
Chapter 1

Sets, Relations and Logic

‘Crime is common. Logic is rare. Therefore it is upon the logic
rather than the crime that you should dwell.’ Sherlock Holmes in
Conan Doyle’s The Copper Breeches.

1.1 Sets and Relations

1.1.1 Sets

A set is a fundamental concept in mathematics. Simply speaking, it consists
of some objects, usually called its elements. Here are some basic notions about
sets that you must already know about:

– A set S with elements a, b and c is usually written as S = {a, b, c}. The
fact that a is an element of S is usually denoted by a ∈ S.

– A set with no elements is called the “empty set” and is denoted by ∅.

– Two sets S and T are equal (S = T ) if and only if they contain precisely
the same elements. Otherwise S 6= T .

– A set T is a subset of a set S (T ⊆ S) if and only if every element of T is
also an element of S. If T ⊆ S and S ⊆ T then S = T . Sometimes T ⊆ S

may sometimes also be written as S ⊇ T . If T ⊆ S and S has at least
one element not in T , then T ⊂ S (T is said to be “proper subset” of S).
Again, T ⊂ S may sometimes be written as S ⊃ T .

We now look at the meanings of the union, intersection, and equivalence of
sets. The intersection, or product, of sets S and T , denoted by S ∩ T or ST or
S · T consists of all elements common to both S and T . ST ⊂ S and ST ⊆ T

for all sets S and T . Now, if S and T have no elements in common, then they
are said to be disjoint and ST = ∅. It should be easy for you to see that ∅ ⊆ S

for all S and ∅ · S = ∅ for all S. The union, or sum, of sets S and T , denoted
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by S ∪ T or S + T , is the set consisting of elements that belong at least to S

or T . Once again, it should be a straightforward matter to see S ⊆ S + T and
T ⊆ S + T for all S and T . Also, S + ∅ = S for all S. Finally, if there is a
one-to-one correspondence between the elements of set S and set T , then S and
T are said to be equivalent (S ∼ T ). Equivalence and subsets form the basis
of the definition of an infinte set: if T ⊂ S and S ∼ T then S is said to be an
infinite set. The set of natural numbers N is an example of an infinite set (any
set S ∼ N is said to be countable set).

1.1.2 Relations

A finite sequence is simply a set of n elements with a 1− 1 correspondence with
the set {1, . . . , n} arranged in order of succession (an ordered pair , for example,
is just a finite sequence with 2 elements). Finite sequences allow us to formalise
the concept of a relation. If A and B are sets, then the set A×B is called the
cartesian product of A and B and is denoted by all ordered pairs (a, b) such
that a ∈ A and b ∈ B. Any subset of A × B is a binary relation, and is called
a relation from A to B. If (a, b) ∈ R, then aRb means “a is in relation R to b”
or, “relation R holds for the ordered pair (a, b)” or “relation R holds between a

and b.” A special case arises from binary relations within elements of a single
set (that is, subsets of A × A). Such a relation is called a “relation in A” or a
“relation over A”. There are some important kinds of properties that may hold
for a relation R in a set A:

Reflexive. The relation is said to be reflexive if the ordered pair (a, a) ∈ R for
every a ∈ A.

Symmetric. The relation is said to be symmetric if (a, b) ∈ R iff (b, a) ∈ R for
a, b ∈ A.

Transitive. The relation is said to be transitive if (a, b) ∈ R and (b, c) ∈ R,
then (a, c) ∈ R for a, b, c ∈ A.

Here are some examples:

• The relation ≤ on the set of integers is reflexive and transitive, but not
symmetric.

• The relation R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} on the set A =
{1, 2, 3, 4} is reflexive, symmetric and transitive.

• The relation ÷ on the set N defined as the set {(x, y) : ∃z ∈ N s.t. xz = y}
is symmetric and transitive, but not reflexive.

• The relation ⊥ on the set of lines in a plane is symmetric but neither
reflexive nor transitive.
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It should be easy to see a relation like R above is just a set of ordered pairs.
Functions are just a special kind of binary relation F which is such that if
(a, b) ∈ F and (a, c) ∈ F then b = c. Our familiar notion of a function F from
a set A to a set B is one which associates with each a ∈ A exactly one element
b ∈ B such that (a, b) ∈ F . Now, a function from a set A to itself is usually
called a unary operation in A. In a similar manner, a binary operation in A is
a function from A × A to A (recall A × A is the Cartesian product of A with
itself: it is sometimes written as A2). For example, if A = N , then addition (+)
is a binary operation in A. In general, an n-ary operation F in A is a function
from An to A, and if it is defined for every element of An, then A is said to
be closed with respect to the operation F . A set which closed for one or more
n-ary operations is called an algebra, and a sub-algebra is a subset of such a set
that remains closed with respect to those operations. For example:

• N is closed wrt the binary operations of + and ×, and N along with +,×
form an algebra.

• The set E of even numbers is a subalgebra of algebra of N with +,×. The
set O of odd numbers is not a subalgebra.

• Let S ⊆ U and S′ ⊆ U be the set with elements of U not in S (the unary
operation of complementation). Let U = {a, b, c, d}. The subsets of U

with the operations of complementation, intersection and union form an
algebra. (How many subalgebras are there of this algebra?)

Equivalence Relations

Any relation R in a set A for which all three properties hold (that is, R is
reflexive, symmetric, and transitive) is said to be an “equivalence relation”.
Suppose, for example, we are looking at the relation R over the set of natural
numbers N , which consists of ordered pairs (a, b) such that a + b is even1 You
should be able to verify that R is an equivalence relation over N . In fact, R

allows us to split N into two disjoint subsets: the set of odd numbers O and the
set of even numbers E such that N = O ∪ E and R is an equivalence relation
over each of O and E . This brings us to an important property of equivalence
relations:

Theorem 1 Any equivalence relation E over a set S partitions S into disjoint

non-empty subsets S1, . . . , Sk such that S = S1 ∪ · · · ∪ Sk.

Let us see how E can be used to partition S by constructing subsets of S in the
following way. For every a ∈ S, if (a, b) ∈ E then a and b are put in the same
subset. Let there be k such subsets. Now, since (a, a) ∈ E for every a ∈ S,
every element of S is in some subset. So, S = S1 ∪ · · · ∪ Sk. It also follows that
the subsets are disjoint. Otherwise there must be some c ∈ Si, Sj . Clearly, Si

1Equivalence is often denoted by ≈. Thus, for an equivalence relation E, if (a, b) ∈ E, then
a ≈ b.
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and Sj are not singleton sets. Suppose Si contains at least a and c. Further let
there be a b 6∈ Si but b ∈ Sj . Since a, c ∈ Si, (a, c) ∈ E and since c, b ∈ Sj ,
(c, b) ∈ E. Thus, we have (a, c) ∈ E and (c, b) ∈ E, which must mean that
(a, b) ∈ E (E is transitive). But in this case b must be in the same subset as a

by construction of the subsets, which contradicts our assumption that b 6∈ Si.
The converse of this is also true:

Theorem 2 Any partition of a set S partitions into disjoint non-empty subsets

S1, . . . , Sk such that S = S1 ∪ · · · ∪Sk results in an equivalence relation over S.

(Can you prove that this is the case? Start by constructing a relation E, with
(a, b) ∈ E if and only if a and b are in the same block, and prove that E is an
equivalence relation.)

Each of the disjoint subsets S1, S2, . . . are called ”equivalence classes”, and
we will denote the equivalence class of an element a in a set S by [a]. That is,
for an equivalence relation E over a set S:

[a] = {x : x ∈ S, (a, x) ∈ E}

What we are saying above is that the collection of all equivalence classes of
elements of S forms a partition of S; and conversely, given a partition of the set
S, there is an equivalence relation E on S such that the sets in the partition
(sometimes also called its ”blocks”) are the equivalence classes of S.

Partial Orders

Given an equality relation = over elements of a set S, a partial order � over S

is a relation over S that satisfies the following properties:

Reflexive. For every a ∈ S, a � a

Anti-Symmetric. If a � b and b � a then a = b

Transitive. If a � b and b � c then a � c

Here are some properties about partial orders that you should know (you will
be able to understand them immediately if you take, as a special case, � as
meaning ≤ and ≺ as meaning <):

• If a � b and a 6= b then a ≺ b

• b � a means a � b, b ≻ a means a ≺ b

• If a � b or b � a then a, b are comparable, otherwise they are not compa-
rable.

A set S over which a relation of partial order is defined is called a partially

ordered set . It is sometimes convenient to refer to a set S and a relation R

defined over S together by the pair < S, R >. So, here are some examples of
partially ordered sets < S,�>:


