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Speech Recognition
Problem: assign a category (e.g., referral, pre-
certification) to each speech utterance.

Example:

• Spoken utterance:  “Hi this is my number”

• Speech recognizer’s output (’word lattice’): 

0

1
hi/80.76

2I/47.36

3

I’d/143.3

4this/16.8

5this/153.0

6this/90.3

7

like/41.58

is/70.97

10is/22.36

87is/71.16

is/77.68

8Mike/192.5

9
my/19.2

15

my/63.09

uh/83.34

hard/22

card/20.1

57
number/34.56
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Computational Biology:
Similar Situation

Problem: decide which class, e.g., protein families, 
CpG islands, a biosequence, or a group of 
biosequences, belongs to.

Objects to classify:

• Single protein sequence.

• Protein clusters: represented or modeled by 
weighted automata.
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General Problem

Spoken-dialog classification

Computational biology

Information extraction

Text mining

Document classification

Database queries
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Motivation

The objects to analyze in many modern 
applications are:

• variable-length sequences.

• distributions of sequences, typically weighted 
automata.

How do we generalize learning algorithms 
originally designed for fixed-size vectors?

• weighted automata and transducers.

• sequence kernels, weighted automata kernels.
5
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This Tutorial

Weighted transducers theory and algorithms

Kernels for computational biology and text and 
speech processing
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Software Libraries

7

FSM Library: Finite-State Machine Library. General
software utilities for building, combining, optimizing, 
and searching weighted automata and transducers 
(MM, Pereira, and Riley, 2000).

http://www.research.att.com/projects/mohri/fsm

OpenFst Library: Open-source Finite-State 
Transducer Library. Jointly designed by Courant and 
Google (Allauzen, Riley, Schalkwyk, Skut, and MM, 2007).

http://www.openfst.org

http://www.research.att.com/projects/mohri/fsm
http://www.research.att.com/projects/mohri/fsm
http://www.research.att.com/projects/mohri/fsm
http://www.research.att.com/projects/mohri/fsm
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Definitions

Composition

Shortest-distance algorithms

Epsilon-removal

Determinization

Pushing

Minimization

This Talk
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Weight Sets: Semirings

A semiring                    is a ring that may lack 
negation.

• sum: to compute the weight of a sequence  
(sum of the weights of the paths labeled with 
that sequence).

• product: to compute the weight of a path 
(product of the weights of constituent 
transitions).

(K,⊕,⊗, 0, 1)

9
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Semirings - Examples

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞,+∞} ⊕log + +∞ 0

Tropical R ∪ {−∞,+∞} min + +∞ 0

with ⊕log defined by: x ⊕log y = − log(e−x + e
−y).

10
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Weighted Automata

Sum of the weights of all successful 
paths labeled with x

[[A]](x) =

0

1a/0.1
2

a/0.5

b/0.2

a/0.4
3/0.1

b/0.3

b/0.6

[[A]](abb) = .1 × .2 × .3 × .1 + .5 × .3 × .6 × .1
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Weighted Transducers

[[T ]](x, y) = Sum of the weights of all successful 
paths with input x and output y.

0

1a:b/0.1
2

a:b/0.5

b:a/0.2

a:a/0.4
3/0.1

b:a/0.3

b:a/0.6

[[T ]](abb, baa) = .1 × .2 × .3 × .1 + .5 × .3 × .6 × .1
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Rational Operations

Sum

Product

Closure

[[T1 ⊕ T2]](x, y) = [[T1]](x, y) ⊕ [[T2]](x, y)

[[T ∗]](x, y) =
∞⊕

n=0

[[T ]]n(x, y)

13

[[T1 ⊗ T2]](x, y) =
⊕

x=x1x2

y=y1y2

[[T1]](x1, y1) ⊗ [[T2]](x2, y2).
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Composition

Definition: given two weighted transducer     and      
over a commutative semiring, the composed 
transducer                   is defined by

Algorithm:

• Epsilon-free case: matching transitions.

• General case:   -filter transducer.

• Complexity: quadratic,                 .

• On-demand construction.
15

T1 T2

T = T1 ◦ T2

O(|T1||T2|)

ε

(T1 ◦ T2)(x, y) =
⊕

z

T1(x, z) ⊗ T2(z, y).
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States

Initial states

Final states

Transitions

Epsilon-Free Composition

16

Q ⊆ Q1 × Q2.

I = I1 × I2.

E = {((q1, q
′

1), a, c, w1 ⊗ w2, (q2, q
′

2)) :

(q1, a, b, w1, q2), (q
′

1, b, c, w2, q
′

2) ∈ Q}.

F = Q ∩ F1 × F2.
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Illustration

Program:

17

fsmcompose A.fsm B.fsm >C.fsm
fstcompose A.fsm B.fsm >C.fsm

0 1a:b/0.1
a:b/0.2

2b:b/0.3

3/0.7b:b/0.4

a:b/0.5

a:a/0.6

0 1b:b/0.1

b:a/0.2
2a:b/0.3

3/0.6a:b/0.4

b:a/0.5

(0, 0) (1, 1)a:b/.01

(0, 1)a:a/.04

(2, 1)b:a/.06 (3, 1)

b:a/.08

a:a/.02

a:a/0.1

(3, 2)
a:b/.18

(3, 3)/.42

a:b/.24
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Redundant ε-Paths Problem

18
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a:a
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2
b:!2

!:!1!:!1

3
c:!2

!:!1!:!1

4
d:d

!:!1!:!1

0

!2:!

1
a:d

!2:!

2
!1:       e

!2:!

3
d:a

!2:!

T̃1 T̃2

0 1a:a 2b:! 3c:! 4d:d
0 1

a:d
2

!:e
3

d:aT1 T2

0

x:x

!2:!1
1

!1:!1

2

!2:!2

x:x

!1:!1

x:x

!2:!2
F

T = T̃1 ◦ F ◦ T̃2.

(MM, Pereira, Riley 1996)
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Correctness of Filter

Proposition: filter    allows a unique path between 
two states of the following grid.

Proof: Observe that a necessary and sufficient 
condition is that the following sequences be 
forbidden:     ,     ,     , and    .

19

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

ε1:ε1

ε1:ε1

ε1:ε1

ε1:ε1

ε1:ε1

ε1:ε1

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε1

ε2:ε1

ε2:ε1

ε2:ε1

0

!2:!1
x:x

1!1:!1

2

!2:!2

x:x

!1:!1

x:x

!2:!2

Fig. 3. (a) Redundant ε-paths. A straightforward generalization of the ε-free case could generate
all the paths from (0, 0) to (2, 2) for example, even when composing just two simple transducers.
(b) Filter transducer M allowing a unique ε-path.

Let us rename existing output ε-labels of T1 as ε2, and existing input ε-labels of T2

ε1, and let us augment T1 with a self-loop labeled with ε1 at all states and similarly,
augment T2 with a self-loop labeled with ε2 at all states, as illustrated by Figures 5(a)
and (c). These self-loops correspond to staying at the same state in that machine while

consuming an ε-label of the other transition. The three moves just described now cor-
respond to the matches (1) (ε2:ε2), (2) (ε1:ε1), and (3) (ε2:ε1). The grid of Figure 3(a)
shows all the possible ε-paths between composition states. We will denote by T̃1 and

T̃2 the transducers obtained after application of these changes.

For the result of composition to be correct, between any two of these states, all

but one path must be disallowed. There are many possible ways of selecting that path.

One natural way is to select the shortest path with the diagonal transitions (ε-matching
transitions) taken first. Figure 3(a) illustrates in boldface the path just described from

state (0, 0) to state (1, 2). Remarkably, this filtering mechanism itself can be encoded
as a finite-state transducer such as the transducer M of Figure 3(b). We denote by

(p, q) ! (r, s) to indicate that (r, s) can be reached from (p, q) in the grid.

Proposition 1. Let M be the transducer of Figure 3(b). M allows a unique path be-

tween any two states (p, q) and (r, s), with (p, q) ! (r, s).

Proof. Let a denote (ε1:ε1), b denote (ε2:ε2), c denote (ε2:ε1), and let x stand for any
(x:x), with x ∈ Σ. The following sequences must be disallowed by a shortest-path filter
with matching transitions first: ab, ba, ac, bc. This is because, from any state, instead of
the moves ab or ba, the matching or diagonal transition c can be taken. Similarly, instead
of ac or bc, ca and cb can be taken for an earlier match. Conversely, it is clear from the
grid or an immediate recursion that a filter disallowing these sequences accepts a unique

path between two connected states of the grid.

LetL be the set of sequences over σ = {a, b, c, x} that contain one of the disallowed
sequence just mentioned as a substring that is L = σ∗(ab + ba + ac + bc)σ∗. Then L
represents exactly the set of paths allowed by that filter and is thus a regular language.

Let A be an automaton representing L (Figure 4(a)). An automaton representing L can
be constructed fromA by determinization and complementation (Figures 4(a)-(c)). The

a

b
c

F

ab ba ac bc
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Correctness of Filter

Proof (cont.): Let                     , then set of 
sequences forbidden is exactly

An automaton representing the complement can be 
constructed by determ. and complementation.

20

σ = {a, b, c, x}

L = σ
∗(ab + ba + ac + bc)σ∗

.

0

a
b
c
x

1a

2

b 3

b

c

a

c

a
b
c
x

{0}

c
x

{0,1}a

{0,2}

b

x

a

{0,3}

b

c

x

b c

a

a
b
c
x

0

c
x 1a

2

b

x

a

3

b

c

x

b
c

a

a
b
c
x

Fig. 4. (a) Finite automaton A representing the set of disallowed sequences. (b) Automaton B,
result of the determinization of A. Subsets are indicated at each state. (c) Automaton C obtained

from B by complementation, state 3 is not coaccessible.

resulting automaton C is equivalent to the transducer M after removal of the state 3,
which does not admit a path to a final state. !"

Thus, to compose two transducers T1 and T2 with ε-transitions, it suffices to compute
T̃1 ◦ M ◦ T̃2, using the rules of composition in the ε-free case.

The problemof avoiding the creation of redundant ε-paths is more complex in 3-way
composition since the ε-transitions of all three transducers must be taken into account.
We describe two solutions for this problem, one based on two filters, another based on

a single filter.

4.1 2-way ε-Filters.

One way to deal with this problem is to use the 2-way filter M , by first dealing with

matching ε-paths in U = (T1 ◦ T2), and then U ◦ T3. However, in 3-way composition,

it is possible to remain at the same state of T1 and the same state of T2, and move on

an ε-transition of T3, which previously was not an option. This corresponds to staying

at the same state of U , while moving on a transition of T3 with input ε. To account for
this move, we introduce a new symbol ε0 matching ε1 in T3. But, we must also ensure

the existence of a self-loop with output label ε0 at all states of U . To do so, we augment
the filter M with self-loops (ε1 :ε0) and the transducer T2 with self-loops (ε0 :ε1) (see
Figure 5(b)). Figure 5(d) shows the resulting filter transducer M1. From Figures 5(a)-

(c), it is clear that T̃1 ◦ M1 ◦ T̃2 will have precisely a self-loop labeled with (ε1:ε1) at
all states.

In the same way, we must allow for moving forward on a transition of T1 with output

ε, that is consuming ε2, while remaining at the same states of T2 and T3. To do so, we

introduce again a new symbol ε0 this time only relevant for matching T2 with T3, add

self-loops (ε2 :ε0) to T2, and augment the filter M by adding a transition labeled with

(ε0:ε2) (resp. (ε0:ε1)) wherever there used to be one labeled with (ε2:ε2) (resp. (ε2:ε1)).
Figure 5(e) shows the resulting filter transducerM2.

Thus, the composition T̃1 ◦ M1 ◦ T̃2 ◦M2 ◦ T̃3 ensures the uniqueness of matching

ε-paths. In practice, the modifications of the transducers T1, T2, and T3 to generate T̃1,

T̃2, and T̃3, as well as the filtersM1 andM2 can be directly simulated or encoded in the

3-way composition algorithm for greater efficiency. The states in T become quintuples

(q1, q2, q3, f1, f2) with f1 and f2 are states of the filtersM1 andM2. The introduction

0

a
b
c
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1a

2

b 3

b

c
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b
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x
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c
x
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Fig. 4. (a) Finite automaton A representing the set of disallowed sequences. (b) Automaton B,
result of the determinization of A. Subsets are indicated at each state. (c) Automaton C obtained

from B by complementation, state 3 is not coaccessible.

resulting automaton C is equivalent to the transducer M after removal of the state 3,
which does not admit a path to a final state. !"

Thus, to compose two transducers T1 and T2 with ε-transitions, it suffices to compute
T̃1 ◦ M ◦ T̃2, using the rules of composition in the ε-free case.

The problemof avoiding the creation of redundant ε-paths is more complex in 3-way
composition since the ε-transitions of all three transducers must be taken into account.
We describe two solutions for this problem, one based on two filters, another based on

a single filter.

4.1 2-way ε-Filters.

One way to deal with this problem is to use the 2-way filter M , by first dealing with

matching ε-paths in U = (T1 ◦ T2), and then U ◦ T3. However, in 3-way composition,

it is possible to remain at the same state of T1 and the same state of T2, and move on

an ε-transition of T3, which previously was not an option. This corresponds to staying

at the same state of U , while moving on a transition of T3 with input ε. To account for
this move, we introduce a new symbol ε0 matching ε1 in T3. But, we must also ensure

the existence of a self-loop with output label ε0 at all states of U . To do so, we augment
the filter M with self-loops (ε1 :ε0) and the transducer T2 with self-loops (ε0 :ε1) (see
Figure 5(b)). Figure 5(d) shows the resulting filter transducer M1. From Figures 5(a)-

(c), it is clear that T̃1 ◦ M1 ◦ T̃2 will have precisely a self-loop labeled with (ε1:ε1) at
all states.

In the same way, we must allow for moving forward on a transition of T1 with output

ε, that is consuming ε2, while remaining at the same states of T2 and T3. To do so, we

introduce again a new symbol ε0 this time only relevant for matching T2 with T3, add

self-loops (ε2 :ε0) to T2, and augment the filter M by adding a transition labeled with

(ε0:ε2) (resp. (ε0:ε1)) wherever there used to be one labeled with (ε2:ε2) (resp. (ε2:ε1)).
Figure 5(e) shows the resulting filter transducerM2.

Thus, the composition T̃1 ◦ M1 ◦ T̃2 ◦M2 ◦ T̃3 ensures the uniqueness of matching

ε-paths. In practice, the modifications of the transducers T1, T2, and T3 to generate T̃1,

T̃2, and T̃3, as well as the filtersM1 andM2 can be directly simulated or encoded in the

3-way composition algorithm for greater efficiency. The states in T become quintuples

(q1, q2, q3, f1, f2) with f1 and f2 are states of the filtersM1 andM2. The introduction
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resulting automaton C is equivalent to the transducer M after removal of the state 3,
which does not admit a path to a final state. !"

Thus, to compose two transducers T1 and T2 with ε-transitions, it suffices to compute
T̃1 ◦ M ◦ T̃2, using the rules of composition in the ε-free case.

The problemof avoiding the creation of redundant ε-paths is more complex in 3-way
composition since the ε-transitions of all three transducers must be taken into account.
We describe two solutions for this problem, one based on two filters, another based on

a single filter.

4.1 2-way ε-Filters.

One way to deal with this problem is to use the 2-way filter M , by first dealing with

matching ε-paths in U = (T1 ◦ T2), and then U ◦ T3. However, in 3-way composition,

it is possible to remain at the same state of T1 and the same state of T2, and move on

an ε-transition of T3, which previously was not an option. This corresponds to staying

at the same state of U , while moving on a transition of T3 with input ε. To account for
this move, we introduce a new symbol ε0 matching ε1 in T3. But, we must also ensure

the existence of a self-loop with output label ε0 at all states of U . To do so, we augment
the filter M with self-loops (ε1 :ε0) and the transducer T2 with self-loops (ε0 :ε1) (see
Figure 5(b)). Figure 5(d) shows the resulting filter transducer M1. From Figures 5(a)-

(c), it is clear that T̃1 ◦ M1 ◦ T̃2 will have precisely a self-loop labeled with (ε1:ε1) at
all states.

In the same way, we must allow for moving forward on a transition of T1 with output

ε, that is consuming ε2, while remaining at the same states of T2 and T3. To do so, we

introduce again a new symbol ε0 this time only relevant for matching T2 with T3, add

self-loops (ε2 :ε0) to T2, and augment the filter M by adding a transition labeled with

(ε0:ε2) (resp. (ε0:ε1)) wherever there used to be one labeled with (ε2:ε2) (resp. (ε2:ε1)).
Figure 5(e) shows the resulting filter transducerM2.

Thus, the composition T̃1 ◦ M1 ◦ T̃2 ◦M2 ◦ T̃3 ensures the uniqueness of matching

ε-paths. In practice, the modifications of the transducers T1, T2, and T3 to generate T̃1,

T̃2, and T̃3, as well as the filtersM1 andM2 can be directly simulated or encoded in the

3-way composition algorithm for greater efficiency. The states in T become quintuples

(q1, q2, q3, f1, f2) with f1 and f2 are states of the filtersM1 andM2. The introduction

A det(A) det(A)
non-coaccessible
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Other Filters
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(Pereira and Riley, 1997)

0

x:x
ε1:ε1

1ε2:ε2

x:x

ε2:ε2

Sequential Filter.
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Shortest-Distance Problem

Definition: for any regulated weighted transducer   , 
define the shortest distance from state   to    as

Problem: compute           for all states         .

Algorithms:

• Generalization of Floyd-Warshall.

• Single-source shortest-distance algorithm.

23

T

d(q, F ) =
⊕

π∈P (q,F )

w[π].

q F

d(q, F ) q ∈ Q
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All-Pairs Shortest-Distance Algorithm

Assumption: closed semiring (not necessarily 
idempotent).

Idea: generalization of Floyd-Warshall algorithm.

Properties:

• Time complexity:                                 .

• Space complexity:            with an in-place 
implementation.

24

Ω(|Q|3(T⊕ + T⊗ + T!))

Ω(|Q|2)

(MM, 2002)



Mehryar Mohri - Bertinoro Courant Institute, NYUpage

Closed Semirings

Definition: a semiring is closed if the closure is 
well defined for all elements and if associativity, 
commutativity, and distributivity apply to 
countable sums.

Examples:

• Tropical semiring.

• Probability semiring when including infinity or 
when restricted to well-defined closures.

25

(Lehmann, 1977)
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Pseudocode
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Generic-All-Pairs-Shortest-Distance (G)

1 for i ← 1 to |Q|
2 do for j ← 1 to |Q|

3 do d[i, j] ←
⊕

e∈P (i,j)

w[e]

4 for k ← 1 to |Q|
5 do for i ← 1 to |Q|
6 do for j ← 1 to |Q|
7 do d[i, j] ← d[i, j] ⊕ (d[i, k] ⊗ d[k, k]∗ ⊗ d[k, j])
8 for k ← 1 to |Q|
9 do d[k, k] ← 1
10 return d

Figure 7: Generic all-pairs shortest-distance algorithm.

Since K is closed for G, dk
ij is well-defined and in view of equations 3 and

4, dk
ij can be decomposed as:

∀i, j, k ∈ Q, dk
ij = dk−1

i,j ⊕ (dk−1
ik ⊗ (dk−1

kk )∗ ⊗ dk−1
kj ) (5)

Note that this equation holds even if K is not idempotent: in view of equation
4, the weight of each path of P k(i, j) is counted exactly once. The recursive
equations 5 lead to a dynamic programming algorithm for computing all-
pairs shortest distances. The algorithm generalizes the algorithm of Floyd-
Warshall (Floyd, 1968; Warshall, 1962) to the case of semirings closed for
G.

Figure 7 gives the pseudocode of an in-place implementation of the al-
gorithm where d[i, j] corresponds to the tentative shortest distance from i
to j. The loops of lines 4-7 follow exactly the recursive equation 5. Lines
8 − 9 reset to 1 the shortest distance of each vertex to itself.

Theorem 7 Let G = (Q,E,w) be a weighted directed graph over K. As-
sume that K is closed for G. Then if we run the Generic-All-Pairs-

Shortest-Distance algorithm on the graph G, the algorithm terminates,
and at termination, for any pair of vertices (p, q), p, q ∈ Q, d[p, q] = δ(p, q),
the shortest distance from p to q.

Proof. The proof follows immediately equations 3-5 and the closedness of
K for G.
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Single-Source Shortest-Distance Algorithm

Assumption:   -closed semiring. 

Idea: generalization of relaxation, but must keep 
track of weight added to       since the last time    
was enqueued.

Properties: 

• works with any queue discipline and any  -
closed semiring.

• Classical algorithms are special instances.
27

d[q] q

k

k

(MM, 2002)

∀x ∈ K,

k+1⊕

i=0

x
i
=

k⊕

i=0
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i
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Pseudocode

28

Semiring Frameworks and Algorithms for Shortest-Distance Problems 9

0 1
a

b

Figure 1 Single-source shortest distances for non-idempotent semirings.

The successive values of a tentative shortest distance from the source 0 to the
vertex 1 will be: a, then a⊕ (a⊗ b) = a⊗ (1⊕ b), then a⊗ (1⊕ b)⊕ a⊗ (1⊕ b)⊗ b =
a⊗ (1⊕ b)2, . . . , a⊗ (1⊕ b)n, . . . Thus, assuming that the algorithm converges within
a finite number of iterations N , then the result will be: a⊗ (1⊕ b)N which in general
could be different from the expected and correct result a⊗ b∗, even if bN = b∗ for the
semiring considered.

3.1. Proofs and algorithm

We present a generic algorithm for solving single-source shortest-distance problems.
Our algorithm is based on a generalization of the classical relaxation technique. As
seen earlier, a straightforward extension of the relaxation technique would lead to
an algorithm that would not work with non-idempotent semirings. To deal properly
with multiplicities in the case of non-idempotent semirings, we keep track of the
changes to the tentative shortest distance from s to q after the last extraction of q
from the queue. The following is the pseudocode of the algorithm.

Generic-Single-Source-Shortest-Distance (G, s)
1 for i ← 1 to |Q|
2 do d[i] ← r[i] ← 0
3 d[s] ← r[s] ← 1
4 S ← {s}
5 while S $= ∅
6 do q ← head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q] ← 0
10 for each e ∈ E[q]
11 do if d[n[e]] $= d[n[e]] ⊕ (r′ ⊗ w[e])
12 then d[n[e]] ← d[n[e]] ⊕ (r′ ⊗ w[e])
13 r[n[e]] ← r[n[e]] ⊕ (r′ ⊗ w[e])
14 if n[e] $∈ S

15 then Enqueue(S, n[e])
16 d[s] ← 1
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Notes

Complexity: 

• depends on queue discipline used.

• coincides with that of Dijkstra and Bellman-Ford 
for shortest-first and FIFO orders.

• linear for acyclic graphs using topological order.

Approximation:   -  -closed semiring, e.g., for 
graphs in probability semiring.

29
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O(|Q| + (T⊕ + T⊗ + C(A))|E|max
q∈Q

N(q) + (C(I) + C(E))
∑

q∈Q

N(q))

As mentioned before, the Generic-Single-Source-Shortest-Distance algo-
rithm works with any queue discipline. Some queue disciplines are better than oth-
ers. The appropriate choice depends on the semiring K and the specific restrictions
imposed on G. With a good choice, the maximum number of times a vertex is in-
serted in S (maxq∈Q N(q)) can be limited.9 The algorithm is then very efficient. In
the next sections, we will present some classical algorithms using the following queue
disciplines: topological order, shortest-first order, first-in first-out order. In the worst
case, since the number of simple paths from s to q may be exponential in the size of
the graph (|Q| + |E|), the complexity of the algorithm is exponential.

The results presented in this section can be extended to cover the case of non-
commutative semirings [28]. Our framework can also be generalized by introducing
right and left semirings [28].10 A right semiring is an algebraic structure similar to
a semiring except that it may lack left distributivity. A left semiring is defined in a
similar way. An example of left semiring is the string semiring (Σ∗ ∪ {∞} ,∧, ·,∞, ε)
defined on the set of strings over an alphabet Σ [29]. Our generic shortest-distance
algorithm can be used with the left semiring in the first step of the minimization of
subsequential transducers [29]. Apart from generalizations of this type, it seems that
our general framework covers essentially all semirings for which the algorithm works.
Indeed, the condition in the definition of k-closed semirings on the convergence after
k iterations is necessary for the computation of the weight of the shortest distance in
presence of a loop.

Some semirings such as R = (R, +, ·, 0, 1) do not verify the conditions of the frame-
work for our general single-source shortest-distance algorithm, but are covered by the
general framework of the all-pairs shortest-distance algorithm we described in a pre-
vious section. The generalized algorithms of Floyd-Warshall or Gauss-Jordan can be
used to solve the single-source shortest problem with such semirings but their cubic
time complexity makes them impractical for many large graphs of several hundred
million edges encountered in many applications. One can decompose the graph into its
strongly connected components, use Floyd-Warshall or Gauss-Jordan’s algorithms for
computing the all-pairs shortest-distances within each strongly connected component
and then find all-pairs shortest-distances by considering the acyclic component graph
[30]. But the solution remains impractical in presence of large strongly connected
components.

One can then have recourse to various approximations of Floyd-Warshall and
Gauss-Jordan algorithms, but such algorithms do not fully exploit the sparsity of
the graphs. We have devised an approximate single-source shortest-distance algo-
rithm that can be viewed as an alternative and that is orders of magnitude faster in
practice to compute single-source shortest distances in such cases. The algorithm is

9This number is a constant or is linear in |Q| in many classical algorithms.
10These generalizations tend to lengthen the proofs and the overall presentation, thus we chose

not to present them here. The same generic algorithm can be used in those generalized cases.
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rithm is:
O(|Q| + (T⊕ + T⊗)|E|)

In next sections, we will examine the use of the generic algorithms just presented with
various semirings. This will show how the same algorithm can be used in different
contexts by just modifying the underlying algebra.

5. Classical shortest-distance algorithms

Classical shortest-distance algorithms such as Dijkstra’s algorithm and the Bellman-
Ford algorithm are special cases of the generic single-source shortest-distance algo-
rithm. They correspond to the case where (K,⊕,⊗, 0, 1) is the tropical semiring.

5.1. Tropical semirings

The operations used in many optimization problems are min and +. Traditional
shortest-paths problems used in various applications are specific instances of such
general optimization problems. The semirings associated to these operations are
called tropical semirings due to the extensive work of Imre Simon in Brazil relating to
these semirings [38]. See [1] and [32] for more specific presentations and discussions
of tropical semirings.

It is not hard to verify that the system T = (R+ ∪ {∞}, min, +,∞, 0) defines a
semiring over the set of non-negative numbers R+ completed with the infinity element
∞, when the min and + operations are extended in the following way:

∀a ∈ R+ ∪ {∞}, min{∞, a} = min{a,∞} = a

and:
∀a ∈ R+ ∪ {∞},∞+ a = a + ∞ = ∞

We will use the term tropical semiring to refer to the semiring T . Note that the
natural order over T is just the usual order of real numbers (see lemma 1):

∀a, b ∈ R+ ∪ {∞}, (min{a, b} = a) ⇔ (a ≤ b)

In the same way, we can define other tropical semirings such as:

1. (N ∪ {∞}, min, +,∞, 0): non-negative natural tropical semiring,

2. (Z ∪ {∞}, min, +,∞, 0): natural tropical semiring,

3. (Q ∪ {∞}, min, +,∞, 0): rational tropical semiring,

4. (R ∪ {∞}, min, +,∞, 0): real tropical semiring,

5. (N ∪ {ω,∞}, min, +,∞, 0): ordinal tropical semiring, with the following order
[26]:

0 ≤ 1 ≤ 2 ≤ · · · ≤ ω ≤ ∞,

and the following extension of addition:

∀a ∈ N ∪ {ω,∞}, a + ω = ω + a = max{a, ω}

ε k
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Epsilon-Removal

Definition: given weighted transducer   , create 
equivalent weighted transducer with no epsilon-
transition.

Algorithm components:

• Computation of the ε-closure at each state:

• Removal of εs.

• On-demand construction.

31

T

C[p] =
{

(q, dε[p, q]) : dε[p, q] != 0)
}

with dε[p, q] =
⊕

π∈P (p,ε,q)

w[π].

(MM, 2002)
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Illustration
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Figure 1: ε-removal in the tropical semiring. (a) Weighted automaton A with
ε-transitions. (b) Weighted automaton B equivalent to A result of the ε-removal
algorithm. (c) Weighted automaton C equivalent to A obtained by application of
ε-removal to the reverse of A.

• the number of states in the original automaton whose incoming transitions
(or outgoing transitions in the reverse case) are all labeled with the empty
string. As mentioned before, those states can be removed from the result.
For example, state 3 of the automaton of figure 1 (a) can only be reached
by ε-transitions and admits only outgoing transitions labeled with ε. Thus,
that state does not appear in the result in both methods (figures 1 (b)-(c)).
The incoming transitions of state 2 are all labeled with ε and thus it does not
appear in the result of the ε-removal with the first method, but it does in the
reverse method because the outgoing transitions of state 2 are not all labeled
with ε;

• the total number of non ε-transitions of the states that can be reached from
each state q in Aε (the reverse of Aε in the reverse case). This corresponds to
the number of outgoing transitions of q in the result of ε-removal.

In practice, one can use some heuristics to reduce the number of states and transi-
tions of the resulting machine although this will not affect the worst case complexity
of the algorithm. One can for instance remove some ε-transitions in the reverse way
when that creates less transitions and others in the way corresponding to the first
method when that helps reducing the resulting size.

Figures 2 (a)-(b) illustrate the algorithm in the case of another semiring, the
semiring of real numbers. Our general algorithm applies in this case since Aε is
acyclic.
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Main Algorithm

Shortest-distance algorithms:

• closed semirings: generalization of Floyd-
Warshall algorithm.

• k-closed semirings: single-source shortest-
distance algorithm.

Complexity: shortest-distance and removal.

• Acyclic    :                                        .

• General case, tropical semiring: 

33

Tε O(|Q|2 + |Q||E|(T⊕ + T⊗))

O(|Q||E| + |Q|2 log |Q|).
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Determinization

Definition: given weighted transducer   , create 
equivalent non-deterministic weighted transducer.

Algorithm (weakly left divisible semirings):

• generalization of subset constructions to 
weighted labeled subsets

• complexity: exponential, but lazy implementation.

• not all weighted transducers are determinizable 
but all acyclic weighted transducers are. Test? For 
some cases, using the twins property.

35

T

{(q1, x1, w1), . . . , (qm, xm, wm)} .

(MM, 1997)
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Figure 1: Determinization of a weighted automaton over the tropical semiring.
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Figure 2: Determinization of a functional transducer.

3.2. Determinization

There exists a natural extension of the classical subset construction to the case of
weighted automata over a weakly left divisible left semiring called determinization
[14]. The algorithm is generic: it works with any weakly left divisible left semiring.
It covers in particular the case of finite-state transducers since the string semiring is
weakly left divisible.

The states of the result of the determinization of a weighted automaton A =
(Q, I, F,Σ, δ, σ, λ, ρ) correspond to weighted subsets {(q0, w0), . . . , (qn, wn)} where
each qi ∈ Q is a state of the input machine, and wi a remainder weight. The al-
gorithm starts with the subset reduced to {(i, λ(i)) : i ∈ I} and proceeds by creating
a transition labeled with a ∈ Σ and weight w leaving {(q0, w0), . . . , (qn, wn)} if there
exists at least one state qi admitting an outgoing transition labeled with a, w being
defined by:5

w =
⊕

e∈E[qi], l[e]=a

wi ⊗ w[e]

Fig. (1) illustrates the application of the algorithm to an input weighted automaton
over the tropical semiring. A state r of the output automaton that can be reached
from the start state by a path π corresponds to the set of pairs (q, x) ∈ Q × K such
that q can be reached from an initial state of the original machine by a path σ with
label i[σ] = i[π] and weight w[σ] such that λ(p[σ])⊗w[σ] = λ(p[π])⊗w[π]⊗x. Thus,

5See [14] for a full description of the algorithm.
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defined by:5

w =
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Fig. (1) illustrates the application of the algorithm to an input weighted automaton
over the tropical semiring. A state r of the output automaton that can be reached
from the start state by a path π corresponds to the set of pairs (q, x) ∈ Q × K such
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5See [14] for a full description of the algorithm.
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Non-Determinizable Transducer
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Figure 3: (a) Non-determinizable weighted automaton over the tropical semiring; states 1
and 2 are non-twin siblings. (b) The first states created by determinization applied to the
automaton of Figure (a). The algorithm does not halt and produces an infinite number of
states in this case.
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Figure 4: (a) Non-determinizable functional transducer, or weighted automaton over the
string semiring; states 1 and 2 are non-twin siblings. (b) Determinization does not halt and
creates an infinite number of states in this case.

x can be viewed as the remainder weight at state q.
Similarly, Fig. (2) illustrates the determinization of a functional transducer, or,

equivalently, a weighted automaton over the string semiring. Here, the weighted
subsets are made of pairs (q, x) where q is a state of the original transducer and x a
remainder string.

Unlike the unweighted case, determinization does not halt for some input weighted
automata. This is clear since some weighted automata are not even subsequentiable.
Fig. (3) and Fig. (4) show a weighted automaton over the tropical semiring and a
functional finite-state transducer for which determinization does not halt and that are
not subsequentiable. In what follows, we say that a weighted automaton or a finite-
state transducer M is determinizable if the determinization algorithm of [14] halts
for the input M . With a determinizable input, the algorithm outputs an equivalent
subsequential weighted automaton. Note that any acyclic weighted automaton is
determinizable because the number of weighted subsets created by the algorithm is at
most equal to the number of distinct strings labeling the paths of the original machine
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Twins Property

Definition: a weighted transducer    over the 
tropical semiring has the twins property if for any 
two states   and    as in the figure, the following 
holds:

•         ;

•                            .
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T

(Choffrut, 1978; MM 1997)

q q
′

Twins Property – Weighted transducers

T has the twins property if:
for any paths π1 ∈ P (I, x, q), π2 ∈ P (I, x, q′), c1 ∈ P (q, y, q),
c2 ∈ P (q′, y, q′),

o[π1]−1o[π2] = o[π1c1]−1o[π2c2] (1)

w[c1] = w[c2] (2)

I

qx:u/w

q’x:u’/w’

y:v/c

y:v’/c’

Theorem 1 If T has the twins property then T is determinizable.

(Choffrut, 1978; Mohri, 1997)

C. Allauzen, M. Mohri An efficient pre-determinization algorithm 6

c = c
′

u
−1

u
′ = (uv)−1

u
′
v
′

u’

u w

u’ v’

u v w
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Determinizability

Theorem: a trim unambiguous weighted 
automaton over the tropical semiring is 
determinizable iff it has the twins property.

Theorem: let    be a weighted transducer over the 
tropical semiring. Then, if    has the twins 
property, then it is determinizable.

Algorithm for testing the twins property:

• unambiguous automata:                      .

• unweighted transducers:                             .
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T

T

(Choffrut, 1978; MM 1997; Allauzen and MM, 2002)

O(|Q|2 + |E|2)

O(|Q|2(|Q|2 + |E|2))
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Pushing

Definition: given weighted transducer   , create 
equivalent weighted transducer such the sum 
(longest common prefix) of the weights (output 
strings) of all outgoing paths be   (ε) at all states, 
modulo initial states.

Algorithm components:

• Single-source shortest-distance computation

• Reweighting:                                           for 
each transition   .

42

(MM,1997; 2004)

T

1

d[q] =
⊕

π∈P (q,F )

w[π].

w[e] ← (d[p[e]])−1(w[e] ⊗ d[n[e]])

e
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Main Algorithm

Automata: single-source shortest-distance.

• acyclic case:

• general case tropical semiring:

• general case k-closed semirings

• general case closed semirings                            .

Transducers:
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O(|Q| + |E|(T⊕ + T⊗)).

O(|Q| log |Q| + |E|).Semiring Frameworks and Algorithms for Shortest-Distance Problems 15

O(|Q| + (T⊕ + T⊗ + C(A))|E|max
q∈Q

N(q) + (C(I) + C(E))
∑

q∈Q

N(q))

As mentioned before, the Generic-Single-Source-Shortest-Distance algo-
rithm works with any queue discipline. Some queue disciplines are better than oth-
ers. The appropriate choice depends on the semiring K and the specific restrictions
imposed on G. With a good choice, the maximum number of times a vertex is in-
serted in S (maxq∈Q N(q)) can be limited.9 The algorithm is then very efficient. In
the next sections, we will present some classical algorithms using the following queue
disciplines: topological order, shortest-first order, first-in first-out order. In the worst
case, since the number of simple paths from s to q may be exponential in the size of
the graph (|Q| + |E|), the complexity of the algorithm is exponential.

The results presented in this section can be extended to cover the case of non-
commutative semirings [28]. Our framework can also be generalized by introducing
right and left semirings [28].10 A right semiring is an algebraic structure similar to
a semiring except that it may lack left distributivity. A left semiring is defined in a
similar way. An example of left semiring is the string semiring (Σ∗ ∪ {∞} ,∧, ·,∞, ε)
defined on the set of strings over an alphabet Σ [29]. Our generic shortest-distance
algorithm can be used with the left semiring in the first step of the minimization of
subsequential transducers [29]. Apart from generalizations of this type, it seems that
our general framework covers essentially all semirings for which the algorithm works.
Indeed, the condition in the definition of k-closed semirings on the convergence after
k iterations is necessary for the computation of the weight of the shortest distance in
presence of a loop.

Some semirings such as R = (R, +, ·, 0, 1) do not verify the conditions of the frame-
work for our general single-source shortest-distance algorithm, but are covered by the
general framework of the all-pairs shortest-distance algorithm we described in a pre-
vious section. The generalized algorithms of Floyd-Warshall or Gauss-Jordan can be
used to solve the single-source shortest problem with such semirings but their cubic
time complexity makes them impractical for many large graphs of several hundred
million edges encountered in many applications. One can decompose the graph into its
strongly connected components, use Floyd-Warshall or Gauss-Jordan’s algorithms for
computing the all-pairs shortest-distances within each strongly connected component
and then find all-pairs shortest-distances by considering the acyclic component graph
[30]. But the solution remains impractical in presence of large strongly connected
components.

One can then have recourse to various approximations of Floyd-Warshall and
Gauss-Jordan algorithms, but such algorithms do not fully exploit the sparsity of
the graphs. We have devised an approximate single-source shortest-distance algo-
rithm that can be viewed as an alternative and that is orders of magnitude faster in
practice to compute single-source shortest distances in such cases. The algorithm is

9This number is a constant or is linear in |Q| in many classical algorithms.
10These generalizations tend to lengthen the proofs and the overall presentation, thus we chose

not to present them here. The same generic algorithm can be used in those generalized cases.

Ω(|Q|3(T⊕ + T⊗ + T!))

O((|Pmax| + 1) |E|).
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Algorithm

Automata: pushing and automata minimization, 
general (Hopcroft,1971) and acyclic case (Revuz 1992).

• acyclic case:

• general case tropical semiring: 

Transducers:

• acyclic case: 

• general case tropical semiring:

47

O(|Q| + |E|(T⊕ + T⊗)).

O(|E| log |Q|).

O(S + |Q| + |E| (|Pmax| + 1)).

O(S + |Q| + |E| (log |Q| + |Pmax|)).

(MM,1997, 2000, 2005)
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Minimization

Definition: given deterministic weighted 
transducer   , create equivalent deterministic 
weighted transducer with the minimal number of 
states (and transitions).

Algorithm components:

• apply pushing to create canonical representation.

• apply unweighted automata minimization after 
encoding (input labels, output label, weight) as a 
single label.
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T

(MM,1997, 2000, 2005)
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Fig. 5. Sequential transducer T .

The application of quasi-determinization leads to the transducer T2 (figure
(6)) which computes the same function. Only the output labels differ from
those of T .
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Fig. 6. Transducer T2 obtained by quasi-determinization from T .

This ST is not minimal considered as an automaton. The application of the
automata minimization leads to the reduced transducer represented in figure
(7) which is the minimal ST as previously defined.

Transducers are often used in both directions, from inputs to outputs and vice
versa. The first stage of quasi-determinization in the minimization algorithm
has also an interesting effect on the reverse application of the minimal trans-
ducer. Indeed, since it reduces the ambiguities, the cost of matching a string
with the output strings of the transducer is reduced.
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Fig. 7. Minimal sequential transducer T3.

Unlike the case of automata, in general sequential transducers do not admit a
unique minimal equivalent one. However, the minimal transducers representing
the same sequential function all have the same topology and the same input
labels.

Theorem 3 Given a ST T , the minimal sequential transducers computing
the same function as T only differ by the way the output labels are distributed
along their paths. They have the same topology.

Proof. The minimal sequential transducers computing the same function as
T can be minimized using the algorithm described above. According to theo-
rem 2, the result of all these minimizations is the unique minimal transducer
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