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Features and Representation

Feature and Parameter Induction for Statistical
Modeling

Example: Learning model for classifying cars (Cohen&Singer, 99)

Simple boolean features (look like rules)
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Features and Representation

Feature Induction

Learning features for any predictive learning task

identifying key attributes⇒ characterise the domain
good generalization performance
human-interpretable.

to induce a compact set of relevant features
understand how they interact with the strengths and
limitations of the predictive learner
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Feature Classes

Kinds of Propositional Features/Rules

Simple Conjunctive
features [ICML2011, AAAI2012, CIKM2012]

Eg. Features Like
sleeping← bedroomDoor∧ toiletDoor∧bathroomDoor (Activity
Recognition)

Simple Disjunctive features (under review)
Eg. Rules Like PositiveSentiment← exquisite∨ elegant
(Sentiment Analysis)

Features in the more general language of First order
logic [MLJ2009, ILP2012a, EMNLP2012, ILP2012b]

eastbound(A)←
hasCar(A,B), hasCar(A,C), short(B), closed(C)

Figure: Reproduced from Michalski′s famous trains example
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Problem Definition

Desired Features

Highly interpretable hypothesis
Small set of features/rules i.e., low q
Simple features e.g., short conjunctive propositions

Better generalization than conventional rule learners
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Problem Definition

Formal Problem Definition

Input:
Training Set: D={(x1,y1),...,(xm,ym)}, xi∈Rn and yi∈C r

C is set of class labels. For binary: C ∈ {−1,1}
If r > 1, we are dealing with a sequence prediction problem
Initially yi ∈ {−1,1}. That is, C ∈ {−1,1} and r = 1.

Basic propositions regarding input features (say, p in
number)

Nominal e.g., xi = a and xi 6= a
Numeric e.g., xj ≥ b and xj ≤ b

Goal:
Construct interpretable features/rules from basic
propositions

Few in number
Short conjunctions

Compute corresponding weights (w,b)
Ganesh Feature Induction in Machine Learning 9
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Problem Definition

Challenge:

Extremely large search space over features! Atleast O(2n)
(conjunctive/disjunctive features)
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Problem Definition

Existing Methods: Greedy and/or suboptimal

SLIPPER(Cohen&Singer, 99): AdaBoost + RIPPER — greedy
RuleFit(Friedman&Popescu, 08): ISLE + decision tree — greedy
ELCS(Gao et.al., 07): Genetic Alg. + post-pruning — sub-optimal
ENDER(Dembczynski et.al., 10): Minimization of empirical risk — greedy
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Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

Proposed Methodology — Overview

Optimal search for rules over all conjunctions
Regularized loss minimization
Convex formulation
Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

Complexity: polynomial in active set size (� 2p)

Key Structure Exploited:
Sub-lattices with long features are discouraged.

Ganesh Feature Induction in Machine Learning 12



Efficiently Discovering Conjuctive
Features

A Primitive Formulation

Decision function1: sign(∑v∈V wvRv(x)−b)

l1 regularizer to force many wv to zero

l1 regularized formulation:

min
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Block l1 regularizer discourages long rules:
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)2

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Computationally
Feasible ?

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

{ }

x
1
 = a x

2
 ≠ b x

3
 ≥ c x

4
 ≤ d

x
1
 = a
&

x
2
 ≠ b

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c x

1
 = a & x

2
 ≠ b & x

4
 ≤ d x

1
 = a & x

3
 ≥ c & x

4
 ≤ d x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a & x

2
 ≠ b & x

3
 ≥ c & x

4
 ≤ d

x
1
 = a
&

x
3
 ≥ c

x
1
 = a
&

x
4
 ≤ d

x
2
 ≠ b
&

x
3
 ≥ c

x
2
 ≠ b
&

x
4
 ≤ d

x
3
 ≥ c
&

x
4
 ≤ d

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7 w

8

w
9 w

10

w
14

w
13

w
12w

11

w
15

||w
D(0)

||

||w
D(1)

|| ||w
D(2)

|| ||w
D(3)

|| ||w
D(4)

||

||w
D(5)

|| ||w
D(6)

|| ||w
D(7)

|| ||w
D(8)

|| ||w
D(9)

|| ||w
D(10)

||

||w
D(14)

||||w
D(13)

||||w
D(12)

||||w
D(11)

||

||w
D(15)

||

Computationally
Feasible ?

Yes!
Studied as HKL

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

An Improved Formulation

Key Idea:

Block l1 regularizer discourages long rules:
(
∑v∈V ‖wD(v)‖2

)2

Ganesh Feature Induction in Machine Learning 15



Efficiently Discovering Conjuctive
Features

Hierarchical Kernel Learning (HKL)(Bach, 08)

Kernels arranged on DAG (lattice) are given
Optimal combination of kernels (Multiple Kernel Learning)
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Efficiently Discovering Conjuctive
Features

HKL — Key Result

Active Set Algorithm:
Complexity: Polynomial in number of selected kernels
Condition: kernels are summable in linear time over a
sub-lattice

Our case:
Kernels indeed easily summable

Rv is nothing but product of few base proposition
evaluations
Sum of exponential no. terms = Product of linear no. terms
E.g., 1+R1 +R2 +R1R2 = (1+R1)(1+R2)
Our problem can be solved in reasonable time
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Efficiently Discovering Conjuctive
Features

Performance Comparison

Dataset RuleFit SLI ENDER HKL

TIC-TAC-TOE 0.652±0.068 0.747±0.026 0.633±0.011 0.889±0.029
(40, 2.51) (59, 2.35) (111, 2.46) (129, 1.85)

BALANCE 0.835±0.034 0.856±0.027 0.827±0.013 0.893±0.027
(17, 2.18) (25, 1.88) (64, 1.99) (65, 1.65)

HABERMAN 0.512±0.072 0.565±0.066 0.424±0.000 0.594±0.056
(6, 1.68) (8, 1.14) (18, 1.87) (32, 1.27)

CAR 0.913±0.033 0.895±0.024 0.755±0.028 0.943±0.024
(34, 3.12) (141, 2.27) (80, 1.85) (87, 1.78)

BLOOD TRANS. 0.549±0.092 0.559±0.100 0.489±0.054 0.594±0.009
(18, 1.99) (6, 1.07) (58, 1.5) (242, 1.64)

CMC 0.632±0.013 0.601±0.041 0.644±0.026 0.656±0.014
(39, 2.41) (13, 2.13) (74, 2.65) (127, 1.96)
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Efficiently Discovering Conjuctive
Features

HKL — Introspection
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Node selected only if all its ancesters are!
l1 promotes sparsity.
l2 promotes non-sparsity. Employ sparsity inducing
norm!
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Efficiently Discovering Conjuctive
Features

Proposed Formulation

Generalized HKL

min
w,b

1
2

(
∑

v∈V
dv‖wD(v)‖ρ

)2

+C
m

∑
i=1

L

(
yi, ∑

v∈V
wvRv(xi)−b

)
where 1 < ρ ≤ 2.
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Active Set Method
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Active Set Method

Initialize active set with root node (W = {0}).p
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Active Set Method

Solve small problem
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Problem solver
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Active Set Method

Identify potential active set entries (i.e., sources(W c))
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Active Set Method

Among them, optimality condition violators
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Easy to check suff. cond.
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Active Set Method
Append them to active set (W = {0,1,3,4}). (repeat until suff. cond. satisfied)
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Identify potential active set entries (i.e., sources(W c))
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Active Set Method
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Active Set Method
Final active set: W = {0,1,3,4,6,7,10} (Complexity: Polynomial in active set size)
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Active Set Method

Solution with HKL
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Efficiently Discovering Conjuctive
Features

Active Set Method

Key difference from HKL: Node selected without its
ancestor!
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Efficiently Discovering Conjuctive
Features

Key Technical Result

Theorem

A highly specialized partial dual of generalized HKL is:

min
η∈|V |

g(η)

s.t. η ≥ 0, ∑v∈V ηv = 1

where g(η) is the optimal objective value of the following
convex problem:

maxα∈m ∑
m
i=1 αi− 1

2(∑v∈V ζv(η)(α>Kvα))
1

s.t. 0≤αi≤C, ∑
m
i=1 αiyi=0.

where ζv(η) =
(

∑u∈A(v) dρ
u η

1−ρ
u

) 1
1−ρ , = ρ

2(ρ−1) and Kv is matrix

with entries: yiyjkv(xi,xj).
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Efficiently Discovering Conjuctive
Features

Solving small problem

Dual is min. of convex, Lipschitz conts., sub-differential
objective over a simplex.
Mirror-descent — highly scalable alg. for such problems.
Sub-gradient — solve lp-MKL (Vishwanathan et.al., 10).
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Efficiently Discovering Conjuctive
Features

Key Technical Result

Theorem

Suppose the active set W is such that W = A(W ). Let the
reduced solution with this W be (wW ,bW ) and the
corresponding dual variables be (ηW ,αW ). Then the reduced
solution is a solution to the full problem with a duality gap less
than ε if:

maxt∈sources(W c)

(
∑v∈D(t)

(
α>W KvαW

(∑u∈A(v)∩D(t) du)
2

)) 1

≤(Ω(wW ))2+2(ε−εW )

where εW is a duality gap term associated with the computation
of the reduced solution.
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Efficiently Discovering Conjuctive
Features

Complexity: Polynomial in size of W ?

Final Sufficiency Condition:

maxt∈sources(W c)

(
∑v∈D(t)

(
α>W KvαW

(∑u∈A(v)∩D(t) du)
2

)) 1

≤(Ω(wW ))2+2(ε−εW )

ρ → 1 (→ ∞), suff. cond. tight
ρ = 2 (= 1), suff. cond. loose; computationally feasible
How much ground lost by replacing l∞ with l1 ?

Not much: As kernels near bottom are extremely sparse!
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Efficiently Discovering Conjuctive
Features

Performance Comparison

Dataset RuleFit SLI ENDER HKL HKLρ=1.1

TIC-TAC-TOE 0.652±0.068 0.747±0.026 0.633±0.011 0.889±0.029 0.935±0.043
(40, 2.51) (59, 2.35) (111, 2.46) (129, 1.85) (79, 1.77)

BLOOD TRANS. 0.549±0.092 0.559±0.100 0.489±0.054 0.594±0.009 0.593±0.011
(18, 1.99) (6, 1.07) (58, 1.5) (242, 1.64) (7,1.40)

BALANCE 0.835±0.034 0.856±0.027 0.827±0.013 0.893±0.027 0.899±0.023
(17, 2.18) (25, 1.88) (64, 1.99) (65, 1.65) (28,1.23)

HABERMAN 0.512±0.072 0.565±0.066 0.424±0.000 0.594±0.056 0.594±0.056
(6, 1.68) (8, 1.14) (18, 1.87) (32, 1.27) (12,1.20)

CAR 0.913±0.033 0.895±0.024 0.755±0.028 0.943±0.024 0.935±0.036
(34, 3.12) (141, 2.27) (80, 1.85) (87, 1.78) (50,1.68)

CMC 0.632±0.013 0.601±0.041 0.644±0.026 0.656±0.014 0.659±0.008
(39, 2.41) (13, 2.13) (74, 2.65) (127, 1.96) (43,1.70)
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Conjuctive Features in Sequence
Labeling

Conjunctive Feature Induction for Sequence Labeling

Sequence Labeling: Assign a label to each
instance in a sequence of observations.

Ex: Identify the sequence of activities
performed by an old age person in a home
based on sensor observations.

Observation: Labels at successive time
steps are dependent. Ex: Cooking followed by
dinner.

a

b

ahttp://depositphotos.com
bhttp://www.opportunity-project.eu
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Conjuctive Features in Sequence
Labeling

Feature Conjunctions for Sequence Labeling

Objective is to learn emission features as conjunctions and combine
them with all transition relations.
Model desired
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Conjuctive Features in Sequence
Labeling

All possible features for a label can be ordered as a partially ordered set (Lattice).
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BathRoomDoor

Assume only 4 
sensors in domain
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Λ
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BathRoomDoor Λ WaterHeater Λ Toaster Λ Refrigerator
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Λ
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Λ

Refrigerator

BathRoomDoor Λ WaterHeater Λ Toaster Λ Refrigerator

For N sensors, the number 
of nodes in the lattice is 2N

We assume a separate 
lattice for each activity
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domain
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Conjuctive Features in Sequence
Labeling

All possible features for a label can be ordered as a partially ordered set (Lattice).
T

Assuming 3 activities 
and 4 sensors in the 

domain

WakeUP

T

Bath BreakFast

Selecting useful features from this 
prohibitive space is expensive.

Idea: Build on SVM for structured 
output and employ a sparsity 

inducing regularizer
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Conjuctive Features in Sequence
Labeling

Results - I

Dataset - Kasteren et al. [vKNEK08]
Activities - 8 (sleeping, usingToilet, preparingDinner,
preparingBreakfast, leavingOut,etc.)
No. of sensors - 14
No. of instances - 40K

Micro avg. Macro avg.

Std. HMM 25.40 (±18.55) 21.75 (±12.12)

B&B HMM 29.54 (±20.70) 16.39 (±02.74)

Greedy FIHMM 58.08 (±10.14) 26.84 (±04.41)

StructSVM 58.02 (±11.87) 35.00 (±05.24)

CRF 48.49 (±05.02) 20.65 (±04.82)

FICRF 59.52 (±11.76) 33.60 (±07.38)

RELHKL 46.28 (±11.44) 23.11 (±07.46)

StructRELHKL 63.96 (±05.74) 32.01 (±03.04)

Table: Micro (Weighted Per-Class) average accuracy and
macro(Simple Per-Class) average accuracy of classification on UA
dataset.
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Conjuctive Features in Sequence
Labeling

Results - II

Dataset - MIT PlaceLab [TIL04] on Subject1 and Subject2
No. of sensors - 76 for Subject1 and 70 for Subject2
No. of examples - 20K and 24K resp.

Micro avg. Macro avg.

S
ub

je
ct

1 StructSVM 75.03 (±04.51) 26.99 (±07.73)

CRF 65.54 (±06.80) 31.19 (±07.39)

FICRF 68.52 (±07.19) 29.77 (±03.59)

StructRELHKL 82.88 (±0.43) 28.92 (±01.53)

S
ub

je
ct

2 StructSVM 63.49 (±02.75) 25.33 (±05.8)

CRF 50.23 (±06.80) 27.42 (±07.65)

FICRF 51.86 (±07.35) 26.11 (±05.89)

StructRELHKL 67.16 (±08.64) 24.32 (±02.12)

Table: Micro average accuracy and macro average accuracy of
classification on PlaceLab dataset.
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Conjuctive Features in Sequence
Labeling

Sample Rules/Features Induced

usingToilet← bathroomDoor∧ toiletFlush

sleeping← bedroomDoor∧ toiletDoor∧bathroomDoor,
preparingDinner← groceries Cupboard
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Efficiently Inducing Disjunctive Features

Inducing Feature Disjunctions
Feature Subset Selection

wrappers provided in weka [WFH11]
legacy systems: Relief, Focus
L1-SVM

Feature Extraction
Latent Dirichlet Allocation [BNJ03] and variants
Discriminant Analysis [YJ] and variants
Principal Component Analysis [Jol86] and variants
Max-Margin Dimensionality Reduction Methods [LJZ03]
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Efficiently Inducing Disjunctive Features

Main Concern Addressed

No. of reduced dimensions taken as input?
Dimension Reduction is not integrated with model building
Hence no guarantee of optimality
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Efficiently Inducing Disjunctive Features

Dimension Reduction Techniques
Method Parameterized Supervised Integrated
Latent Dirichlet Allocation(LDA) 3

7
7

Supervised LDA 3
3

3

Labeled LDA 3 MultiLabel Supervision 3

Discriminative LDA 3
3

3

Hierarchical Supervised LDA 3 Hierarchical Supervision 3

Kernel Dimension Reducion 3
3

7

Hierarchical Dirichlet Processes(HDP) 7
7

7

Hierarchical LDA 7
7

7

Supervised HDP 7
3

7

PCA,Kernel PCA,LSI,pLSI 3
3

7

Random Projection 3
3

7

Self Organizing Map 3
3

7

Multidimensional Scaling 3
3

7

Discriminant Analysis 3
3

7
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Efficiently Inducing Disjunctive Features

Dimension Reduction Techniques - Max. Margin

Method Parameterized Supervised Integrated
Max. Margin Dimension
−Reduction(MMDR) 3 3 3

Linear MMDR 3 3 3

medLDA 3 3 3

mmPLSA 3 3 3

We propose an approach of Max-Margin Dimension
Reduction

non-parametric
supervised
Integrated with Classifier Training
leads to optimum model building
can incorporate further Background Knowledge
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Efficiently Inducing Disjunctive Features

Dimension Reduction by Disjunctions

Discovering Small Set of Good & Maximal Disjunctive
Projections

maintains synonymity: {elegant,exquisite}3

relevant: {method,algorithm} in Sentiment Analysis 7

maximal: {elegant,exquisite,crude} 7

Structure Induced
if {elegant,exquisite,stately} is a good Disjunctive Projection
so is its subsets
if {elegant,crude} is not a good Disjunctive Projection, so
isnt its supersets
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Efficiently Inducing Disjunctive Features

Lattice Structure of Disjunctive Projections
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Efficiently Inducing Disjunctive Features

Lattice Structure of Disjunctive Projections
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Efficiently Inducing Disjunctive Features

Hierarchical Kernel Learning Setting

For such structure : group Norm on Descendant Sets in
HKL framework

Sparse number of disjunctions : ρ-norm
Efficient solution : Active Set Algorithm
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Efficiently Inducing Disjunctive Features

Lattice Structure of Disjunctive Projections
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Efficiently Inducing Disjunctive Features

Lattice Structure of Disjunctive Projections
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Efficiently Inducing Disjunctive Features

Max-Margin Objective

Max Margin Objective

min
w,b,ξ

1
2

(
∑

v∈V
δv ‖ wD(v) ‖ρ

)2
+C 1>ξ

s.t. ∀i : yi

(
∑

v∈V
〈wv,φv(xi)〉−b

)
≥ 1−ξi, ,ξ ≥ 0

decision function is ∑
v∈V

wvφv(x)−b

where φv(.) = ∨v̂∈v φv̂(.) = 1−∏
v̂∈v

φv̂(.)
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Efficiently Inducing Disjunctive Features

Experiment-1

Dataset - 20 Newsgroups Posting on ‘alt.atheism’ and
‘talk.religion.misc’
No of words/Features - 18826

No of instances - 856

Approach Accuracy No. of Topics/Disjunctions
MMpLSA [Xu10] 84.7% 3
MedLDA [ZAX10] 73.12%2 20
DiscLDA [LJSJ08] 83.0% 60
Integ. Dim. Red. 94.55% 170

Table: Comparison of accuracies of different approaches on
20 Newsgroups [Lan] dataset.
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Efficiently Inducing Disjunctive Features

Experiments-2

Breast-cancer Wisconsin Hepatitis 20Newsgroups

Subset Search
L2 L1 L2 L1 L2 L1 L2 L1Evaluator Method

Cor
re

lat
ion

BestFirst 74.64 70.65 93.84 94.72 95.0 93.75 93.67 89.10
GreedyStep 74.64 67.75 93.84 94.72 95.0 93.75 93.76 89.10
LinearFwd 74.64 67.75 93.84 94.72 95.0 93.75 92.09 89.98
Rank 74.64 70.65 93.84 94.72 94.15 93.75 92.26 91.38
SubsetSizeFwd 74.64 70.65 93.84 94.72 94.15 93.75 92.09 89.98

Con
sis

ten
t

BestFirst 67.39 72.46 95.31 95.89 88.75 86.25 89.98 92.97
GreedyStep 70.29 67.75 95.75 95.01 87.0 86.25 - -
LinearFwd 70.65 71.01 94.72 94.43 88.75 87.5 87.34 89.28
Rank 68.48 68.48 94.57 92.08 92.5 91.25 93.67 91.91
SubsetSizeFwd 70.65 71.01 94.72 94.43 88.75 88.75 87.34 89.28

Filte
re

d

BestFirst 77.54 70.29 94.43 94.14 91.25 91.25 93.14 91.56
GreedyStep 77.54 70.29 94.43 94.14 91.25 91.25 93.14 91.56
LinearFwd 77.54 70.29 94.43 94.14 91.25 91.25 90.51 87.34
Rank 77.14 70.29 94.43 94.14 88.75 92.5 84.88 85.86
SubsetSizeFwd 77.89 70.29 94.43 94.14 91.25 91.25 90.51 87.34

Integ. Dim. Red. 75.36±0.49 96.34±0.19 91.25±0.29 94.55±0.23

Table: Comparison with Dimension Reduction Weka’s Feature Selection Methods
followed by SVM-2norm (L2) and SVM-1norm (L1)
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Efficiently Inducing Disjunctive Features

Experiments

Transfusion Vote Tic-Tac-Toe

Subset Search
L2 L1 L2 L1 L2 L1Evaluator Method

Cor
re

lat
ion

BestFirst 91.04 91.04 96.28 96.28 80.88 73.88
GreedyStep 91.04 91.04 96.28 96.28 80.88 73.88
LinearFwd 91.04 91.04 96.28 96.28 80.88 73.88
Rank 91.04 91.04 96.28 96.28 80.88 73.88
SubsetSizeFwd 91.04 91.04 96.28 96.28 80.88 73.88

Con
sis

ten
t

BestFirst 92.37 90.78 95.26 96.28 100.0 76.49
GreedyStep 91.18 71.92 94.40 93.10 99.58 98.33
LinearFwd 91.44 90.78 97.41 95.69 99.68 75.44
Rank 91.57 89.84 94.6 93.1 99.68 80.45
SubsetSizeFwd 91.04 91.04 96.28 96.28 99.68 75.44

Filte
re

d

BestFirst 90.1 90.1 96.28 96.28 70.01 70.01
GreedyStep 90.1 90.1 96.28 96.28 70.01 70.01
LinearFwd 90.1 90.1 96.28 96.28 70.01 70.01
Rank 91.04 91.04 96.28 96.28 70.01 70.01
SubsetSizeFwd 90.1 90.1 96.28 96.28 70.01 70.01

Integ. Dim. Red. 91.04±0.30 96.28±0.17 100.0±0.0

Table: Comparison with Dimension Reduction Weka’s Feature Selection Methods
followed by SVM-2norm (L2) and SVM-1norm (L1)
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Efficiently Inducing Disjunctive Features

Experiments

Monk-1 Monk-2 Monk-3

Subset Search
L2 L1 L2 L1 L2 L1Evaluator Method

Cor
re

lat
ion

BestFirst 69.37 74.94 63.34 59.63 97.22 97.22
GreedyStep 69.37 74.94 63.34 59.63 97.22 97.22
LinearFwd 69.37 74.94 63.34 59.63 97.22 97.22
Rank 69.37 74.94 63.34 59.63 97.22 97.22
SubsetSizeFwd 69.37 74.94 63.34 59.63 97.22 97.22

Con
sis

ten
t

BestFirst 100.0 83.29 93.27 59.63 93.03 97.22
GreedyStep 100.0 74.94 87.93 59.63 93.5 97.22
LinearFwd 100.0 83.3 93.27 59.63 97.22 97.22
Rank 100.0 74.94 91.87 59.63 93.27 97.22
SubsetSizeFwd 83.3 66.59 93.27 59.63 97.22 97.22

Filte
re

d

BestFirst 74.94 74.94 62.41 59.63 97.22 97.22
GreedyStep 74.94 74.94 62.41 59.63 97.22 97.22
LinearFwd 74.94 74.94 62.41 59.63 97.22 97.22
Rank 74.94 74.94 62.41 59.63 97.22 97.22
SubsetSizeFwd 74.94 74.94 62.41 59.63 97.22 97.22

Integ. Dim. Red. 100.0±0.0 85.15±0.38 97.22±0.16

Table: Comparison with Dimension Reduction Weka’s Feature Selection Methods
followed by SVM-2norm (L2) and SVM-1norm (L1)
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Are Richer Classes of Features More
Useful?

Learning First Order Features

Statistical Learner constructs model from features
identified by a relational learner
Relational Features↔ First Order Logic Clauses

Figure: Reproduced from Michalski′s famous trains example
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Are Richer Classes of Features More
Useful?

What kind of features are useful?

eastbound(A)← hasCar(A,B), hasCar(A,C), short(B), closed(C)

Is there some redundancy?
Does this feature need to be learnt explicitly by the
relational learner?
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Are Richer Classes of Features More
Useful?

Feature Classes: Definite Feature

Definite Features (Fd) [SMSK96]
From Definite Clauses i.e. Clauses with non-empty head
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Feature Classes: Definite Feature

Definite Features (Fd) [SMSK96]
From Definite Clauses i.e. Clauses with non-empty head
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Are Richer Classes of Features More
Useful?

Feature Classes: Independent Feature

Independent Features (Fi) [CSC+02]
Definite Clauses consisting of exactly 1 independent
component
eastbound(A)← hasCar(A,B),hasCar(A,C),short(B),closed(C)
Independent Clauses

1 : (eastbound(A)← hasCar(A,B), short(B))
2 : (eastbound(A)← hasCar(A,C), closed(C))
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Are Richer Classes of Features More
Useful?

Feature Classes: Relational Subgroup Discovery
Feature

RSDFeatures (Fr) [LZF02]
Independent Features with no unused variable in clause
body
eastbound(A)← hasCar(A,B) is independent but not RSD
feature
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Are Richer Classes of Features More
Useful?

Feature Classes : Simple Feature

Simple Features (Fs) [MS98]
Independent Features with one sink in the variable
dependency graph

eastbound(A)← hasCar(A,B),short(B),closed(B) is
Independent but not simple
Simple Features

1 : eastbound(A)← hasCar(A,B),short(B)
2 : eastbound(A)← hasCar(A,B),closed(B)
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Are Richer Classes of Features More
Useful?

Feature Classes: Elementary Feature

Elementary Feature [FL00]
Simple Features with no unused variable in body

eastbound(A)← hasCar(A,B) is simple but not elementary
feature
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Are Richer Classes of Features More
Useful?

Subset Relation between Feature Classes
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Are Richer Classes of Features More
Useful?

Reconstruction Property of Feature Classes

Reconstruction by statistical
learners using

exact logical operations
(conjunctions)

approximation by weighted
linear combinations
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Are Richer Classes of Features More
Useful?

Goal: Discovering most effective subclass

The subclass that is yields most accurate statistical models
The subclass that can be logically composed to yield other powerful
subclasses
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Are Richer Classes of Features More
Useful?

Experiment-I: SVM as Model Builder

Figure: Accuracy of the Models Built by SVM-2 norm
regularizer(LibSVM) [CL11] on the feature classes Fe, Fs, Fr, Fr∪s, Fi, Fd
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Are Richer Classes of Features More
Useful?

Experiment-I: SVM as Model Builder

Figure: Accuracy of the Models Built by SVM-1 norm
regularizer(LibLinear) [FCH+08] on the feature classes Fe, Fs, Fr, Fr∪s, Fi, Fd
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Are Richer Classes of Features More
Useful?

Experiment-II: LR as Model Builder

Figure: Accuracy of the Models Built by Logistic Regression on the feature classes
Fe, Fs, Fr, Fr∪s, Fi, Fd
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Are Richer Classes of Features More
Useful?

Experiment-II: LR as Model Builder

Figure: Accuracy of the Models Built by Sparse Multinomial Logistic
Regression [KCFH05] on the feature classes Fe, Fs, Fr, Fr∪s, Fi, Fd
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Are Richer Classes of Features More
Useful?

Experiment-III: Rule Ensemble learner MLRules

Figure: Accuracy of Model Built by Maximum Likelihood Rule Ensembles [DKS08] on
the feature classes Fe, Fs, Fr, Fr∪s, Fi, Fd
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Are Richer Classes of Features More
Useful?

How significantly different?

Feature Number of Wins Total
Class L1-SVM L2-SVM LR SMLR MLRules Wins
Fe 1 0 1 1 1 4/35
Fs 0 1 0 1 0 2/35
Fr 0 1 1 1 0 3/35
Fr∪s 0 0 1 1 1 3/35
Fi 3 6 1 1 4 15/35
Fd 3 0 4 3 1 11/35

Figure: Number of outright wins for a feature class. This is number of
occasions out of the total number of possible occasions (i.e. 35) on
which a statistical learners achieves the highest mean predictive
accuracy using features from that class.
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Are Richer Classes of Features More
Useful?

How significantly different?

Feature Number of Good Enough Models Total No. of
Class L1-SVM L2-SVM LR SMLR MLRules Good Models
Fe 2 1 2 2 2 9/35
Fs 2 1 2 2 2 9/35
Fr 2 2 1 4 4 13/35
Fr∪s 3 2 1 4 4 14/35
Fi 7 7 6 7 7 34/35
Fd 4 5 6 7 7 25/35

Figure: Number of good enough models (out of all possible models
i.e. 35), using a feature class. A model is taken to be good enough if
its predictive accuracy is not statistically different to the model with
the highest predictive accuracy.
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Are Richer Classes of Features More
Useful?

Comparison with Parameter-tuned ILP models

Data Statistical Model ILP Model With
Parameter Selection & Optimization

Alz (Amine) 82.32±1.18 80.20
Alz (Acetyl) 74.16±0.24 77.40
Alz (Memory) 71.83±1.67 67.40
Alz (Toxic) 84.50±0.44 87.20
Carcin 62.15±1.75 59.10
DSSTox 73.12±0.94 73.10
Mut(188) 88.06±1.57 88.30

Figure: Comparison of mean predictive accuracies of statistical
models against the ILP models constructed with parameter selection
and optimisation (see [SR11]).
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Are Richer Classes of Features More
Useful?

Results for Sequence Labeling

Katholieke Universiteit Data [Landwehr et al., 2009] (KU Data)

Micro avg.(%) Macro avg.(%) F score

TildeCRF: Baseline 46.54 44.34 0.51
Independent Features (Fi) 52.69 44.06 0.57

25 sensors

19 activities

20 sequences of around
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Are Richer Classes of Features More
Useful?

Summary and Conclusion

Presented methods for learning statistically optimal
features

Improved generalization
Bridged gap between statisical and rule learning
communities
Investigated feature in which class are worth learning

Two-fold objective: Learning short and few features
Generalizes well while learning compact ruleset
Sometimes 25% improvement in generalization
Applicable elsewhere

Efficient mirror-descent based active set method
Complexity: polynomial in active set size (� O(2n)
Searched rule space size ∼ 250 in ∼ 10 min.
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