$C: Human(x) \leftarrow Human(father(x))$ $D: Human(y) \leftarrow Human(father(father(y)))$

With a little thought (let us not get too entangled in the species problem here), you should be able to convince yourself that $C \models D$. But you will find it impossible to find a substitution θ that will make $C\theta \subseteq D$. What makes the difference to the propositional case? The difference between implication and subsumption in first-order logic arises because of self-recursive clauses of the kind shown: a short, but influential paper by Georg Gottlob shows that it is indeed only the self-recursive case that results in the difference.

1.4.7 Subsumption Lattice over Atoms

The subsumption relation is an example of a quasi-order. Let us take the simple case of definite clauses with a single literal (that is, atoms). Consider the set \mathcal{A} of all atoms in some language, and $\mathcal{A}^+ = \mathcal{A} \cup \{\top, \bot\}$. Let the binary relation \succeq be such that:

- $\bullet \ \top \succeq l \ {\rm for \ all} \ l \in \mathcal{A}^+$
- $\bullet \ l \succeq \perp \ {\rm for \ all} \ l \in \mathcal{A}^+$
- $\mathbf{l} \succeq m$ iff there is a substitution θ such that $\mathbf{l}\theta = m$, for $\mathbf{l}, \mathbf{m} \in \mathcal{A}$

We will represent a list of elements e_1, \ldots, e_n as the (as the language Prolog does) by $[e_1, \ldots, e_n]$, and let $\mathbf{l} = Mem(x, [x, y])$ and $\mathbf{m} = Mem(1, [1, 2])$ then $\mathbf{l} \succeq \mathbf{m}$ with $\theta = \{x/1, y/2\}$. It is easy to see that \succeq is a quasi-order over \mathcal{A}^+ : clearly $\mathbf{l} \succeq \mathbf{l}$, with the empty substitution $\theta = \emptyset$ (that is, \succeq is reflexive). Now, let $\mathbf{l} \succeq \mathbf{m}$ and $\mathbf{m} \succeq \mathbf{l}$. That is, there are some substitutions θ_1 and θ_2 such that $\mathbf{l}\theta_1 = \mathbf{m}$ and $\mathbf{m}\theta_2 = \mathbf{l}$. That is, $(\mathbf{l}\theta_1) \circ \theta_2 = n$. With $\theta = \theta_1 \circ \theta_2$ it follows that $\mathbf{l} \succeq \mathbf{l}$.

Since \succeq is a quasi-order, we know a partial ordering must result from the partition of \mathcal{A}^+ into a set of equivalence classes \mathcal{A}_E^+ . In fact, the partitions are $\{[\top]\}, \{[\bot]\}, X_1, \ldots$ where [l] denotes all atoms that are alphabetic variants²⁸ of l. That is, if $\mathbf{l}, \mathbf{m} \in X_i$ then there are substitutions μ and σ s.t. $\mathbf{l}\mu = \mathbf{m}$ and $\mathbf{m}\sigma = \mathbf{l}$. That is, \succeq is a partial ordering over the set of equivalence classes of atoms (\mathcal{A}_E^+) . $(Mem(x_1, [x_1, y_1]), Mem(x_2, [x_2, y_2]) \ldots$ are examples of members of an equivalence class.)

Recall that the difference between subsumption and implication in firstorder logic arose with the appearance of self-recursive clauses. Since there is no possibility of this with atoms in first-order logic, subsumption and implication are equivalent, and we can see that logical implication (*models*) over atoms is also a quasi-order over atoms.

 $^{^{28}\}mathrm{Two}$ atoms are subsume-equivalent iff they are variants. This is not true for clauses in general.

As soon as we have a quasi-order, we can effectively construct a partial-order over equivalence classes. So, the quasi-order of subsumption over atoms results in a partial order over equivalence classes of atoms. In fact, \mathcal{A}_E^+ is a lattice with the binary operations \sqcap and \sqcup defined on elements of \mathcal{A}_E^+ as follows (here, we have used $[\cdot]$ to represent an equivalence class):

- $[\bot] \sqcap [\mathbf{l}] = [\bot]$, and $[\top] \sqcap [\mathbf{l}] = [\mathbf{l}]$
- If $\mathbf{l}_1, \mathbf{l}_2 \in \mathcal{A}$ have a most general unifier (see page 78) θ then $[\mathbf{l}_1] \sqcap [\mathbf{l}_2] = [\mathbf{l}_1 \theta] = [\mathbf{l}_2 \theta]$.

This can be proved as follows. Let $[\mathbf{u}] \in \mathcal{A}_E^+$ such that $[\mathbf{l}_1] \succeq [u]$ and $[\mathbf{l}_2] \succeq [\mathbf{u}]$, then we need to show that $[\mathbf{l}_1\theta] \succeq [\mathbf{u}]$. If $[\mathbf{u}] = [\bot]$, this is obvious. If $[\mathbf{u}]$ is conventional, then there are substitutions σ_1 and σ_2 such that $[\mathbf{l}_1\sigma_1] = [\mathbf{u}] = [\mathbf{l}_2\sigma_2]$. Here we can assume σ_1 only acts on variables in \mathbf{l}_1 , and σ_2 only acts on variables in \mathbf{l}_2 . Let $\sigma = \sigma_1 \cup \sigma_2$. Notice that σ is a unifier for $\{[\mathbf{l}_1], [\mathbf{l}_2]\}$. Since θ is an mgu for $\{[\mathbf{l}_1\sigma_1], [\mathbf{l}_2\sigma_2]\}$, there is a γ such that $\theta\gamma = \sigma$. Now $[\mathbf{l}_1\theta\gamma] = [\mathbf{l}_1\sigma] = [\mathbf{l}_1\sigma_1] = [\mathbf{u}]$, so $[\mathbf{l}_1\theta] \succeq [\mathbf{u}]$.

• If $\mathbf{l}_1, \mathbf{l}_2 \in \mathcal{A}$ do not have a most general unifier θ then $[\mathbf{l}_1] \sqcap [\mathbf{l}_2] = [\bot]$.

Since \mathbf{l}_1 and \mathbf{l}_2 are not unifiable, there is no conventional atom \mathbf{u} such that $[\mathbf{l}_1] \succeq [\mathbf{u}]$ and $[\mathbf{l}_2] \succeq [\mathbf{u}]$. Hence $[\mathbf{l}_1] \sqcap [\mathbf{l}_2] = [\bot]$.

- $[\bot] \sqcup [\mathbf{l}] = [\mathbf{l}]$, and $[\top] \sqcup [\mathbf{l}] = [\top]$
- If l_1 and l_2 have an "anti-unifier" **m** then $[l_1] \sqcup [l_2] = [\mathbf{m}]$; otherwise $[l_1] \sqcup [l_2] = [\top]$

Henceforth, we will drop the square backets $[\cdot]$ to denote equivalence classes and will instead implicitly assume their presence. The "anti-unifier" in the join operation is not something we have come across before, and needs some explanation. To get started, let us look at the atom Mem(1, [1, 2]). The list [1, 2]written out in long-hand is really a term composed of the constants 1, 2 and the empty list, which we will denote by the constant *nil*. That is, [1, 2] is really the term list(1, list(2, list(nil))), where list is a function, and Mem(1, [1, 2]) is really Mem(1, list(1, list(2, nil))). Now, we can devise a "term-place" notation to identify the occurrence of each term in any atom. In Mem(1, list(1, list(2, nil))), the 1 is a term that occurs in two places: in the first argument (or "place") of Mem, and as the first argument of the second place of Mem. We can denote these two occurrences as $(1, \langle 1 \rangle)$ and $(1, \langle 2, 1 \rangle)$. Similarly, we can encode the occurrences of other terms: $(2, \langle 2, 2, 1 \rangle)$ and $(nil, \langle 2, 2, 2 \rangle)$.

You should convince yourself that the occurrence of every term t in an atom can indeed be represented by the pair (t, p), where p is a sequence of places. We now have all we need to be able to describe the anti-unification algorithm for a pair of literals with the same predicate symbol (adapted from Plotkin, 1970):

Input: A pair of atoms l_1 and l_2 with the same predicate symbol

Output: $\mathbf{l}_1 \sqcup \mathbf{l}_2$

- 1. Let $\mathbf{l} = \mathbf{l}_1$ and $\mathbf{m} = \mathbf{l}_2$, $\theta = \emptyset$, $\sigma = \emptyset$
- 2. If $\mathbf{l} = \mathbf{m}$ return \mathbf{l} and stop.
- 3. Try to find terms t_1 and t_2 that have the same (leftmost) place in **l** and **m** respectively, such that $t_1 \neq t_2$ and either t_1 and t_2 begin with different function symbols, or at least one of them is a variable.
- 4. If there is no such t_1, t_2 , return **l** and stop.
- 5. Choose a variable x that does not occur in either l or m and wherever t_1 and t_2 occur in the same place in l and m, replace each of them by x
- 6. Set θ to $\theta \cup \{x/t_1\}$ and σ to $\sigma \cup \{x/t_2\}$
- 7. Go to Step 3

The Table 1.1 shows the progressive construction of lubs starting with terms and culminating in literals.

Lub	Definition	Examples
$\fboxlub of terms \\ lub(t_1, t_2)$	 lub(t, t) = t, lub(f(s1,,sn), f(t1,,tn)) = f(lub(s1,t1),,lub(sn,tn)), lub(f(s1,,sm), g(t1,,tn)) = V, where f ≠ g, and V is a variable which represents lub(f(s1,,sm), g(t1,,tn)), lub(s, t) = V, where s ≠ t and at least one of s and t is a variable; in this case, V is a variable which represents lub(s, t). 	 lub([a, b, c], [a, c, d]) = [a, X, Y]. lub(f(a, a), f(b, b)) = f(lub(a, b), lub(a, b)) = f(V, V) where V stands for lub(a, b). When computing lggs one must be careful to use the same variable for multiple occurrences of the lubs of subterms, <i>i.e.</i>, lub(a, b) in this example. This holds for lubs of terms, atoms and clauses alike.
$\begin{bmatrix} lub & of & atoms \\ lub(\mathbf{a}_1, \mathbf{a}_2) \end{bmatrix}$	 lub(P(s₁,,s_n), P(t₁,,t_n)) = P(lub(s₁,t₁),,lub(s_n,t_n)), if atoms have the same predicate symbol P, lub(P(s₁,,s_m), Q(t₁,,t_n)) is unde- fined if P ≠ Q. 	
lub of literals $lub(l_1, l_2)$	 if l₁ and l₂ are atoms, then lub(l₁, l₂) is computed as defined above, if both l₁ and l₂ are negative literals, l₁ = a if both l₁ and l₂ are negative literals, l₁ = a l₂ = a then lub(l₁, l₂) = lub(a if l₁ is a positive and l₂ is a negative literal, or vice versa, lub(l₁, l₂) is undefined. 	 lub(Parent(ann, mary), Parent(ann, tom)) = Parent(ann, X). lub(Parent(ann, mary), Parent(ann, tom)) = undefined. lub(Parent(ann, X), Daughter(mary, ann)) = undefined.

Table 1.1: Table showing progressive definitions of lubs, starting with terms and culminating in literalss.

Let us look at an example of constructing the anti-unifier of Mem(1, [1, 2])and Mem(2, [2, 4]. That is, $\mathbf{l}_1 = Mem(1, list(1, list(1, list(2, nil))))$ and $\mathbf{l}_2 = Mem(2, list(2, list(2, list(4, nil))))$. You should be able to work through the

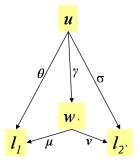


Figure 1.13: Illustration of the proof of theorem 22.

steps of the algorithm to find that it terminates with $\mathbf{l} = \mathbf{m} = Mem(x, list(x, list(y, nil)))$ with $\theta = \{x/1, y/2\}$ and $\sigma = \{x/2, y/4\}$.

But is the procedure correct? That is, does it really return a lub of a pair of atoms \mathbf{l}_1 and \mathbf{l}_2 ? Suppose the procedure returned an atom \mathbf{l} , and let $\theta = \{x_1/s_1, \ldots, x_k/s_k\}$ and $\sigma = \{x_1/t_1, \ldots, x_k/t_k\}$. That is $\mathbf{l}\theta = \mathbf{l}_1$ and $\mathbf{l}\sigma = \mathbf{l}_2$. Now suppose there is some other atom \mathbf{l}' such that $\mathbf{l}' \succeq \mathbf{l}_1$ and $\mathbf{l}' \succeq \mathbf{l}_2$. Then, we have to show that $\mathbf{l}' \succeq \mathbf{l}$ for any such \mathbf{l}' .

The proof of this is a bit laborious and will dealt with subsequently. The truth of the next lemma is easy to see:

Theorem 21 After each iteration of the Anti-Unification Algorithm, there are terms s_1, \ldots, s_i and t_1, \ldots, t_i such that:

- 1. $\theta = \{z_1/s_1, \dots, z_i/s_i\}$ and $\sigma = \{z_1/t_1, \dots, z_i/t_i\}.$
- 2. $\mathbf{l}\theta = \mathbf{l}_1$ and $\mathbf{m}\sigma = \mathbf{l}_2$.
- 3. For every $1 \leq j \leq i$, s_j and t_j differ in their first symbol.
- 4. There are no $1 \leq j, k \leq i$ such that $j \neq k, s_j = s_k$ and $t_j = t_k$.

Theorem 22 Let \mathbf{l}_1 and \mathbf{l}_2 be two atoms with the same predicate symbol. Then the Anti- Unification Algorithm with \mathbf{l}_1 and \mathbf{l}_2 as inputs returns $\mathbf{l}_1 \sqcup \mathbf{l}_2$.

Proof: It is easy to see that the algorithm terminates after a finite number of steps, for any \mathbf{l}_1 , \mathbf{l}_2 . Let \mathbf{u} be the atom that the algorithm returns, and let $\theta = \{z_1/s_1, \ldots, z_i/s_i\}$ and $\sigma = \{z_1/t_1, \ldots, z_i/t_i\}$ be the final values of θ and σ in the computation of \mathbf{u} (so \mathbf{u} equals the final values of \mathbf{l} and \mathbf{m} in the execution of the algorithm). Then $\mathbf{u}\theta = \mathbf{l}_1$ and $\mathbf{u}\sigma = \mathbf{l}_2$ by Theorem 21, part 2. Suppose \mathbf{v} is an atom such that $\mathbf{v} \succeq \mathbf{l}_1$ and $\mathbf{v} \succeq \mathbf{l}_2$. In order to show that $\mathbf{u} = \mathbf{l}_1 \sqcup \mathbf{l}_2$, we have to prove $\mathbf{v} \succeq \mathbf{u}$.

Let $\mathbf{w} = \mathbf{u} \sqcap \mathbf{v}$, which exists by the proof on page 82. Then $\mathbf{u} \succeq \mathbf{w}$ and $\mathbf{v} \succeq \mathbf{w}$. Since $\mathbf{w} = \mathbf{u} \sqcap \mathbf{v}$, $\mathbf{u} \succeq \mathbf{l}_1$ and $\mathbf{v} \succeq \mathbf{l}_1$, we must have $\mathbf{w} \succeq \mathbf{l}_1$. Similarly

 $\mathbf{w} \succeq \mathbf{l}_2$. Thus there are substitutions γ, μ, ν , such that $\mathbf{u}\gamma = \mathbf{w}, \mathbf{l}_1 = \mathbf{w}\mu = \mathbf{u}\gamma\mu$ and $\mathbf{l}_2 = \mathbf{w}\nu = \mathbf{u}\gamma\nu$. Then $\mathbf{u}\theta = \mathbf{l}_1 = \mathbf{u}\gamma\mu$ and $\mathbf{u}\sigma = \mathbf{l}_2 = \mathbf{u}\gamma\nu$ (see Figure 1.13 for illustration). Hence, if x is a variable occurring in \mathbf{u} , then $x\theta = x\gamma\mu$ and $x\sigma = x\gamma\nu$.

We will now show that \mathbf{u} and $\mathbf{w} = \mathbf{u}\gamma$ are variants, by showing that γ is a renaming substitution for \mathbf{u} . Suppose it is not. Then γ maps some variable x in \mathbf{u} to a term that is not a variable, or γ unifies two distinct variables x, y in \mathbf{u} .

Suppose x is a variable in **u**, such that $x\gamma = t$, where t is a term that is not a variable. If x is not one of the z_j 's, then $x\gamma\mu = x\theta = x$, contradicting the assumption that $x\gamma = t$ is not a variable. But on the other hand, if x equals some z_j , then $t\mu = x\gamma\mu = x\theta = s_j$ and $t\nu = x\gamma\nu = x\sigma = t_j$. Then s_j and t_j would both start with the first symbol of t, contradicting theorem 21, part 3. So this case leads to a contradiction.

Suppose x and y are distinct variables in **u** such that γ unifies x and y. Then,

- 1. If neither x nor y is one of the z_j 's, then $x\gamma\mu = x\theta = x \neq y = y\theta = y\gamma\mu$, contradicting $x\gamma = y\gamma$
- 2. If x equals some z_j and y does not, then $x\gamma\mu = x\theta = s_j$ and $x\gamma\nu = x\sigma = t_j$, so $x\gamma\mu \neq x\gamma\nu$ by theorem 21, part 3. But $y\gamma\mu = y\theta = y = y\sigma = y\gamma\nu$, contradicting $x\gamma = y\gamma$.
- 3. Similarly for the case where y equals some z_i and x does not.
- 4. If $x = z_j$ and $y = z_k$, then $j \neq k$, since $x \neq y$. Furthermore, $s_j = x\theta = x\gamma\mu = y\gamma\mu = y\theta = s_k$ and $t_j = x\sigma = x\gamma\nu = y\gamma\nu = y\sigma = t_k$. But this contradicts theorem 21, part 4.

Thus, the assumption that γ unifies two variables in **u** also leads to a contradiction. Thus γ is a renaming substitution for **u**, and hence **u** and **w** are variants. Finally, since $\mathbf{v} \succeq \mathbf{w}$, we have $\mathbf{v} \succeq \mathbf{u}$. \Box

It is however a more straightforward matter to see the following:

Theorem 23 If \mathcal{A}_E^+ is a set of equivalance classes of atoms \mathcal{A} augmented by the two elements \top and \bot , then for any pair of elements $\mathbf{l}_1, \mathbf{l}_2 \in \mathcal{A}_E^+$, $\mathbf{l}_1 \sqcup \mathbf{l}_2$ always exists.

Proof: The possibilities for each of \mathbf{l}_1 and \mathbf{l}_2 are that they are either: (1) some variant of \top ; (2) some variant of \perp ; or (3) an atom from S. It can be verified that $\mathbf{l}_1 \sqcap \mathbf{l}_2$ is defined in all 9 cases.

- 1. If $\mathbf{l}_1 = \top$ or $\mathbf{l}_2 = \top$, then $\mathbf{l}_1 \sqcup \mathbf{l}_2 = \top$. If $\mathbf{l}_1 = \bot$, then $\mathbf{l}_1 \sqcup \mathbf{l}_2 = \mathbf{l}_2$. If $\mathbf{l}_2 = \bot$, then $\mathbf{l}_1 \sqcup \mathbf{l}_2 = \mathbf{l}_1$.
- 2. If l_1 and l_2 are conventional atoms with the same predicate symbol, $l_1 \sqcup l_2$ is given by the Anti-Unification Algorithm.