
1.4. FIRST-ORDER LOGIC 55

first order logic, for function-free programs). The region between TΣ ↑ and TΣ ↓
corresponds to IF (Σ), which comprises exactly those atoms which fail infinitely.
In practice, most sensible programs have IF (Σ) = ∅, leading to TΣ ↑= TΣ ↓ and
therefore B(Σ) = SS(Σ) ∪ FF (Σ).

1.4 First-Order Logic

Suppose you wanted to express logically the statement: ‘All humans are apes.’
One of two ways can be used to formalise this in propositional logic. We can use
a single proposition that stands for the entire statement, or with a well-formed
formula consisting of a lot of conjunctions: Human1 is an ape ∧ Human2 is an
ape Using a single proposition does not give any indication of the structure
inherent in the statement (that, for example, it is a statement about two sets
of objects—humans and apes—one of which is entirely contained in the other).
The conjunctive expression is clearly tedious in a world with a lot of humans.
Things can get worse. Consider the following argument:

Some animals are humans.

All humans are apes.

Therefore some animals are apes.

That the argument is valid is evident: yet it is beyond the power of proposi-
tional logic to establish it. If, for example, we elected to represent each of the
statements with single propositions then all we would end up with is:

Statement Formally

Some animals are humans. P

All humans are apes. Q

Therefore some animals are apes. ∴ R

But the formal argument is clearly invalid, as it is easy to think up arguments
where P,Q are true and R is false. What is needed is in fact something along
the following lines:

Statement Formally

Some animals are humans. Some P are Q

All humans are apes. All Q are R

Therefore some animals are apes. ∴ some P are R

Here, P,Q, and R do not stand for propositions, but for terms like animals,
humans and apes. The use of terms like these related to each other by the
expressions ‘some’ and ‘all’ will allow us to form sentences like the following:

56 CHAPTER 1. SETS, RELATIONS AND LOGIC

All P are Q

No P are Q

Some P are Q

Some P are not Q

The expressions ‘some’ and ‘all’ are called quantifiers, which when combined
with the logical connectives introduced in connection with proposition logic
(¬,∧,∨,←), results in the powerful framework of first-order or predicate logic.

1.4.1 Syntax

The language of predicate logic introduces many new constructs that are not
found in the simpler, propositional case. We will first introduce these informally.

Constants. It is conventional in predicate logic to use lowercase letters to denote
proper names of objects. For example, in the sentence ‘Fred is human’, Fred
could be represented as fred.

Variables. Consider the statements:

All humans are apes

Some apes are not human

Using the letter x as a variable that can stand for individual objects, these can
be expressed as:

For all x, if x is human then x is an ape

For some x, x is an ape and x is not human

Quantifiers. The language of predicate logic introduces the symbol ∀, called
the universal quantifier , to denote ‘for all.’ The symbol ∃, called the existential
quantifier , is used to denote ‘for some’ or, more precisely, ‘for at least one.’ The
sentences above can therefore be written as:

∀x (if x is human then x is an ape)

∃x (x is an ape and x is not human)

Predicates. In their simplest case, these are are symbols used to attribute prop-
erties to particular objects. It is conventional in logic (but ungrammatical in
English) to write the subject after the predicate. Thus the sentence ‘Fred is
human’ would be formalised as Human(fred) 22. More generally, predicate
symbols can be used to represent relations between two or more objects. Thus,

22Logicians are a parsimonius lot: they would represent ‘Fred is human’ as Hf . The

representation here is non-standard, but preferred for clarity.

1.4. FIRST-ORDER LOGIC 57

‘Fred likes bananas’ can be represented as: Likes(fred, bananas). The gen-
eral form is therefore a predicate symbol, followed by one or more arguments
separated by commas and enclosed by brackets. The number of arguments is
sometimes called the arity of the predicate symbol, and the predicate symbol is
often written along with its arity (for example, Likes/2). Formalising sentences
like those above would result in quantified variables being arguments:

∀x (if Human(x) then Ape(x))

∃x (Ape(x) and not Human(x))

Or, using the logical connectives that we have already come across:

∀x(Ape(x)← Human(x))

∃x(Ape(x) ∧ ¬Human(x))

Functions. Consider the statement: ‘The father of Fred is human.’ Although we
have not named Fred’s father, it is evident that a a unique individual is being
referred to, and it possible to denote him by using a function symbol. One way
to formalise the statement is: Human(father(fred)). Here, it is understood
that father(fred) denotes Fred’s father. A function symbol is one which, when
attached to one or more terms denoting objects produces an expression that
denotes a single object. It is important that that the result is unique: a function
symbol could not be used to represent, for example, ‘parent of Fred.’ As with
predicates, the number of arguments of the function is sometimes called its arity.

The following points would not be evident from this informal presentation:

1. Variables need not designate different objects. Thus, in ∀x∀yLikes(x, y),
x and y could refer to the same object;

2. The choice of variable names is unimportant. Thus, ∀x∀yLikes(x, y) has
the same meaning as ∀y∀zLikes(y, z);

3. The same variable name, if quantified differently, need not designate the
same object. Thus, in ∀x∀yLikes(x, y) ∧ ∀x∀yHates(y, x) the x, y in
Likes(· · ·) need not be same as the x, y in Hates(· · ·);

4. The order of quantifiers can matter when ∀ and ∃ are mixed. Thus,
∃x∀yLikes(x, y) has a different meaning to ∀y∃xLikes(x, y). However
changing the order has no effect if the quantifiers are all of the same type.
Thus, ∀x∀yLikes(x, y) has the same meaning as ∀y∀xLikes(x, y);

5. “Free” variables in a formula are those that are not quantified. For ex-
ample, in the formula ∀xLikes(x, y), y is a free variable. In contrast,
quantified variables are called “bound” variables. It may not be immedi-
ately apparent that a variable can have both free and bound occurrences
in a formula. For example in ∃x(Likes(x, y)∧∃yDisLikes(y, x)), the vari-
able y is free in the Likes and bound in Dislikes. x on the other hand is

58 CHAPTER 1. SETS, RELATIONS AND LOGIC

bound in both (by the outermost quantifier). It is normal to call a formula
with no free variables a sentence, and it only really makes sense to ask
about the truth of sentences;

6. Negation should be treated with caution. Thus, in ‘Some apes are not
humans’, ‘not’ plays the role of complementation, by stating that the set
of apes and the set of non-humans have at least one member in common.
This can be formalised as ∃x(Ape(x)∧¬Human(x)). One the other hand,
‘not’ plays the role of true negation in ‘It is not true that some apes are
humans’ formalised as ¬∃x(Ape(x) ∧Human(x));

7. It can be tricky to match English sentences to ones that use ∀ and ∃.
Thus, in ‘If something has a tail then it is not an ape’, the use of ‘some-
thing’ suggests that formalisation would involve ∃. The statement is, in
fact, a general one about apes not having tails, and involves universal
quantification: ∀x(¬Ape(x)← Tail(x));

8. By denoting ‘at least one’, the existential quantifier ∃ includes ‘exactly one’
and ‘all’. This does not coincide exactly with the usual English notion of
‘some’, which denotes more than one, but less than all.

We can now examine the formal rules for constructing well-formed formulæ
in predicate logic. For the language of predicate logic, we will restrict the
vocabulary to the following:

Constant symbols: A string of one or more lowercase letters

(except those denoting variables)

Variable symbols: A lowercase letter

(except those denoting constants)

Predicate symbols: Uppercase letter, followed by zero or more letters

Function symbols: Lowercase letter, followed by zero or more letters

(except those denoting constants or variables)

Quantifier symbols: ∀, ∃

Logical connectives: ¬,∧,∨,←

Brackets: (,)

In addition, we will sometimes employ the device of using subscripts to denote
unique symbols (for example, x1, x2, . . . for a string of variables).

With this vocabulary, a term is simply a constant, variable or a functional
expression (that is, a function applied to a tuple of terms). The following are all
examples of terms: x, fred, father(fred), father(father(fred)), father(x).

1.4. FIRST-ORDER LOGIC 59

These, however, are not terms: Likes(fred, bananas), Likes(fred, father(fred)),
father(Likes(fred, bananas)). An atomic formula, sometimes simply called an
atom is a predicate symbol applied to a tuple of terms. Thus, Likes(fred, bananas)
Likes(fred, father(fred)), Likes(x, father(x)) are all examples of atoms. Fi-
nally, a ground atomic formula or a ground atom is an atom without any vari-
ables. Well-formed formulæ (wffs) are then formed using the following rules:

1. Any ground atomic formula is a wff;

2. If α is a wff then ¬α is a wff;

3. If α and β are wffs then (α ∧ β), (α ∨ β), and (α← β) are wffs; and

4. If α is wff containing a constant c and αc/x be the result of replacing one
or more occurences of c with a variable x that does not appear in α. Then
∀xαc/x and ∃xαc/x are wffs.

Rules 1–3 are like their propositional counterparts (page 15). Rule 4 is new,
and requires further explanation. It is the only way variables are introduced
into a formula. As an example, take the following statement: (Human(fred)∧
Likes(fred, bananas)). That this a wff follows from an application of Rules 1
and 3. The following formulæ are all wffs, following a single application of Rule
4:

∀x(Human(x) ∧ Likes(fred, bananas))

∃x(Human(x) ∧ Likes(fred, bananas))

∀x(Human(fred) ∧ Likes(x, bananas))

∃x(Human(fred) ∧ Likes(x, bananas))

∀x(Human(x) ∧ Likes(x, bananas))

∃x(Human(x) ∧ Likes(x, bananas))

∀x(Human(fred) ∧ Likes(fred, x))

∃x(Human(fred) ∧ Likes(fred, x))

A single application of Rule 4 therefore only introduces a single new variable.
Subsequent applications will introduce more. For example, take the first formula
above: ∀x(Human(x) ∧ Likes(fred, bananas)). The following wffs all result
from applying Rule 4 to this statement:

∀y∀x(Human(x) ∧ Likes(y, bananas))

∃y∀x(Human(x) ∧ Likes(y, bananas))

∀y∀x(Human(x) ∧ Likes(fred, y))

∃y∀x(Human(x) ∧ Likes(fred, y))

60 CHAPTER 1. SETS, RELATIONS AND LOGIC

As with propositional logic, it is acceptable to drop outermost brackets:

(∀x(Ape(x)← Human(x)) ∧ ∃x(Ape(x) ∧ ¬Human(x)))

can be written as:

∀x(Ape(x)← Human(x)) ∧ ∃x(Ape(x) ∧ ¬Human(x))

Clausal Form

We are now in a position to expand on the notion of clauses and literals, first
introduced on page 25. Consider the conditional statement:

∀x(Ape(x)← Human(x))

Recall the following from page 24:

(α← β) ≡ (α ∨ ¬β)

This means:

∀x(Ape(x)← (Human(x))) ≡ ∀x(Ape(x) ∨ ¬Human(x))

The term in brackets on right-hand side is an example of a clause in first-order
logic. In general, formulæ consisting of universally-quantified clauses all look
alike:23

∀x1∀x2 . . . (α1 ∧ α2 . . .)

That is, they consist of a prefix that consists only of universally quantifiers, and
each αi, or clause, is a quantifier-free formula that looks like:

αi = (β1 ∨ β2 ∨ . . . βn)

where each βj , or literal . Thus, as in propositional logic, a clause is a disjunction
of literals. Each literal, however, is not a proposition, but is either an atomic
formula (like Ape(x), sometimes called a positive literal) or a negated atomic
formula (like ¬Human(x), sometimes called a negative literal). It is sometimes
convenient to use ∀x to denote ∀x1∀x2 · · · and to adopt a set-based notation
to represent a clausal formula: {∀xα1,∀xα2, . . .}. Here it is understood that
the formula stands for a conjunction of clauses. Often, the quantification is
taken to be understood and left out. Further, individual clauses are themselves
sometimes written as sets of literals:

αi = {β1, β2, . . . , βn}

Clausal forms are of particular interest, computationally speaking. The lan-
guage of logic programs (usually written in the Prolog language). is, at least in
its ‘pure’ form, equivalent to clausal-form logic. Here is an example:

23We will take a few liberties here by not including some brackets.

1.4. FIRST-ORDER LOGIC 61

Logic Program in Prolog Clausal Form

grandfather(X,Y):- {∀x∀y∀z(Grandfather(x, y) ∨

father(X,Z), ¬Father(x, z) ∨

parent(Z,Y). ¬Parent(z, y)),

father(henry,jane). Father(henry, jane),

parent(jane,john). Parent(jane, john)}

There are three clauses in this example. The first clause has three literals
and the remainder have one literal each. Further, each clause has exactly one
positive literal: such clauses are called definite clauses. More generally, clauses
that contain at most one positive literal are called Horn clauses. From now on,
we may sometimes write clauses in a lazy manner that is somewhere in between
the syntax of Prolog and the true clausal form:

Logic Program in Prolog

grandfather(X,Y):- father(X,Z), parent(Z,Y).

Clausal Form

{∀x∀y∀z(Grandfather(x, y) ∨ ¬Father(x, z) ∨ ¬Parent(z, y))}

Lazy Clausal Form

Grandfather(x, y)← Father(x, z), Parent(z, y)

Skolem Functions and Constants

Skolemization refers to a process of replacing an existentially quantified variable
in a formula by a new term; it is merely the process of providing a name for
something that already exists. Whether the new term is a functional expression
or a constant depends on where the existential quantifier appears in the formula.
If it is preceded by one or more universal quantifiers, like:

∀x1 . . .∀xn∃y α

then a single skolemization step replaces all occurences of y in α by the functional
expression f(x1, . . . , xn). Here f(· · ·) is a function symbol, called a Skolem
function, that does not appear anywhere in the formula. Thus, skolemization
of the formula ∀x∃yLikes(x, y) results in ∀xLikes(x, f(x)). In general, if the
existential quantifier appears in between some universal quantifiers:

∀x1 . . .∀xi−1∃y∀xi+1 · · · ∀xn α

then all occurences of y in α can be replaced by the functional expression
f(x1, . . . , xi−1). A special case arises if the existential quantifier precedes zero
or more universal quantifiers:

62 CHAPTER 1. SETS, RELATIONS AND LOGIC

∃y∀x1 . . .∀xn α

In this case, a single skolemization step replaces all occurences of y in α by a
Skolem function of arity 0 (that is, a constant) c. Here c is a constant symbol,
called a Skolem constant , that does not appear anywhere in the formula. Thus,
skolemization of the formula ∃y∀xLikes(x, y) results in ∀xLikes(x, c). You can
see that in both cases, a single step of Skolemization reduces the number of
existential quantifiers in a formula φ by 1. Let us denote this single step by
s(φ). It should be easy to see that repeatedly performing Skolemization steps
(that is, s(s(· · · s(φ)))) will result in a formula with just universal quantifiers.

Normal Forms

Universally-quantified clausal forms are a special case of specific kind of normal
form for first-order formula, which we are now able to present, having described
the process of Skolemization. A formula is said to be in prenex normal form or
PNF if all its quantifiers are in front. That is, the formula looks something like
Q1x1 . . . Qnxnφ, where the Qi is either a ∀ or ∃. Further, if φ is a conjunction of
disjunction of literals, then the formula is said to be in conjunctive prenex normal
form. It can be shown that every first-order formula φ can be expressed by an
equivalent one φ′ in conjunctive PNF. Here is an example: suppose we want to
find the conjunctive PNF for φ : (∃x∀yDisLikes(x, y) ∧ ∀x∃yLikes(x, y)). We
first rename variables to give φ′ : (∃x∀yDisLikes(x, y) ∧ ∀u∃vLikes(u, v)). We
can then move the quantifiers to the left giving: φ′′ : ∃x∀y∀u∃v(DisLikes(x, y)∧
Likes(u, v)), which is in conjunctive PNF.

For reasons that will become apparent, we are further interested here only
in formulae in conjunctive PNFs in which all the quantifiers are universal ones
(that is, ∀). Such formulæare said to be in Skolem normal form, or SNF. A
SNF can be obtained from the conjunctive PNF by applying the Skolemization
process to eliminate ∃ quantifiers. For example, suppose we want to “Skolemize”
the formula φ above. We first find the conjunctive PNF (φ′′ above). Using the
Skolemization procedure described earlier, we replace x by a Skolem constant
and v by a Skolem function. The SNF of φ is φS : ∀y∀u(Dislikes(c, y) ∧
Likes(u, f(u))).

We can now return to clausal forms. Here are the steps for converting a
formula into a set of clauses in clausal form:

1. Rename variables to ensure there are no variables with the same names in
different quantifiers;

2. Eliminate ←’s and iff’s;

• α1 iff α2 ⇒ (α1 ← α2) ∧ (α2 ← α1)

• α1 ← α2 ⇒ α1 ∨ ¬α2

3. Move ¬’s inwards;

1.4. FIRST-ORDER LOGIC 63

• ¬(∃X)α⇒ (∀X)¬α

• ¬(∀X)α⇒ (∃X)¬α

• ¬(α1 ∨ α2)⇒ ¬α1 ∧ ¬α2

• ¬(α1 ∧ α2)⇒ ¬α1 ∨ ¬α2

• ¬¬α⇒ α

4. Distribute ∨’s over ∧’s;

• α ∨ (α1 ∧ α2)⇒ (α ∨ α1) ∧ (α ∨ α2)

• Assuming X does not occur in α1: α1 ∨ (∀α2)⇒ (∀X)(α1 ∨ α2)

• Assuming X does not occur in α1: α1 ∨ (∃α2)⇒ (∃X)(α1 ∨ α2)

5. Distribute ∀’s;

• (∀X)(α1 ∧ α2)⇒ (∀X)α1 ∧ (∀X)α2

At this stage, the PNF form is generated.

6. Skolemise existentially quantified variables;

• (∀X1)(∀X2) . . . (∀Xn)(∃Y)α(Y)⇒ (∀X1)(∀X2) . . . (∀Xn)α(f(X1, X2, . . . Xn))

If further applications of step 6 are possible, then they should be carried
out.

7. Rewrite as clauses by dropping universal quantifiers; and

8. Standardise variables apart.

Here are some statements from a book by Lewis Carroll, written in first-order
logic:

S1 : ∀x(Scented(x)← Coloured(x)) ∧

S2 : ∀x(DisLike(x)← ¬GrownOpen(x)) ∧

S3 : ¬(∃x(GrownOpen(x) ∧ ¬Coloured(x))) ∧

S4 : ¬∀x((DisLike(x)← ¬Scented(x)))

You should find that these sentences, when converted by the steps above,
give the following set of clauses:

C1 : {¬Coloured(x), Scented(x)}

C2 : {GrownOpen(y), DisLike(y)}

C3 : {¬GrownOpen(z), Coloured(z)}

C4 : {¬Scented(c)}

64 CHAPTER 1. SETS, RELATIONS AND LOGIC

C5 : {¬DisLike(c)}

Recall that representing a clause by a set {L1, L2, . . . , Lk}, is just short-form
for the disjunction L1 ∨L2∨ · · ·Lk; and the actual clausal form for the formula
F : S1∧S2∧S3∧S4∧S5 is C : ∀x∀y∀z(C1∧C2∧C3∧C4∧C5). Is F equivalent
to C? To answer this, we need to understand how meanings are assigned to
first-order formulæ.24

1.4.2 Semantics

As with propositional logic, the semantics of predicate logic is primarily con-
cerned with interpretations, models, and logical consequence. Of these, it is
only the notion of interpretation that requires a re-examination.

Interpretations

Recall that interpretations in propositional logic were simply assignments of
true or false to propositional symbols. Matters are not as simple in predicate
logic for two reasons. First, we have to deal with the additional complexity of
expressions arising from a richer vocabulary. Thus, the truth-value (meaning)
of Likes(fred, bananas) will depend on the meanings of each of the symbols
Likes, fred and bananas. Second, we have to interpret sentences that contain
quantifiers.

Informally, let us see what is required in constructing an interpretation that
allows us to understand Likes(fred, bananas). Before we begin, remove any
pre-conceptions of what the words in the statement mean in English: for us they
are simply a predicate symbol (Likes) and two constant symbols (fred, bananas)
in some ‘formal-world’. The first step then is to identify a domain of objects in
the ‘real-world’.

Next, we associate constant symbols in our formal-world to objects in the
real-world (just to avoid any pre-conceptions, we have scrambled things a little
bit):

24But the answer is “no”: the problem, as you might have guessed, comes about because of

the Skolemization step.

1.4. FIRST-ORDER LOGIC 65

b
a
n
a
n
a
s

fr
ed

and associate the predicate symbols to a relation in the real-world:

Likes

We can now see that Likes(fred, bananas) is false as the objects correspond-
ing to the ordered pair < fred, bananas > are not in the real-world relation
represented by Likes.

Formally, an interpretation in predicate logic is a specification of:

1. A domain D;

2. A mapping of constants to elements in D;

3. A mapping of each n-argument predicate symbol to a relation on Dn,
where Dn = {< d1, . . . , dn > | di ∈ D} is the n-fold Cartesian product;
and

4. A mapping of each n-argument function symbol to a function from Dn →
D

You will also see sometimes that the term “structure” is used to describe what
we have called an interpretation. In such cases, a distinction is made between
the vocabulary , which consists of the constants, functions and predicate symbols;
the and the structure, which consists of the domain D and the three mappings.
We will continue to use “interpretation” to retain a similarity to propositional
logic.

66 CHAPTER 1. SETS, RELATIONS AND LOGIC

Given an interpretation, every atom—a predicate symbol with a tuple of
terms as arguments—is assigned a truth-value according to whether the objects
designated by the arguments are in the relation designated by the predicate
symbol.

Well-formed formulæ in predicate logic consist of more than atoms. We
also need rules for assigning truth-values to formulæ that contain logical con-
nectives (¬,∧,∨,←) and quantifiers (∀,∃). The semantics of the logical con-
nectives in predicate logic are the same as those in propositional logic. Thus,
as before, assigning meanings to formulæ with these connectives requires the
use of the truth tables on page 17. For example, the formula Human(fred) ∧
Likes(fred, bananas) is true only if the interpretation results in both the atoms
Human(fred) and Likes(fred, bananas) being true. What though, of formulæ
that contain quantified variables? The rules for these are:

1. Any wff ∀xα is true if and only if for every domain element that we can
associate with x, α is true;

2. Any wff ∃xα is true if and only if for some domain element that we can
associate with x, α is true.

Models and Logical Consequence

The meanings of these, and related concepts, are unchanged from propositional
logic. Thus:

Models. Any interpretation that makes a wff true is called a model for that
formula;

Validity and Unsatisfiability. A formula for which all interpretations are models
is said to be valid. A formula for which none of the interpretations are a
model is said to be unsatisfiable. A formula that has at least one model
is said to be satisfiable;

Consequence. Given a conjunction of wffs Σ represented as the set {β1, . . . , βn}
and a wff α if Σ |= α then every model for Σ is a model for α;

Deduction Theorem. Given a conjunction of wffs Σ = {β1, . . . , βn} and a wff α,
Σ |= α if and only if Σ− {βi} |= (α← βi). The proof is the same as was
for that in the propositional case (c.f. theorem 6);

Equivalence. Given a pair of wffs α and β, if α |= β and β |= α then α and β
are equivalent (α ≡ β).

The following relations hold in the predicate logic (as usual, α, β are wffs):

1.4. FIRST-ORDER LOGIC 67

¬(α ∨ β) ≡ ¬α ∧ ¬β De Morgan’s law

¬(α ∧ β) ≡ ¬α ∨ ¬β De Morgan’s law

(α← β) ≡ (α ∨ ¬β)

(α← β) ≡ (¬β ← ¬α) Conditional ≡ Contrapositive

¬∀xα ≡ ∃x¬α

¬∃xα ≡ ∀x¬α

∀xα ≡ ∀yαx/y Renaming of x by y

∃xα ≡ ∃yαx/y Renaming of x by y

∀x∀yα ≡ ∀y∀xα

∃x∃yα ≡ ∃y∃xα

∀x(α ∧ β) ≡ (∀xα ∧ ∀xβ) Distributivity of ∀

∃x(α ∨ β) ≡ (∃xα ∨ ∃xβ) Distributivity of ∃

∀xα |= ∃xα

(∀xα ∨ ∀xβ) |= ∀x(α ∨ β)

∃x(α ∧ β) |= (∃x ∧ ∃xβ)

∀xαy/f(x) |= ∀x∃yα Non-equivalence of Skolemized form

∀xαy/c |= ∃y∀xα Non-equivalence of of Skolemized form

More on Normal Forms

We stated earlier that any first-order formula could be converted to a conjunctive
prenex normal form, or conjunctive PNF. We further saw how a formula φ =
Q1x1 . . . Qnxnφ0(x1, . . . , xn) could be “Skolemized” to give a formula φS in
Skolem Normal Form, or SNF. The interest in SNFs lies in the following fact:

Theorem 15 φ is satisfiable if and only if φS is satisfiable (you should be able
to convince yourself that checking for satisfiability is equivalent to checking for
logical consequence).

Proof sketch: Recall that φS = s(s(· · · s(φ))) where s(·) denotes a single step of
Skolemization. Now, it is sufficient to show that φ is satisfiable if and only if
s(φ) is satisfiable (the full proof will follow by induction). We can also assume
that φ is in conjunctive PNF. Now s(φ) results in either replacing a variable by
a Skolem constant or by a Skolem function. Since the former is just a special
case of the latter, we will just consider the case when s(φ) results in replacing
a variable by a Skolem function. Let Qi be the existential quantifier removed
by the Skolemization step, and let ψ(x1, . . . , xi) = Qi+1 . . . Qnφ0(x1, . . . , xn).
Suppose ∀x1 . . .∀xi−1∃xiψ(x1, . . . , xi) has some model M . Let Mf extend M by
interpreting f in such a way thatMf is a model for ψ(c1, . . . , ci−1, f(c1, . . . , ci−1))
for all possible values c1, . . . , ci−1 ∈ M for the variables x1, . . . , xi−1. Then,
clearly, Mf is a model for ∀x1 . . .∀xi−1ψ(x1, . . . , xi−1, f(x1, . . . , xi−1)). Now

68 CHAPTER 1. SETS, RELATIONS AND LOGIC

consider the converse. Suppose ∀x1 . . .∀xi−1ψ(x1, . . . , xi−1, f(x1, . . . , xi−1)) has
some model M then, it follows from the meaning of ∃ that M is also a model
for ∀x1 . . .∀xi−1∃xiψ(x1, . . . , xi). It follows therefore that φ is satisfiable if and
only if s(φ) is satisfiable. 2

We end this section on a note of caution: φ and s(φ) are not equivalent.
That is, Skolemization does not preserve logical equivalence. A simple example
should convince you of this. Let φ = ∃xFirst(x) and s(φ) = First(c). Clearly,
we can find models for ∃First(x) that are not models of First(c).

Herbrand Interpretations

The 4-step specification above makes an interpretation in predicate logic much
more elaborate than its counterpart in propositional logic (which was simply
an assignment of true or false to propositions). The reference to ‘real-world’
objects, relations, and functions adds a further degree of complexity: how is all
this to be conveyed to an automated procedure? In fact, many of these problems
can be side-stepped by confining attention only to a domain that consists solely
of formal symbols. Called the Herbrand universe (UL), this is simply all the
ground (or variable-free) terms that can be constructed using the constants and
function symbols available in a first order language L. Consider as example a
language that consists of:

Constant symbol: zero

Predicate symbol: Nat/1

Function symbols: pred, succ

The Herbrand universe UL in this instance consists of terms like zero, pred(zero),
succ(zero), pred(succ(zero)), succ(pred(zero)) and so on. The Herbrand base
BL is the set of all ground atoms that can be constructed using the predicate
symbols and terms from the Herbrand universe UL. Here, the Herbrand base BL

consists of atoms likeNat(zero), Nat(pred(zero)), Nat(succ(zero)), Nat(pred(succ(zero)))
and so on. A Herbrand interpretation IL is—quite like the propositional case—
simply an assignment of true to some subset of BL and false to the rest. In fact,
it is common practice to associate ‘Herbrand interpretation’ only with the sub-
set assigned true: it being understood that all other atoms in the Herbrand base
are assigned false. Thus, {Nat(zero)} is an IL that assigns true to Nat(zero)
and false to all other atoms in BL.

Herbrand Models

Since a model is an interpretation that makes a well-formed formula true, a
Herbrand model ML is simply a Herbrand interpretation IL that makes a well-
formed formula true. Let us return to the example presented earlier:

Constant symbol: zero

Predicate symbol: Nat/1

Function symbols: pred, succ

1.4. FIRST-ORDER LOGIC 69

Recall from page 68, that:

Herbrand universe (UL): {zero, pred(zero), succ(zero), pred(succ(zero)), . . .}

Herbrand base (BL): {Nat(zero), Nat(pred(zero)), Nat(succ(zero)), . . .}

Further, a Herbrand interpretation is simply a subset of the Herbrand base
containing all atoms that are true. Thus, I1 = {Nat(zero)} is a Herbrand
interpretation in which Nat(zero) is true and all other atoms in the Herbrand
base are are false. We can now examine whether I1 is a Herbrand model for the
formula:

Σ1 : Nat(zero) ∧ ∀x(Nat(succ(x))← Nat(x))

Being a conjunctive expression, we require I1 to be a Herbrand model for both
Nat(zero) and ∀x(Nat(succ(x))← Nat(x)). I1 is clearly a model for Nat(zero)
as this atom is assigned true in the interpretation. But what about the condi-
tional? The rule for the universal quantifier (page 66) dictates that the condi-
tional statement is true if it is true for every element that the variable x can be
associated with. In other words, the interpretation is a model for every element
that x can be associated with. In the Herbrand world, x can be associated with
any element of the Herbrand universe (zero, succ(zero), pred(zero) and so on).
Suppose x was associated with zero. Then we would require I1 to be a model for
Nat(succ(zero)) ← Nat(zero). Since I1 assigns Nat(succ(zero)) to false and
Nat(zero) to true, I1 is not a model for Nat(succ(zero)) ← Nat(zero) (line 2
in the truth-table for the conditional on page 17). Thus, I1 is not a Herbrand
model for ∀x(Nat(succ(x)) ← Nat(x)) and in turn for Σ1. Consider, on the
other hand, the formula:

Σ2 : Nat(zero) ∧ ∀x(Nat(x)← Nat(pred(x)))

As before, suppose x was associated with zero. The conditional then becomes
Nat(zero) ← Nat(pred(zero)). With interpretation I1, Nat(zero) is true and
Nat(pred(zero)) is false. I1 is therefore a model for this formula (line 3 in the
truth table for the conditional). All other associations for x result in both sides
of the conditional being false and I1 being a model for each such formula (line 1
in the truth table). Thus, I1 makes ∀x(Nat(x)← Nat(pred(x))) true for every
element that x can be associated with, and is a model for it and in turn for Σ2.

Herbrand models are particularly relevant to the study of clausal forms
(page 60). Recall that these are conjunctions of clauses, each of which contains
only universally quantified variables and consists of a disjunction of literals.
Both Σ1 and Σ2 above can be written in clausal form:

Σ1
′ : Nat(zero) ∧ ∀x(Nat(succ(x)) ∨ ¬Nat(x))

Σ2
′ : Nat(zero) ∧ ∀x(Nat(x) ∨ ¬Nat(pred(x)))

70 CHAPTER 1. SETS, RELATIONS AND LOGIC

The ground instantiation of a clausal formula is the conjunction of ground
(variable-free) clauses that result by replacing variables with terms from the
Herbrand universe. For example, the ground instantiation of Σ2

′ is:

G(Σ2
′) : Nat(zero) ∧

(Nat(zero) ∨ ¬Nat(pred(zero))) ∧

(Nat(pred(zero)) ∨ ¬Nat(pred(pred(zero)))) ∧

(Nat(succ(zero)) ∨ ¬Nat(pred(succ(zero)))) ∧

. . .

You can therefore think of the ground instantantiation as making explicit the
meaning of the universal quantifier ∀. Now, it should be clear that a Herbrand
interpretation will determine the truth-value for all clauses in the ground in-
stantiation of a clausal formula.

We present another example illustrating Herbrand models. Consider the
following program P :

likes(john, X) ← likes(X, apples)

likes(mary, apples) ←

Suppose the language L contained no symbols other than those in P . Then,
B(P) is the set {likes(john, john), likes(john, apples), likes(apples, john), likes(john,mary),
likes(mary, john), likes(mary, apples), likes(apples,mary), likes(mary,mary),
likes(apples, apples)}. Now, {likes(mary, apples), likes(john,mary)} is a sub-
set of B(P), and is a Herbrand interpretation. Moreover, it is also a Herbrand
model for P . Similarly, {likes(mary, apples), likes(john,mary), likes(mary, john)}
is also a model for P . The ground instantiation G(P) for this program is:

likes(john, john) ← likes(john, apples)

likes(john, mary) ← likes(mary, apples)

likes(john, apples) ← likes(apples, apples)

likes(mary, apples) ←

It can be verified25 that the interpretation {likes(mary, apples), likes(john,mary)}
is a model for the G(P) above.

The importance of Herbrand models for clausal formulæ stems from the
following property:

Theorem 16 A clausal formula Σ has a model if and only if its ground instan-
tiation G(Σ) has a Herbrand model.

Proof: ⇒: Suppose Σ has a model M . Then we define the following Herbrand
interpretation I as follows. Let P be an n-ary predicate symbol occurring in Σ.
Then we define the function IP from Un

L to {T, F} as follows: IP (tl, . . . , tn) = T
if P (t1, ..., tn) is true under M , and IP (t1, ..., tn) = F otherwise. It can easily
be shown that I = ∪P∈ΣIP is a Herbrand model of Σ.
⇐: This is obvious (a Herbrand model is a model). 2

25EXERCISE.

1.4. FIRST-ORDER LOGIC 71

In other words, there must be some assignment of truth-values to atoms
in the Herbrand base that makes all clauses in Σ true. In the example above,
the Herbrand interpretation I1 = {Nat(zero)} that assigns Nat(zero) to true
and everything else to false, is clearly a model for G(Σ2

′). Therefore, from the
property stated here, we can say that Σ2

′ has a model.

If we are dealing only with a definite clausal formula— a clausal formula in
which all clauses have exactly one positive literal (Σ1

′ and Σ2
′ are both of this

type)—then more is known about the Herbrand models of the formula. Recall
that a Herbrand model is nothing more than a set of ground atoms, which when
assigned true, make the formula true.

1.4.3 From Datalog to Prolog

The statement “Any animal that has hair is a mammal” can be written as a
clause using monadic predicates (i.e. predicates with arity 1):

∀X is mammal(X) ← has hair(X)

Usually clauses are written without explicit mention of the quantifiers:

is mammal(X) ← has hair(X)

is mammal(X) ← has milk(X)

is bird(X) ← has feathers(X)

. . .

Datalog

Datalog is a subset of the language of first order language; it has all the compo-
nents of first order logic (variables, constants and recursion), except functions.
A Datalog “expert” system will encode these rules using monadic predicates as:

is mammal(X) :- has hair(X).
is mammal(X) :- has milk(X).
is bird(X) :- has feathers(X).
is bird(X) :- can fly(X), has eggs(X).
is carnivore(X) :- is mammal(X), eats meat(X).
is carnivore(X) :- has pointed teeth(X), has claws(X), has pointy eyes(X).
cheetah(X) :- is carnivore(X), has tawny colour(X), has dark spots(X).
tiger(X) :- is carnivore, has tawny colour(X), has black stripes(X).
penguin(X) :- is bird(X), cannot fly(X), can swim(X).

Now here are some statements26 particular to animals:

has hair(peter). fat(peter).
has green eyes(peter). has tawny colour(peter).
eats meat(peter). has black stripes(peter).
has milk(bob). eats meat(bob)
has tawny colour(bob). has dark spots(bob).
can fly(bob).

26EXERCISE: What are the logical consequences of all the clauses?

72 CHAPTER 1. SETS, RELATIONS AND LOGIC

Figure 1.11: Graph representing ‘parent of’ relation.

However, monadic predicates: not expressive enough. While monadic predicates
lets us make statements like “Every son has a parent”:

∀X∃Y parent(Y) ← son(X)

for more complex relationships, we will need predicates of arity > 1. Usually,
relationships can be described pictorially by a directed acyclic graph (DAG)
as in Figure 1.11 The parent-child relation could also be specified as a set of
ordered pairs < X,Y >, or, as a set of definite clauses

parent(tom, jo) ←
parent(pam, jo) ←
parent(tom, liz) ←
parent(pam, liz) ←

Consider the predecessor relation, namely, all ordered tuples < X,Y > s.t.
X is an ancestor of Y . This set will include Y ’s parents, Y ’s grandparents, Y ’s
grandparents’ parents, etc.

pred(X, Y) ← parent(X, Y)
pred(X, Z) ← parent(X, Y), parent(Y, Z)
pred(X, Z) ← parent(X, Y 1), parent(Y 1, Y 2), parent(Y 2, Z)
. . .

As can be seen through this example, variables and constants are not enough:
we need recursion:

∀X, Z X is a predecessor of Z if
1. X is a parent of Z; or
2. X is a parent of some Y , and Y is a predecessor of Z

The predecessor relation is thus

pred(X,Y) ← parent(X,Y)
pred(X,Z) ← parent(X,Y), pred(Y, Z)

and can be pictorially depicted as in 1.12

1.4. FIRST-ORDER LOGIC 73

Figure 1.12: The predecessor relation.

Prolog = Predicates + Variables + Constants + Functions

Datalog (first order logic without functions) is however not expressive enough.
To express arithmetic operations, lists of objects, etc. it is not enough to simply
allow variables and constants as terms. We will also need function symbols as
supported in Prolog.

Consider Peano’s postulates for the set of natural numbers N .

1. The constant 0 is in N

2. if X is in N then s(X) is in N

3. There are no other elements in N

4. There is no X in N s.t. s(X) = 0

5. There are no X,Y in N s.t. s(X) = s(Y) and X 6= Y

We can write a definite clause definition using 1 constant symbol and 1 unary
function symbol for enumerating the elements of N :

natural(0) ←
natural(s(X)) ← natural(X)

The elements of N can be now generated by asking:

natural(N)?

Prolog also supports lists. Lists are simply collections of objects. For e.g.
1, 2, 3 . . . or 1, a, dog, Lists are defined as follows:

1. The constant nil is a list

2. If X is a term, and Y is a list then .(X,Y) is a list

So the list 1, 2, 3 is represented as:

74 CHAPTER 1. SETS, RELATIONS AND LOGIC

.(1, .(2, .(3, nil)))

Usually logic programming systems use a “[” “]” notation, in which the constant
nil is represented as [] and the list 1, 2, 3 is [1, 2, 3]. In this notation, the symbol
| is used to separate a list into a “head” (the elements to the left of the |) and
a “tail” (the list to the right of the |). Thus:

List Represented as Values of variables

[1, 2, 3] [X|Y] X = 1, Y = [2, 3]

[[1, 2], 3] [X|Y] X = [1, 2], Y = [3]

[1] [X|Y] X = 1, Y = []

[1|2] [X|Y] X = 1, Y = 2

[1] [X, Y]

[1, 2, 3] [X, Y |Z] X = 1, Y = 2, Z = [3]

1.4.4 Lattice of Herbrand Models

The discussion in this section is more or less similar to the discussion in Sec-
tion 1.3.8 and the reader is referred to the proofs in that Section for proofs of
most statements that will be made in this section. The only difference is that
while Section 1.3.8, in this section, we will talk about Herbrand models.

For a definite clausal formula, it can be shown that the set H of Herbrand
models is a complete lattice ordered by set-inclusion (that is, for Herbrand
models M1,M2 ∈ H, M1 �M2 if and only if M1 ⊆M2), and with the binary
operations of ∩ and ∪ as the glb and lub respectively. Recall that a complete
lattice has a unique least upper bound and a unique greatest lower bound. Since
we are really talking about sets that are ordered by set-inclusion, this means
that there is a a unique smallest one (the size being measured by the number of
elements). This is called the minimal model of the formula, and it can be shown
that this must be the intersection of all Herbrand models for the formula.

In the example above, Σ2
′ has several Herband models ({Nat(zero)} and

{Nat(zero), Nat(pred(zero))} are two examples). Of these {Nat(zero)} is the
smallest, and is the minimal model. There is an important result relating a
definite clausal formula Σ, its minimal model MM(Σ) and the ground atoms
that are logical consequences of Σ:

Theorem 17 If α is a ground atom then Σ |= α if and only if α ∈MM(Σ).

Here MM(·) denotes the minimal model. Thus, the minimal model of a definite
clausal formula is identical to the set of all ground atoms logically implied by
that formula. Thus, the minimal model provides, in effect, denotes the meaning
(or semantics) of the formula. The proof of this theorem follows nearly from
theorem 12 that was proved earlier.

We can envisage a procedure for enumerating the Herbrand models of a
formula. Consider the powerset of the Herbrand base of the formula. Now,

1.4. FIRST-ORDER LOGIC 75

we know that this powerset ordered by ⊆ necessarily forms a complete lattice,
with binary operations ∩ and ∪. Some subset of this powerset is the set of all
Herbrand models, which we know is also a lattice ordered by ⊆ with the same
binary operations. So, the model lattice is a sublattice of the lattice obtained
from the powerset of the Herbrand base. Suppose now we start at some point
s in this sublattice, and we move to a new point that consists only of those
ground atoms of the formula made true by the model s. Let us call these atoms
s1. Then, a little thought should convince you that s1 is also a member of the
sublattice of Herbrand models. Repeating the process with s2 we can move to
models s2, s3 and so on. Will this procedure converge eventually on the minimal
model? Not necessarily, since we could end up moving back-and-forth between
points of the sub-lattice. (When will this happen, and how can we ensure that
we do converge on the minimal model?).

A slightly more general process can be formalised as the application of a
function TP that, for a clausal formula P , generates an interpretation (not
necessarily a model) from another. That is:

Ik+1 = TP (Ik)

where
TP (I) = {a : a← body ∈ G(P) and body ∈ I}

where G(P) is the ground instantiation of P as before. It can be shown that TP

is both monotonic and continuous on the complete lattice obtained by ordering
the powerset of the Herbrand base by ⊆. So, we know from the Knaster-Tarski
Theorem mentioned on page 11, that there must be a least fixpoint for TP in
this lattice. We can prove that the procedure of obtaining Ik+1 from application
of TP to Ik will yield that fixpoint, and further, that this fixpoint will be the
minimal model. As an inference procedure though, it is not really very practical:
especially if all we needed to do is check if a particular atom was a logical
consequence. It gets worse if the minimal model is not finite, in which case the
procedure may not terminate in a finite number of steps. For all these reasons,
we will need to do better.

1.4.5 Inference

Consider the following set of clauses S:

likes(john, flowers) ←
likes(mary, food) ←
likes(mary, wine) ←
likes(john, wine) ←
likes(john, mary) ←
likes(paul, mary) ←

If you entered these clauses into a program capable of executing logic pro-
grams (some implementation of Prolog), and asked:

likes(john,X)?

76 CHAPTER 1. SETS, RELATIONS AND LOGIC

you will get a number of answers:

X = flowers

X = wine

X = mary

On the other hand, if the query were

likes(john,X), likes(mary,X)?

the answer should be:

X = wine

How this works will be examined in shortly. For now, consider likes(john,X)? .
An intuitive procedure will be:

1. Start search from 1st clause

2. Search for any clause whose head has predicate likes/2, and 1st argument
is john

3. If no clause is found return otherwise goto 4

4. X is associated (“instantiated”) with the 2nd argument of the head literal,
the clause position marked, and the value associated with X is output

5. Start search from clause marked, and goto 2

As in the propositional case, we will only be concerned here with the rule of
resolution. In a broad sense, this remains similar to its propositional counterpart
(page 29: it applies to clauses with a pair of complementary literals, and the
result (or resolvent) is a clause with the complementary pair removed. However
the intricacies of predicate logic require a bit more care. Take the following pair
of conditionals (and their clausal forms):

Conditional Clausal Form

∀x(Ape(x)← Human(x)) ∀x(Ape(x) ∨ ¬Human(x))

Human(fred)← Human(fred) ∨ ¬Human(father(fred))

Human(father(fred))

For resolution to apply, we require the clausal forms to contain a pair of com-
plementary literals. We nearly do have such a pair: ¬Human(x) in the first
clause and Human(fred) in the second. It is apparent that if variable x in the
first clause were to be restricted to the term fred, then we would indeed have
a complementary pair, and the resolvent is:

Resolvent Clausal Form

Ape(fred)← Ape(fred) ∨ ¬Human(father(fred))

Human(father(fred))

1.4. FIRST-ORDER LOGIC 77

A single resolution step in predicate logic thus involves ‘substituting’ terms for
variables so that a complementary pair of literals results. Here, such a pair would
result if we could somehow ‘match’ the literals Human(x) and Human(fred).
The resulting mapping of variables to terms is called the unifier of the two
literals. Thus, mapping x to fred is a unifier for the literals Human(x) and
Human(fred).

Substitution

More generally, a substitution is a mapping from variables to terms that is
usually denoted as θ = {v1/t1, v2/t2, . . . , vn/tn}. Applying a substition θ to a
well-formed formula α results in a substitution instance, usually denoted by αθ.
Thus, applying the substitution θ = {x/fred} to α : ∀x(Ape(x)∨¬Human(x))
results in the substitution instance αθ : (Ape(fred) ∨ ¬Human(fred)). We
usually require substitutions to have the following properties:

1. They should be functions. That is, each variable to the left of the / should
be distinct. Thus, {x/fred, x/bill} is not a legal substitution; and

2. They should be idempotent . That is, each term to the right of the /
should not contain a variable that appears to the left of the /. Thus,
{x/father(x)} is not a legal substitution. This test is sometimes called
the “occurs-check”. The occur-check disallows self-referential bindings
such as X/f(X). However, the temptation to omit the occur-check in
unification algorithms is very strong, owing to the high processing cost
of including it; it is the only test in the comparison cycle which has to
scrutinize the inner contents of terms, whereas all other tests examine only
the terms’ principal (outermost) symbols.

A pair of substitutions can be composed (‘joined together’). For example, com-
posing {x/father(y)} with {y/fred} results in {x/father(fred)}. In general,
the result of composing substitutions

θ1 = {u1/s1, . . . , um/sm}

θ2 = {v1/t1, . . . , vn/tn}

is (this may not be a legal substituition):

θ1 ◦ θ2 = {u1/s1θ2, . . . , um/smθ2} ∪ {vi/ti|vi 6∈ {u1, . . . , um}}

Theorem 18 If α is a universally quantified expression that is not a term (i.e.,
a literal or a conjunction or disjunction of literals), and θ is a substitution, then
the following holds: α |= αθ. For example, P (x)∨¬Q(y) |= P (a)∨¬Q(y), where
we have used the substitution {x/a}.

78 CHAPTER 1. SETS, RELATIONS AND LOGIC

Proof sketch: The proof for this example is easy: suppose I is a model, with
domain D, of P (x)∨¬Q(y). Then for all d1 ∈ D, and for all d2 ∈ D, IP (d1) = T
or IQ(d2) = F . Suppose a is mapped to domain element d by I, then for all
d ∈ D, IP (d) = T or IQ(d) = F . Hence I is a model of P (a) ∨ ¬Q(y). It is
clear that for different α or θ, a similar proof can always be given. Hence always
α |= αθ. 2

Unifiers

We are now in a position to state more formally the notion of unifiers. To
say that a substitution θ is a unifier for formulæ α1 and α2 means α1θ =
α2θ. However, there can be many unifiers. For example, the formulæ α1 :
∀x∀zParent(father(x), z) and α2 : ∀yParent(y, fred) have as unifiers θ1 =
{x/fred, y/father(fred), z/fred} and θ2 = {y/father(x), z/fred}. In the first
case α1θ1 = α2θ1 = Parent(father(fred), fred); and in the second case α1θ2 =
α2θ2 = ∀xParent(father(x), x). Notice that θ2 is, in some sense, more ‘general’
than θ1 as it imposes less severe constraints on the variables. There is, in fact,
a most general unifier (or mgu) for a pair of formulæ. The substitution θ is a
most general unifier for α1 and α2 if and only if:

1. α1θ = α2θ (that is, θ is a unifier for α1 and α2); and

2. For any other unifier σ for α1 and α2, there is a substitution µ such that
σ = θ ◦ µ (that is, α1σ is a substitution instance of α1θ).

In the example just shown, θ2 is the most general unifier.
Returning now to resolution, we can state the main steps involved for a pair

of clauses C1 and C2:

1. Rename all variables in clause C2 so that they cannot be confused with
those in C1 (for the variables in C2 are independent of those in C1 and
the renamed clause is equivalent to C2). This is sometimes called “stan-
dardising the clauses apart”;

2. Identify complementary literals and see if an mgu exists;

3. Apply mgu and form the resolvent C.

Here is an example:

Formula Clausal Form

C1 : ∀x(Ape(x)← Human(x)) ∀x(Ape(x) ∨ ¬Human(x))

C2 : ∀x(Human(x)← Human(father(x))) ∀x(Human(x) ∨ ¬Human(father(x)))

The 3 steps above are:

1. Standardise apart. The two clauses are now:

1.4. FIRST-ORDER LOGIC 79

C1 : ∀x(Ape(x) ∨ ¬Human(x))

C2 : ∀y(Human(y) ∨ ¬Human(father(y)))

2. Identify complementary literals and mgu. It is evident that ¬Human(x)
in C1 and Human(y) in C2 are complementary. Their mgu is θ = {x/y};

3. Apply mgu and form resolvent. The resolvent C is as shown below:

C : ∀x(Ape(x) ∨ ¬Human(father(x)))

As with propositional logic, the set-based notation used for clauses (page 60)
allows us to present resolution in a compact (algebraic) form:

R = (C1 − {L})θ ∪ (C2 − {M})θ

The difference to propositional logic is, of course, the appearance of θ, the
mgu of literals L and ¬M . In fact, there is another problem that we have
avoided. Suppose our clauses C1 and C2 are C1 : ∀x∀y(Human(x)∨Human(y))
and C2 : ∀u∀v(¬Human(u) ∨ ¬Human(v)). Now it is clear that {C1, C2} is
unsatisfiable. But, unfortunately, we will not be able to get to the empty clause
2 using resolution as we have just described it. Here is one possible resolvent:
R : ∀y∀v(Human(y)∨¬Human(v)). In fact, every possible resolvent of the two
clauses will contain two literals, as will resolvents using those resolvents, and so
on. What we really want to do is to eliminate redundant literals in any clause.
For example, C1 should really just be ∀xHuman(x) and C2 should really just be
∀uHuman(u). The procedure that removes redundant literals in this manner is
called factoring .

Factoring

Formally, if C is a clause, L1, . . . , Ln(n ≥ 1) some unifiable literals from C,
and θ an mgu for the set {L1, . . . , Ln}, then the clause obtained by deleting
L2θ, . . . , Lnθ from Cθ is called a factor of C. For example, Q(a) ∨ P (f(a))
is a factor of the clause ¬Q(a) ∨ P (f(a)) ∨ P (y) using {y/f(a)} as an mgu for
{P (f(a)), P (y)}. Also, Q(x)∨P (x, a) is a factor of Q(x)∨Q(y)∨Q(z)∨P (z, a).

Operationally, it finds a substitution that unifies one or more literals in
a clause, and retains only a single copy of the unified literals. Semantically
speaking, a literal L is redundant in a clause C, if it is equivalent to a clause
without that literal. That is C−{L} ≡ C. Note that every non-empty clause C
is a factor of C itself, using the empty substitution ∅ as mgu for one literal in C.
It can easily be shown if C ′ is a factor of C, then C |= C ′. We leave this to the
reader to prove27 From now on, we will assume that this elimination procedure
has been executed on clauses, and we are only dealing with their “factors”.

27Exercise.

80 CHAPTER 1. SETS, RELATIONS AND LOGIC

Resolution

The rule of resolution remains sound for clauses in the predicate logic. That is,
if C1 and C2 are clauses and R is a resolvent, then {C1, C2} |= R. The presence
of variables and substitutions makes the proof of this a little more involved.

Theorem 19 Suppose R is the result of resolving on literal L in C1 and M
in C2. Let θ be the most general unifier of L and ¬M that is used to obtain
R. Then, the soundness of a single step of resolution means {C1, C2} |= (C1 −
{L})θ ∪ (C2 − {M})θ.

Proof: Let M be a model for C1 and C2. Now, we know that either (a) Lθ is
true and Mθ is false in M ; or (b) Lθ is false and Mθ is true in M . Suppose the
former. Since M is a model for C2, it is a model for C2θ (based on theorem 18).
Therefore, at least one other literal (C2 − {M})θ must be true in M . In other
words, M is a model for (C1 − {L})θ ∪ (C2 − {M})θ. Case (b) similarly results
in M being a model for (C1 − {L})θ and hence for R. So, a single resolution
step is sound - the soundness of a proof consisting of several resolutions steps
can be shown quite easily using the technique of induction. 2

Recall the second property of resolution from propositional logic, namely
that of refutation-completeness. In other words, if a formula (or a set of for-
mulæ) is inconsistent, then the empty clause 2 is derivable by the use of reso-
lution. This property continues to hold for resolution in first-order logic. But
before we look at that, we revisit an important result.

1.4.6 Subsumption Revisited

Recall that in propositional logic, a clause C subsumed a clause D if C ⊆ D.
In first-order logic, this generalises as follows. A clause C subsumes a clause D
if there is some substitution θ such that Cθ ⊆ D. What does this mean? It
means that after applying the substitution θ to C, every literal in C appears in
D. Here are a pair of clauses C and D such that C subsumes D:

C : Primate(x)← Ape(x)

D : Primate(Henry)← Ape(Henry), Human(Henry)

Here, a substitution of θ = {x/Henry} applied to C makes Cθ ⊆ D. In general:

Theorem 20 If C and D are clauses such that Cθ ⊆ D for some substitution
θ, then C |= D.

Proof: Since C is a universally quantified formula, by theorem 18, we must have
C |= Cθ. Also, since clauses are disjunctions of literals and Cθ ⊆ D, clearly,
Cθ |= D and the result follows. 2

However, unlike propositional logic, the reverse does not hold. That is,
C |= D does not necessarily mean that C subsumes D. Here is an example of
this:

1.4. FIRST-ORDER LOGIC 81

C : Human(x)← Human(father(x))

D : Human(y)← Human(father(father(y)))

With a little thought (let us not get too entangled in the species problem here),
you should be able to convince yourself that C |= D. But you will find it
impossible to find a substitution θ that will make Cθ ⊆ D. What makes the
difference to the propositional case? The difference between implication and
subsumption in first-order logic arises because of self-recursive clauses of the
kind shown: a short, but influential paper by Georg Gottlob shows that it is
indeed only the self-recursive case that results in the difference.

1.4.7 Subsumption Lattice over Atoms

The subsumption relation is an example of a quasi-order. Let us take the simple
case of definite clauses with a single literal (that is, atoms). Consider the set A
of all atoms in some language, and A+ = A ∪ {>,⊥}. Let the binary relation
� be such that:

• > � l for all l ∈ A+

• l �⊥ for all l ∈ A+

• l � m iff there is a substitution θ such that lθ = m, for l,m ∈ A

We will represent a list of elements e1, . . . , en as the(as the language Prolog
does) by [e1, . . . , en], and let l = Mem(x, [x, y]) and m = Mem(1, [1, 2]) then
l � m with θ = {x/1, y/2}. It is easy to see that � is a quasi-order over A+:
clearly l � l, with the empty substitution θ = ∅ (that is, � is reflexive). Now,
let l �m and m � l. That is, there are some substitutions θ1 and θ2 such that
lθ1 = m and mθ2 = l. That is, (lθ1) ◦ θ2 = n. With θ = θ1 ◦ θ2 it follows that
l � l.

Since � is a quasi-order, we know a partial ordering must result from the
partition of A+ into a set of equivalence classes A+

E . In fact, the partitions are
{[>]}, {[⊥]}, X1, . . . where [l] denotes all atoms that are alphabetic variants28 of
l. That is, if l,m ∈ Xi then there are substitutions µ and σ s.t. lµ = m and
mσ = l. That is, � is a partial ordering over the set of equivalence classes of
atoms (A+

E). (Mem(x1, [x1, y1]),Mem(x2, [x2, y2]) . . . are examples of members
of an equivalence class.)

Recall that the difference between subsumption and implication in first-
order logic arose with the appearance of self-recursive clauses. Since there is no
possibility of this with atoms in first-order logic, subsumption and implication
are equivalent, and we can see that logical implication (models) over atoms is
also a quasi-order over atoms.

28Two atoms are subsume-equivalent iff they are variants. This is not true for clauses in

general.

