middle? In fact, fundamentally, there is
no way to do the matching for L. Because, they are not nested!.

An important thing to observe is that the length of the string between σk
and σn

2 +k is equal to the sum of the length of the strings between σ1 and σk
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Figure 3.17: The higher level logic for example 4.

Figure 3.18: The PDM for the example 4.

and between σn
2 +k and σn. So we make our first guess at σk and the next guess

at σn
2 +k. We start pushing some k symbols (for some arbitrary k) into the

stack starting at σ1 and pop them out, starting at σk, till the stack is emptied.
We keep track of the symbol σk using a state. And then we immediatly start
pushing some m symbols (for some arbitrary m) into the stack and pop them out
starting at a symbol σn

2 +k 6= σk, for the next m symbols till the end of the tape
is met and the stack is empty. Thus, 2k+2m+2 = n. Also, n2 +k = m+2k+1. If
the end of the tape and empty stack are encountered at the end simultaneously,
then the string is accepted.

Figure 3.17 depicts the high level logic of the machine, whereas Figure 3.18
depicts the exact PDM for this problem.

3.7 Conversion from CFG to PDM

Deterministic and non-deterministic PDMs are not equivalent. The only equiv-
alence you can show here is that CFGs are same as non-deterministic PDMs.
The expressibility of CFGs and PDMs is the same. If you have a NDPDM, you
can come with an equivalent CFG and vice verca. The CFG to PDM conversion
is very logical and relates to parsing using Yacc. The conversion is interesting
not only from the theoretical point of view but also from the application view-
point. The other direction, from PDMs to CFGs is much more rusty and can
be read up in some standard text book.

While the CFG to PDM conversion is logical, to make it easier to describe,
we will use the CNF. This is one of the first of three main ideas that make use
of the CNF.

Consider a typical simple CFG in CNF:
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A → B C | A B | 1
B → A A | 0
C → C B | 1 | 0

(3.26)

We will do an exercise that will help us understand the equivalence. We
will turn the above grammar into a machine That will accept only the strings
generated by this grammar, and no other strings - a machine equivalent to this
grammar. We can understand how to do this by understanding how to generate
a string from the grammar; to do what the Yacc tool does - take as input
a string and a grammar and determine whether the grammar generates the
string. This grammar is not deterministic and the machine that will result from
the conversion is a non-deterministic pushdown machine. The subset of CFGs
called LRK grammars are equivalent to deterministic pushdown machines.

Consider the string 10110 and a left-most derivation using the CNF.

A→ AB → 1B → 1AA→ 1BCA→ 10CA→ 101A→ 101AB → 1011B → 10110

One nice thing about left-most derivations from CNFs is that the terminals
always sit on the left-most half while the right half contains non-terminals (if
at all).

There is another left-most derivation for the same string (illustrating that
the grammar is ambiguous):

A→ BC → AAC → 1ABAC → 1BAC → 10AC → 101C → 101CB → 1011B → 10110

As discussed earlier, the number of steps for deriving a string of length n
using CNF is 2n− 1. We will derive a NDPDM that has the power to do either
of the above left-most derivations. The mechanism is quite straightforward.

1. Everytime the grammar generates a symbol, the machine will read the
symbol. These suite of actions are called the popping actions.

2. The non-terminals that appear in the derivation, waiting to be looked at
and substituted for, will be stored by the machine on the stack. The non-
terminal are pushed into the stack from the right to the left. The left-most
non-terminal (the last thing to be pushed into the stack) is the first to be
popped out of the stack and substituted for. The correponding actions
are called the set of processing actions.

To start, we read no symbol off the tape and have an empty stack. A is
the start state and gets pushed into the stack on the ε string. We will give
the machine the choice of pushing A off the stack and popping in two symbols
corresponding to any of the productions from A, as given by the CNF. We do
all this without reading any symbol on the tape. This takes us into the set of
processing states. The same procedure is followed for any non-terminal on top
of the stack - the symbol on top of the stack is popped and the non-terminals
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Figure 3.19: PDM for the grammar in 3.26

on the right hand side of its productions are pushed (in right to left order) into
the stack.

To turn the non-terminals on the stack into non-terminals, we invoke the
productions of the form < terminal >→< non − terminal >; for each such
production, corresponding to an input symbol < terminal > on the tape, we
pop the < non − terminal > from the top of the stack. We move to the
accept state when we reach the end of the input tape and the stack is empty.
Figure 3.19 shows the PDM for the CFG under consideration in Table 3.26.


