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Figure 1.1: The lattice structure of 〈S,�〉, where S is the power set of {a, b, c}.

• S is a set of sets, S1 � S2 means S1 ⊆ S2

• S = N , n1 � n2 means n1 = n2 or there is a n3 ∈ N such that n1+n3 = n2

• S is the set of equivalence relations E1, . . . over some set T , EL � EM

means for u, v ∈ T , uELv means uEMv (that is, (u, v) ∈ EL means
(u, v) ∈ EM ).

Given a set S = {a, b, . . .} if a ≺ b and there is no x ∈ S such that a ≺ x ≺ b

then we will say b covers a or that a is a downward cover of b. Now, suppose
Sdown be a set of downward covers of b ∈ S. If for all x ∈ S, x ≺ b implies
there is an a ∈ Sdown s.t. x � a ≺ b, then Sdown is said to be a complete set of
downward covers of b. Partially ordered sets are usually shown as diagrams like
in Figure 1.1.
The diagrams, as you can see, are graphs (sometimes called Hasse graphs or
Hasse diagrams). In the graph, vertices represent elements of the partially
ordered set. A vertex v2 is at a higher level than vertex v1 whenever v1 ≺ v2,
and there is an edge between the two vertices only if v2 covers v1 (that is, v2

is an immediate predecessor). The graph is therefore really a directed one, in
which there is a directed edge from a vertex v2 to v1 whenever v2 covers v1.
Also, since the relation is anti-symmetric, there can be no cycles. So, the graph
is a directed acyclic graph, or DAG.

In the diagram in Figure ?? on the left, S is the set of non-empty subsets
of {a, b, c} and � denotes the subset relationship (that is, S1 � S2 if and only
if S1 ⊂ S2). The diagram on the right is an example of a chain, or a totally

ordered set.
You should be able to see that a finite chain of length n can be put in a

one-to-one correspondence to a finite sequence of natural numbers (1, . . . , n)
(the correct way to say this is that a finite chain is isomorphic with a finite
sequence of natural numbers). In general, a partially ordered set S is a chain
if for every pair a, b ∈ S, a ≺ b or b ≺ a. There is a close relationship between
a partially ordered set and a chain. Suppose S is a partially ordered set. We
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can always associate a function f from the elements of S to N (the set of
natural numbers), so that if a ≺ b for a, b ∈ S, then f(a) < f(b). f is called
a consistent enumeration of S, and is not unique and we can use it to define a
chain consistent with S. (We will leave the proof of the existence a consistent
enumeration for you. One way would be to use the method of induction on
the number of elements in S: clearly there is such an enumeration for |S| = 1.
Assume that an enumeration exists for |S| = n− 1 and prove it for |S| = n.)

Some elements of a partially ordered set have special properties. Let < S,�>

be a p.o. set and T ⊆ S. Then (in the following, you should read the symbol ∃
as being shorthand for “there exists”, and ∀ as “for all”):

− Least element of T − Greatest element of T

a ∈ T s.t. ∀t ∈ T a � t a ∈ Ts.t. ∀t ∈ T a � t

− Least element, if it exists, − Greatest element, if it exists

is unique. If T = S this is is unique. If T = S then this is

the “zero” element the “unity” element

− Minimal element of T − Maximal element of T

a ∈ T 6 ∃t ∈ T s.t. t ≺ a a ∈ T 6 ∃t ∈ T s.t. t ≻ a

− Minimal element need − Maximal element need

not be unique not be unique

− Lower bound of T − Upper bound of T

b ∈ S s.t. b � t ∀t ∈ T b ∈ S s.t. b � t ∀t ∈ T

− Glb g of T − Lub g of T

b � g ∀b, g : lbs of T b � g ∀b, g : ubs of T

− If it exists, the glb is unique − If it exists the lub is unique

As you would have observed, there is a difference between a least element and
a minimal element (and correspondingly, between greatest and maximal ele-
ments). The requirement of a minimal (maximal) upper bound is, in some
sense, a weakening of the requirement of a least (greatest) upper bound. If x

and y are both lub’s of some set T ⊆ S, then y � x and z � y, so then x ≈ y.
This means that all lub’s of T are equivalent. Dually, if x and y are glb’s of some
T , then also x ≈ y. Thus, if a least element exists, then it is unique: this is not
necessarily the case with a minimal element. Also, least and greatest elements
must belong to the set T , but lower and upper bounds need not.
For this example, S has: (1) one upper bound b; (2) no lower bound; (3) a
greatest element b; (4) no least element; (5) no greatest lower bound; (6) two
minimal elements a and e; and (7) one maximal element b. Can you identify
what the corresponding statements are for T?
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Figure 1.2: {a, b} has no lub here.

The glb and lub are sometimes also taken to be binary operations on a
partially ordered set S, that assigns to an ordered pair in S2 the corresponding
glb or lub. The first operation is called the product or meet and is denoted by ·
or ⊓. The second operation is sometimes called the sum or join and is denoted
by + or ⊔.

In a quasi-ordered set, a subset need not have a lub or glb. We will take an
example to illustrate this. Let S = {a, b, c, d}, and let � be defined as a � c,
b � c, a � d and d � b. Then since c and d are incomparable, the set a, b has
no lub in this quasi-order. See Figure 1.2.

Similarly, a set need not have a maximal or a minimal, nor upward or down-
ward covers. For instance, let S be the infinite set {y, xl, x2, x3, . . .}, and let �
be a quasi-order on S, defined as y ≺ . . . xn+1 ≺ xn ≺ . . . ≺ x2 ≺ x1. Then
there is no upward cover of y: for every xn, there always is an xn+l such that
y ≺ xn+1 ≺ xn. In this case, y has no complete set of upward covers.

Note that a complete set of upward covers for y need not contain all upward
covers of y. However, in order to be complete, it should contain at least one
element from each equivalence class of upward covers. On the other hand,
even the set of all upward covers of y need not be complete for y. For the
example given above, the set of all upward covers of y is empty, but obviously
not complete.

A notion of some relevance later is that of a function f defined on a partially
ordered set < S,�>. Specifically, we would like to know if the function is: (a)
monotonic; and (b) continuous. Monotonicity first:

A function f on < S,�> is monotonic if and only if for all u, v ∈ S,
u � v means f(u) � f(v)

Now, suppose a subset S1 of S have a least upper bound lub(S1) (with some
abuse of notation: here lub(X) is taken to be the lub of the elements in set X).
Such subsets are called “directed” subsets of S. Then:

A function f on < S,�> is continuous if and only if for all directed
subsets Si of S, f(lub(Si)) = lub({f(x) : x ∈ Si}).



12 CHAPTER 1. SETS, RELATIONS AND LOGIC

That is, if a directed set Si has a least upper bound lub(Si), then the set
obtained by applying a continuous function f to the elements of Si has least
upper bound f(lub(Si)). Functions that are both monotonic and continuous on
some partially ordered set < S,�> are of interest to us because they can be
used, for some kinds of orderings, to guarantee that for some s ∈ S, f(s) = s.
That is, f is said to have a “fixpoint”.

Lattices

A lattice is just a partially ordered set < S,�> in which every pair of elements
a, b ∈ S has a glb (represented by ⊓) and a lub (represented by ⊔). From the
definitions of lower and upper bounds, we are able to show that in any such
partially ordered set, the operations will have the following properties:

• a ⊓ b = b ⊓ a, and a ⊔ b = b ⊔ a (that is, they are are commutative).

• a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c, and a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c (that is, they are
associative).

• a ⊓ (a ⊔ b) = a, and a ⊔ (a ⊓ b) = a (that is, they are “absorptive”).

• a ⊓ b = a and a ⊔ b = b.

We will not go into all the proofs here, but show one for illustration. Since a⊓ b

is the glb of a and b, a⊓b � a. Clearly then a⊔ (a⊓b), which is the lub of a and
a ⊓ b, is a. This is one of the absorptive properties above. You should also be
able to see, from these properties, that a lattice can also be seen simply as an
algebra with two binary operations ⊓ and ⊔ that are commutative, associative
and absorptive.

Theorem 3 A lattice is an algebra with the binary operations of ⊔ and ⊓.

Here is an example of a lattice: let S be all the subsets of {a, b, c}, and for
X, Y ∈ S, X � Y means X ⊆ Y , X ⊓Y = X ∩Y and X ⊔Y = X ∪Y . Then
< S,⊆> is a lattice. The empty set ∅ is the zero element, and S is the unity
element of the lattice. More generally, a lattice that has a zero or least element
(which we will denote ⊥), and a unity or greatest element (which we will denote
⊤) is called a bounded lattice. In such lattices, the following necessarily hold:
a ⊔ ⊤ = ⊤; a ⊓ ⊤ = a; a ⊔ ⊥ = a; and a ⊓ ⊥ = ⊥. A little thought should
convince you that a finite lattice will always be bounded: if the lattice is the
set S = {a1, . . . , an} then ⊤ = a1 ⊔ · · · ⊔ an and ⊥ = a1 ⊓ · · · ⊓ an. (But, does
the reverse hold: will a bounded lattice always be finite?)

Two properties of subsets of lattices are of interest to us. First, a subset
M of a lattice L is called a sublattice of L if M is also closed under the same
binary operations of ⊔ and ⊓ defined for L (that is, M is a lattice with the
same operations as those of L). Second, if a lattice L has the property that
every subset of L has a lub and a glb, then the L is said to be a complete

lattice. Clearly, every finite lattice is complete. Further, since every subset of


