Weighted Transducers
 Theory and Algorithms

Mehryar Mohri
Courant Institute of Mathematical Sciences
Google Research
mohri@cims.nyu.edu

Tutorial joint work with Corinna Cortes (Google Research).

Speech Recognition

- Problem: assign a category (e.g., referral, precertification) to each speech utterance.

- Example:

- Spoken utterance: "Hi this is my number"
- Speech recognizer's output ('word lattice'):

Computational Biology: Similar Situation

- Problem: decide which class, e.g., protein families, CpG islands, a biosequence, or a group of biosequences, belongs to.
- Objects to classify:
- Single protein sequence.
- Protein clusters: represented or modeled by weighted automata.

General Problem

- Spoken-dialog classification
- Computational biology
- Information extraction
- Text mining
- Document classification
- Database queries

Motivation

- The objects to analyze in many modern applications are:
- variable-length sequences.
- distributions of sequences, typically weighted automata.
- How do we generalize learning algorithms originally designed for fixed-size vectors?
- weighted automata and transducers.
- sequence kernels, weighted automata kernels.

This Tutorial

- Weighted transducers theory and algorithms

Kernels for computational biology and text and speech processing

Software Libraries

- FSM Library: Finite-State Machine Library. General software utilities for building, combining, optimizing, and searching weighted automata and transducers (MM, Pereira, and Riley, 2000).
http://www.research.att.com/projects/mohri/fsm
- OpenFst Library: Open-source Finite-State Transducer Library. Jointly designed by Courant and Google (Allauzen, Riley, Schalkwyk, Skut, and MM, 2007).
http://www.openfst.org

This Talk

- Definitions

- Composition

- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Weight Sets: Semirings

- A semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$ is a ring that may lack negation.
- sum: to compute the weight of a sequence (sum of the weights of the paths labeled with that sequence).
- product: to compute the weight of a path (product of the weights of constituent transitions).

Semirings - Examples

Semiring	Set	\oplus	\otimes	$\overline{0}$	$\overline{1}$
Boolean	$\{0,1\}$	\vee	\wedge	0	1
Probability	\mathbb{R}_{+}	+	\times	0	1
Log	$\mathbb{R} \cup\{-\infty,+\infty\}$	$\oplus_{\log }$	+	$+\infty$	0
Tropical	$\mathbb{R} \cup\{-\infty,+\infty\}$	\min	+	$+\infty$	0

with $\oplus_{\log }$ defined by: $x \oplus_{\log } y=-\log \left(e^{-x}+e^{-y}\right)$.

Weighted Automata

$$
[[A]](x)=\text { Sum of the weights of all successful }
$$ paths labeled with x

$$
[[A]](a b b)=.1 \times .2 \times .3 \times .1+.5 \times .3 \times .6 \times .1
$$

Weighted Transducers

$$
[[T]](x, y)=\begin{aligned}
& \text { Sum of the weights of all successful } \\
& \text { paths with input } x \text { and output } y .
\end{aligned}
$$

$$
[[T]](a b b, b a a)=.1 \times .2 \times .3 \times .1+.5 \times .3 \times .6 \times .1
$$

Rational Operations

- Sum

$$
\llbracket T_{1} \oplus T_{2} \rrbracket(x, y)=\llbracket T_{1} \rrbracket(x, y) \oplus \llbracket T_{2} \rrbracket(x, y)
$$

- Product

$$
\begin{aligned}
& \llbracket T_{1} \otimes T_{2} \rrbracket(x, y)=\bigoplus_{\substack{x=x_{1} x_{2} \\
y=y_{1} y_{2}}} \llbracket T_{1} \rrbracket\left(x_{1}, y_{1}\right) \otimes \llbracket T_{2} \rrbracket\left(x_{2}, y_{2}\right) . \\
& \text { Closure }
\end{aligned}
$$

$$
\llbracket T^{*} \rrbracket(x, y)=\bigoplus_{n=0}^{\infty} \llbracket T \rrbracket^{n}(x, y)
$$

This Talk

- Definitions
- Composition
- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Composition

- Definition: given two weighted transducer T_{1} and T_{2} over a commutative semiring, the composed transducer $T=T_{1} \circ T_{2}$ is defined by

$$
\left(T_{1} \circ T_{2}\right)(x, y)=\bigoplus T_{1}(x, z) \otimes T_{2}(z, y)
$$

- Algorithm:
- Epsilon-free case: matching transitions.
- General case: ϵ-filter transducer.
- Complexity: quadratic, $O\left(\left|T_{1}\right|\left|T_{2}\right|\right)$.
- On-demand construction.

Epsilon-Free Composition

- States $Q \subseteq Q_{1} \times Q_{2}$.
- Initial states $I=I_{1} \times I_{2}$.
- Final states $F=Q \cap F_{1} \times F_{2}$.

Transitions

$$
\begin{aligned}
E=\{ & \left(\left(q_{1}, q_{1}^{\prime}\right), a, c, w_{1} \otimes w_{2},\left(q_{2}, q_{2}^{\prime}\right)\right): \\
& \left.\left(q_{1}, a, b, w_{1}, q_{2}\right),\left(q_{1}^{\prime}, b, c, w_{2}, q_{2}^{\prime}\right) \in Q\right\} .
\end{aligned}
$$

Illustration

- Program: fsmcompose A.fsm B.fsm >C.fsm fstcompose A.fsm B.fsm >C.fsm

Redundant ϵ-Paths Problem

(MM, Pereira, Riley 1996)

$$
\begin{aligned}
& T_{1}(0) \mathrm{a}: \mathrm{a}(1) \mathrm{b}: \mathrm{m}^{\mathrm{c}: \varepsilon}(3) \mathrm{d}: \mathrm{d}
\end{aligned}
$$

Correctness of Filter

- Proposition: filter F allows a unique path between two states of the following grid.

- Proof: Observe that a necessary and sufficient condition is that the following sequences be forbidden: $a b, b a, a c$, and $b c$.

Correctness of Filter

- Proof (cont.): Let $\sigma=\{a, b, c, x\}$, then set of sequences forbidden is exactly

$$
L=\sigma^{*}(a b+b a+a c+b c) \sigma^{*}
$$

- An automaton representing the complement can be constructed by determ. and complementation.

Other Filters

(Pereira and Riley, I997)

Sequential Filter.

This Talk

- Definitions
- Composition
- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Shortest-Distance Problem

- Definition: for any regulated weighted transducer T, define the shortest distance from state q to F as

$$
d(q, F)=\bigoplus_{\pi \in P(q, F)} w[\pi] .
$$

- Problem: compute $d(q, F)$ for all states $q \in Q$.
- Algorithms:
- Generalization of Floyd-Warshall.
- Single-source shortest-distance algorithm.

All-Pairs Shortest-Distance Algorithm

(MM, 2002)
■ Assumption: closed semiring (not necessarily idempotent).

- Idea: generalization of Floyd-Warshall algorithm.
- Properties:
- Time complexity: $\Omega\left(|Q|^{3}\left(T_{\oplus}+T_{\otimes}+T_{\star}\right)\right)$.
- Space complexity: $\Omega\left(|Q|^{2}\right)$ with an in-place implementation.

Closed Semirings

- Definition: a semiring is closed if the closure is well defined for all elements and if associativity, commutativity, and distributivity apply to countable sums.
- Examples:
- Tropical semiring.
- Probability semiring when including infinity or when restricted to well-defined closures.

Pseudocode

```
Generic-All-Pairs-Shortest-Distance (G)
    1 for \(i \leftarrow 1\) to \(|Q|\)
    \(2 \quad\) do for \(j \leftarrow 1\) to \(|Q|\)
        do \(d[i, j] \leftarrow \bigoplus_{e \in P(i, j)} w[e]\)
    4 for \(k \leftarrow 1\) to \(|Q|\)
    \(5 \quad\) do for \(i \leftarrow 1\) to \(|Q|\)
    do for \(j \leftarrow 1\) to \(|Q|\)
        do \(d[i, j] \leftarrow d[i, j] \oplus\left(d[i, k] \otimes d[k, k]^{*} \otimes d[k, j]\right)\)
    8 for \(k \leftarrow 1\) to \(|Q|\)
    \(9 \quad\) do \(d[k, k] \leftarrow \overline{1}\)
    10 return \(d\)
```


Single-Source Shortest-Distance Algorithm

- Assumption: k-closed semiring.

$$
\forall x \in \mathbb{K}, \bigoplus_{i=0}^{k+1} x^{i}=\bigoplus_{i=0}^{k} x^{i}
$$

- Idea: generalization of relaxation, but must keep track of weight added to $d[q]$ since the last time q was enqueued.
- Properties:
- works with any queue discipline and any k closed semiring.
- Classical algorithms are special instances.

Pseudocode

```
Generic-Single-Source-Shortest-Distance \((G, s)\)
1 for \(i \leftarrow 1\) to \(|Q|\)
\(2 \quad\) do \(d[i] \leftarrow r[i] \leftarrow \overline{0}\)
\(3 \quad d[s] \leftarrow r[s] \leftarrow \overline{1}\)
\(4 \quad S \leftarrow\{s\}\)
5 while \(S \neq \emptyset\)
\(6 \quad\) do \(q \leftarrow \operatorname{head}(S)\)
\(7 \quad\) Dequeue \((S)\)
\(8 \quad r^{\prime} \leftarrow r[q]\)
\(9 \quad r[q] \leftarrow \overline{0}\)
\(10 \quad\) for each \(e \in E[q]\)
11
12
13
14
15
\(16 d[s] \leftarrow \overline{1}\)
```


Notes

- Complexity:
- depends on queue discipline used.

$$
O\left(|Q|+\left(T_{\oplus}+T_{\otimes}+C(A)\right)|E| \max _{q \in Q} N(q)+(C(I)+C(E)) \sum_{q \in Q} N(q)\right)
$$

- coincides with that of Dijkstra and Bellman-Ford for shortest-first and FIFO orders.
- linear for acyclic graphs using topological order.

$$
O\left(|Q|+\left(T_{\oplus}+T_{\otimes}\right)|E|\right)
$$

- Approximation: $\epsilon-k$-closed semiring, e.g., for graphs in probability semiring.

This Talk

- Definitions
- Composition
- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Epsilon-Removal

(MM, 2002)

- Definition: given weighted transducer T, create equivalent weighted transducer with no epsilontransition.
- Algorithm components:
- Computation of the ϵ-closure at each state:
$\left.C[p]=\left\{\left(q, d_{\epsilon}[p, q]\right): d_{\epsilon}[p, q] \neq \overline{0}\right)\right\}$ with $d_{\epsilon}[p, q]=\bigoplus_{\pi \in P(p, \epsilon, q)} w[\pi]$.
- Removal of ϵ s.
- On-demand construction.

Illustration

Main Algorithm

- Shortest-distance algorithms:
- closed semirings: generalization of FloydWarshall algorithm.
- k-closed semirings: single-source shortestdistance algorithm.
- Complexity: shortest-distance and removal.
- Acyclic $T_{\epsilon}: O\left(|Q|^{2}+|Q||E|\left(T_{\oplus}+T_{\otimes}\right)\right)$.
- General case, tropical semiring:

$$
O\left(|Q||E|+|Q|^{2} \log |Q|\right)
$$

This Talk

- Definitions
- Composition
- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Determinization

> (MM, I997)

■ Definition: given weighted transducer T, create equivalent non-deterministic weighted transducer.

- Algorithm (weakly left divisible semirings):
- generalization of subset constructions to weighted labeled subsets

$$
\left\{\left(q_{1}, x_{1}, w_{1}\right), \ldots,\left(q_{m}, x_{m}, w_{m}\right)\right\}
$$

- complexity: exponential, but lazy implementation.
- not all weighted transducers are determinizable but all acyclic weighted transducers are. Test? For some cases, using the twins property.

Illustration

Illustration

Non-Determinizable Transducer

Twins Property

(Choffrut, I978; MM I997)

- Definition: a weighted transducer T over the tropical semiring has the twins property if for any two states q and q^{\prime} as in the figure, the following holds:
- $c=c^{\prime}$;
- $u^{-1} u^{\prime}=(u v)^{-1} u^{\prime} v^{\prime}$.

Determinizability

(Choffrut, I978; MM 1997;Allauzen and MM, 2002)

- Theorem: a trim unambiguous weighted automaton over the tropical semiring is determinizable iff it has the twins property.
- Theorem: let T be a weighted transducer over the tropical semiring. Then, if T has the twins property, then it is determinizable.
- Algorithm for testing the twins property:
- unambiguous automata: $O\left(|Q|^{2}+|E|^{2}\right)$.
- unweighted transducers: $O\left(|Q|^{2}\left(|Q|^{2}+|E|^{2}\right)\right.$.

This Talk

- Definitions
- Composition
- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Pushing

(MM, I997; 2004)

- Definition: given weighted transducer T, create equivalent weighted transducer such the sum (longest common prefix) of the weights (output strings) of all outgoing paths be $\overline{1}(\epsilon)$ at all states, modulo initial states.
- Algorithm components:
- Single-source shortest-distance computation

$$
d[q]=\bigoplus_{\pi \in P(q, F)} w[\pi] .
$$

- Reweighting: $w[e] \leftarrow(d[p[e]])^{-1}(w[e] \otimes d[n[e]])$ for each transition e.

Main Algorithm

- Automata: single-source shortest-distance.
- acyclic case: $O\left(|Q|+|E|\left(T_{\oplus}+T_{\otimes}\right)\right)$.
- general case tropical semiring: $O(|Q| \log |Q|+|E|)$.
- general case k-closed semirings

$$
O\left(|Q|+\left(T_{\oplus}+T_{\otimes}+C(A)\right)|E|_{q \in Q} \max _{q} N(q)+(C(I)+C(E)) \sum_{q \in Q} N(q)\right)
$$

- general case closed semirings $\Omega\left(|Q|^{3}\left(T_{\oplus}+T_{\otimes}+T_{\star}\right)\right.$.
- Transducers: $O\left(\left(\left|P_{\max }\right|+1\right)|E|\right)$.

Illustration

Ilustration

This Talk

- Definitions
- Composition
- Shortest-distance algorithms
- Epsilon-removal
- Determinization
- Pushing
- Minimization

Algorithm

(MM, I997, 2000, 2005)

- Automata: pushing and automata minimization, general (Hopcroft, I971) and acyclic case (Revuz 1992).
- acyclic case: $O\left(|Q|+|E|\left(T_{\oplus}+T_{\otimes}\right)\right)$.
- general case tropical semiring: $O(|E| \log |Q|)$.

- Transducers:

- acyclic case: $O\left(S+|Q|+|E|\left(\left|P_{\max }\right|+1\right)\right)$.
- general case tropical semiring:

$$
O\left(S+|Q|+|E|\left(\log |Q|+\left|P_{\max }\right|\right)\right) .
$$

Minimization

- Definition: given deterministic weighted transducer T, create equivalent deterministic weighted transducer with the minimal number of states (and transitions).
- Algorithm components:
- apply pushing to create canonical representation.
- apply unweighted automata minimization after encoding (input labels, output label, weight) as a single label.

Illustration

Illustration

References

- Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the Twins Property. Journal of Automata, Languages and Combinatorics, 8(2):II7-I44, 2003.
- John E. Hopcroft. An $n \log n$ algorithm for minimizing the states in a finite automaton. In The Theory of Machines and Computations, pages I89-196.Academic Press, 1971.
- Mehryar Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 23:2, 1997.
- Mehryar Mohri. Minimization Algorithms for Sequential Transducers. Theoretical Computer Science, 234:I77-20I, March 2000.
- Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.
- Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algorithms for Weighted Transducers. International Journal of Foundations of Computer Science, I3(I): 129-143, 2002.
- Mehryar Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied Combinatorics on Words. Cambridge University Press, 2005.

References

- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley.Weighted Automata in Text and Speech Processing. In Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-96), Workshop on Extended finite state models of language. Budapest, Hungary, 1996. John Wiley and Sons, Chichester.
- Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley.The Design Principles of a Weighted Finite-State Transducer Library. Theoretical Computer Science, 23I:17-32, January 2000.
- Mehryar Mohri and Michael Riley.A Weight Pushing Algorithm for Large Vocabulary Speech Recognition. In Proceedings of the 7th European Conference on Speech Communication and Technology (Eurospeech'OI).Aalborg, Denmark, September 2001.
- Fernando Pereira and Michael Riley. Finite State Language Processing, chapter Speech Recognition by Composition of Weighted Finite Automata. The MIT Press, 1997.
- Dominique Revuz. Minimisation of Acyclic Deterministic Automata in Linear Time. Theoretical Computer Science 92(I): 18I-I89, I992.

