
1.4. FIRST-ORDER LOGIC 81

C : Human(x)← Human(father(x))

D : Human(y)← Human(father(father(y)))

With a little thought (let us not get too entangled in the species problem here),
you should be able to convince yourself that C |= D. But you will find it
impossible to find a substitution θ that will make Cθ ⊆ D. What makes the
difference to the propositional case? The difference between implication and
subsumption in first-order logic arises because of self-recursive clauses of the
kind shown: a short, but influential paper by Georg Gottlob shows that it is
indeed only the self-recursive case that results in the difference.

1.4.7 Subsumption Lattice over Atoms

The subsumption relation is an example of a quasi-order. Let us take the simple
case of definite clauses with a single literal (that is, atoms). Consider the set A
of all atoms in some language, and A+ = A ∪ {⊤,⊥}. Let the binary relation
� be such that:

• ⊤ � l for all l ∈ A+

• l �⊥ for all l ∈ A+

• l � m iff there is a substitution θ such that lθ = m, for l,m ∈ A

We will represent a list of elements e1, . . . , en as the(as the language Prolog
does) by [e1, . . . , en], and let l = Mem(x, [x, y]) and m = Mem(1, [1, 2]) then
l � m with θ = {x/1, y/2}. It is easy to see that � is a quasi-order over A+:
clearly l � l, with the empty substitution θ = ∅ (that is, � is reflexive). Now,
let l �m and m � l. That is, there are some substitutions θ1 and θ2 such that
lθ1 = m and mθ2 = l. That is, (lθ1) ◦ θ2 = n. With θ = θ1 ◦ θ2 it follows that
l � l.

Since � is a quasi-order, we know a partial ordering must result from the
partition of A+ into a set of equivalence classes A+

E . In fact, the partitions are
{[⊤]}, {[⊥]}, X1, . . . where [l] denotes all atoms that are alphabetic variants28 of
l. That is, if l,m ∈ Xi then there are substitutions µ and σ s.t. lµ = m and
mσ = l. That is, � is a partial ordering over the set of equivalence classes of
atoms (A+

E). (Mem(x1, [x1, y1]), Mem(x2, [x2, y2]) . . . are examples of members
of an equivalence class.)

Recall that the difference between subsumption and implication in first-
order logic arose with the appearance of self-recursive clauses. Since there is no
possibility of this with atoms in first-order logic, subsumption and implication
are equivalent, and we can see that logical implication (models) over atoms is
also a quasi-order over atoms.

28Two atoms are subsume-equivalent iff they are variants. This is not true for clauses in

general.



82 CHAPTER 1. SETS, RELATIONS AND LOGIC

As soon as we have a quasi-order, we can effectively construct a partial-order
over equivalence classes. So, the quasi-order of subsumption over atoms results
in a partial order over equivalence classes of atoms. In fact, A+

E is a lattice with
the binary operations ⊓ and ⊔ defined on elements of A+

E as follows (here, we
have used [·] to represent an equivalence class):

• [⊥] ⊓ [l] = [⊥], and [⊤] ⊓ [l] = [l]

• If l1, l2 ∈ A have a most general unifier (see page 78) θ then [l1] ⊓ [l2] =
[l1θ] = [l2θ].

This can be proved as follows. Let [u] ∈ A+

E such that [l1] � [u] and
[l2] � [u], then we need to show that [l1θ] � [u]. If [u] = [⊥], this is
obvious. If [u] is conventional, then there are substitutions σ1 and σ2

such that [l1σ1] = [u] = [l2σ2]. Here we can assume σ1 only acts on
variables in l1, and σ2 only acts on variables in l2. Let σ = σ1∪σ2. Notice
that σ is a unifier for {[l1], [l2]}. Since θ is an mgu for {[l1σ1], [l2σ2]}, there
is a γ such that θγ = σ. Now [l1θγ] = [l1σ] = [l1σ1] = [u], so [l1θ] � [u].

• If l1, l2 ∈ A do not have a most general unifier θ then [l1] ⊓ [l2] = [⊥].

Since l1 and l2 are not unifiable, there is no conventional atom u such that
[l1] � [u] and [l2] � [u]. Hence [l1] ⊓ [l2] = [⊥].

• [⊥] ⊔ [l] = [l], and [⊤] ⊔ [l] = [⊤]

• If l1 and l2 have an “anti-unifier” m then [l1] ⊔ [l2] = [m]; otherwise
[l1] ⊔ [l2] = [⊤]

Henceforth, we will drop the square backets [·] to denote equivalence classes
and will instead implicitly assume their presence. The “anti-unifier” in the
join operation is not something we have come across before, and needs some
explanation. To get started, let us look at the atom Mem(1, [1, 2]). The list [1, 2]
written out in long-hand is really a term composed of the constants 1, 2 and the
empty list, which we will denote by the constant nil. That is, [1, 2] is really the
term list(1, list(2, list(nil))), where list is a function, and Mem(1, [1, 2]) is really
Mem(1, list(1, list(2, nil))). Now, we can devise a “term-place” notation to
identify the occurrence of each term in any atom. In Mem(1, list(1, list(2, nil))),
the 1 is a term that occurs in two places: in the first argument (or “place”) of
Mem, and as the first argument of the second place of Mem. We can denote
these two occurrences as (1, 〈1〉) and (1, 〈2, 1〉). Similarly, we can encode the
occurrences of other terms: (2, 〈2, 2, 1〉) and (nil, 〈2, 2, 2〉).

You should convince yourself that the occurrence of every term t in an atom
can indeed be represented by the pair (t, p), where p is a sequence of places. We
now have all we need to be able to describe the anti-unification algorithm for a
pair of literals with the same predicate symbol (adapted from Plotkin, 1970):

Input: A pair of atoms l1 and l2 with the same predicate symbol

Output: l1 ⊔ l2



1.4. FIRST-ORDER LOGIC 83

1. Let l = l1 and m = l2, θ = ∅, σ = ∅

2. If l = m return l and stop.

3. Try to find terms t1 and t2 that have the same (leftmost) place in l

and m respectively, such that t1 6= t2 and either t1 and t2 begin with
different function symbols, or at least one of them is a variable.

4. If there is no such t1, t2, return l and stop.

5. Choose a variable x that does not occur in either l or m and wherever
t1 and t2 occur in the same place in l and m, replace each of them
by x

6. Set θ to θ ∪ {x/t1} and σ to σ ∪ {x/t2}

7. Go to Step 3

The Table 1.1 shows the progressive construction of lubs starting with terms
and culminating in literals.

Lub Definition Examples

lub of terms
lub(t1, t2)

1. lub(t, t) = t,

2. lub(f(s1, . . . , sn), f(t1, . . . , tn)) =
f(lub(s1, t1), . . . , lub(sn, tn)),

3. lub(f(s1, . . . , sm), g(t1, . . . , tn)) = V , where
f 6= g, and V is a variable which represents
lub(f(s1, . . . , sm), g(t1, . . . , tn)),

4. lub(s, t) = V , where s 6= t and at least one of s

and t is a variable; in this case, V is a variable
which represents lub(s, t).

• lub([a, b, c], [a, c, d]) = [a, X, Y ].

• lub(f(a, a), f(b, b)) = f(lub(a, b), lub(a, b)) =
f(V, V ) where V stands for lub(a, b).

• When computing lggs one must be careful to
use the same variable for multiple occurrences
of the lubs of subterms, i.e., lub(a, b) in this
example. This holds for lubs of terms, atoms
and clauses alike.

lub of atoms
lub(a1, a2)

1. lub(P (s1, . . . , sn), P (t1, . . . , tn)) =
P (lub(s1, t1), . . . , lub(sn, tn)), if atoms
have the same predicate symbol P ,

2. lub(P (s1, . . . , sm), Q(t1, . . . , tn)) is unde-
fined if P 6= Q.

lub of literals
lub(l1, l2)

1. if l1 and l2 are atoms, then lub(l1, l2) is com-
puted as defined above,

2. if both l1 and l2 are negative literals, l1 = a1,
l2 = a2, then lub(l1, l2) = lub(a1, a2) =

lub(a1, a2),

3. if l1 is a positive and l2 is a negative literal, or
vice versa, lub(l1, l2) is undefined.

• lub(P arent(ann, mary), P arent(ann, tom)) =
P arent(ann, X).

• lub(P arent(ann, mary), P arent(ann, tom)) =
undefined.

• lub(P arent(ann, X), Daughter(mary, ann)) =
undefined.

Table 1.1: Table showing progressive definitions of lubs, starting with terms and
culminating in literalss.

Let us look at an example of constructing the anti-unifier of Mem(1, [1, 2])
and Mem(2, [2, 4]. That is, l1 = Mem(1, list(1, list(1, list(2, nil)))) and l2 =
Mem(2, list(2, list(2, list(4, nil)))). You should be able to work through the



84 CHAPTER 1. SETS, RELATIONS AND LOGIC

Figure 1.13: Illustration of the proof of theorem 22.

steps of the algorithm to find that it terminates with l = m = Mem(x, list(x,
list(y, nil))) with θ = {x/1, y/2} and σ = {x/2, y/4}.

But is the procedure correct? That is, does it really return a lub of a
pair of atoms l1 and l2? Suppose the procedure returned an atom l, and let
θ = {x1/s1, . . . , xk/sk} and σ = {x1/t1, . . . , xk/tk}. That is lθ = l1 and lσ = l2.
Now suppose there is some other atom l′ such that l′ � l1 and l′ � l2. Then,
we have to show that l′ � l for any such l′.

The proof of this is a bit laborious and will dealt with subsequently. The
truth of the next lemma is easy to see:

Theorem 21 After each iteration of the Anti-Unification Algorithm, there are

terms s1, . . . , si and t1, . . . , ti such that:

1. θ = {z1/s1, . . . , zi/si} and σ = {z1/t1, . . . , zi/ti}.

2. lθ = l1 and mσ = l2.

3. For every 1 ≤ j ≤ i, sj and tj differ in their first symbol.

4. There are no 1 ≤ j, k ≤ i such that j 6= k, sj = sk and tj = tk.

Theorem 22 Let l1 and l2 be two atoms with the same predicate symbol. Then

the Anti- Unification Algorithm with l1 and l2 as inputs returns l1 ⊔ l2.

Proof: It is easy to see that the algorithm terminates after a finite number of
steps, for any l1, l2. Let u be the atom that the algorithm returns, and let
θ = {z1/s1, . . . , zi/si} and σ = {z1/t1, . . . , zi/ti} be the final values of θ and σ
in the computation of u (so u equals the final values of l and m in the execution
of the algorithm). Then uθ = l1 and uσ = l2 by Theorem 21, part 2. Suppose
v is an atom such that v � l1 and v � l2. In order to show that u = l1 ⊔ l2, we
have to prove v � u.

Let w = u ⊓ v, which exists by the proof on page 82. Then u � w and
v � w. Since w = u ⊓ v, u � l1 and v � l1, we must have w � l1. Similarly



1.4. FIRST-ORDER LOGIC 85

w � l2. Thus there are substitutions γ, µ, ν, such that uγ = w, l1 = wµ = uγµ
and l2 = wν = uγν. Then uθ = l1 = uγµ and uσ = l2 = uγν (see Figure 1.13
for illustration). Hence, if x is a variable occurring in u, then xθ = xγµ and
xσ = xγν.

We will now show that u and w = uγ are variants, by showing that γ is a
renaming substitution for u. Suppose it is not. Then γ maps some variable x
in u to a term that is not a variable, or γ unifies two distinct variables x, y in
u.

Suppose x is a variable in u, such that xγ = t, where t is a term that is not
a variable. If x is not one of the zj ’s, then xγµ = xθ = x, contradicting the
assumption that xγ = t is not a variable. But on the other hand, if x equals
some zj , then tµ = xγµ = xθ = sj and tν = xγν = xσ = tj . Then sj and tj
would both start with the first symbol of t, contradicting theorem 21, part 3.
So this case leads to a contradiction.

Suppose x and y are distinct variables in u such that γ unifies x and y.
Then,

1. If neither x nor y is one of the zj ’s, then xγµ = xθ = x 6= y = yθ = yγµ,
contradicting xγ = yγ

2. If x equals some zj and y does not, then xγµ = xθ = sj and xγν = xσ =
tj , so xγµ 6= xγν by theorem 21, part 3. But yγµ = yθ = y = yσ = yγν,
contradicting xγ = yγ.

3. Similarly for the case where y equals some zj and x does not.

4. If x = zj and y = zk, then j 6= k, since x 6= y. Furthermore, sj = xθ =
xγµ = yγµ = yθ = sk and tj = xσ = xγν = yγν = yσ = tk. But this
contradicts theorem 21, part 4.

Thus, the assumption that γ unifies two variables in u also leads to a con-
tradiction. Thus γ is a renaming substitution for u, and hence u and w are
variants. Finally, since v � w, we have v � u. 2

It is however a more straightforward matter to see the following:

Theorem 23 If A+

E is a set of equivalance classes of atoms A augmented by

the two elements ⊤ and ⊥, then for any pair of elements l1, l2 ∈ A
+

E, l1 ⊔ l2
always exists.

Proof: The possibilities for each of l1 and l2 are that they are either: (1) some
variant of ⊤; (2) some variant of ⊥; or (3) an atom from S. It can be verified
that l1 ⊓ l2 is defined in all 9 cases.

1. If l1 = ⊤ or l2 = ⊤, then l1 ⊔ l2 = ⊤. If l1 = ⊥, then l1 ⊔ l2 = l2. If
l2 = ⊥, then l1 ⊔ l2 = l1.

2. If l1 and l2 are conventional atoms with the same predicate symbol, l1⊔ l2
is given by the Anti-Unification Algorithm.


