1.4. FIRST-ORDER LOGIC 85

w >~ ly. Thus there are substitutions v, i, v, such that uy =w, l; = wu =uyu
and ly = wy = uyr. Then uf =13 = uyp and uo =1y = uyv (see Figure 1.13
for illustration). Hence, if x is a variable occurring in u, then x = zyu and
To = xYU.

We will now show that u and w = uvy are variants, by showing that v is a
renaming substitution for u. Suppose it is not. Then v maps some variable z
in u to a term that is not a variable, or « unifies two distinct variables x, y in
u.

Suppose z is a variable in u, such that xy = ¢, where ¢ is a term that is not
a variable. If x is not one of the z;’s, then zyu = 2 = x, contradicting the
assumption that xvy = t is not a variable. But on the other hand, if z equals
some z;, then tu = vyu = 0 = s; and tv = zyv = xo = t;. Then s; and ¢;
would both start with the first symbol of ¢, contradicting theorem 21, part 3.
So this case leads to a contradiction.

Suppose x and y are distinct variables in u such that + unifies x and y.
Then,

1. If neither « nor y is one of the z;’s, then zyp = 20 = x # y = yb = yypu,
contradicting xv = yvy

2. If x equals some z; and y does not, then zyu = 2 = s; and zyv = xo =
t;, so xyu # xyv by theorem 21, part 3. But yyu =y =y = yo = yyv,
contradicting vy = y.

3. Similarly for the case where y equals some z; and = does not.

4. If x = z; and y = 2, then j # k, since x # y. Furthermore, s; = 20 =
xyp = yyp = yd = s, and t; = xo = ryv = yyv = yo = ti. But this
contradicts theorem 21, part 4.

Thus, the assumption that + unifies two variables in u also leads to a con-
tradiction. Thus v is a renaming substitution for u, and hence u and w are
variants. Finally, since v = w, we have v > u. O

It is however a more straightforward matter to see the following:

Theorem 23 If AE 18 a set of equivalance classes of atoms A augmented by
the two elements T and L, then for any pair of elements 11,15 € Ag, LUl
always exists.

Proof: The possibilities for each of 1; and 1y are that they are either: (1) some
variant of T; (2) some variant of L; or (3) an atom from S. It can be verified
that 1; M1y is defined in all 9 cases.

1. Ifh =T or 12 :T, then11|_|12 =T. If11 :J_7 then 11|_|12:12. If
lQZJ_, then 11|_|12:11.

2. If 1; and 1, are conventional atoms with the same predicate symbol, 17 L1
is given by the Anti-Unification Algorithm.

86 CHAPTER 1. SETS, RELATIONS AND LOGIC
[T1

[men(AB)]
[men(A [B.CT)]
[mem(A [AB])]

[mem(1[1.A])] I i [mem(A [A.3]])]

[mem(L[1.3D] @ [mem(2.[2.3])]
[menm(L.[1.2])] -

(L1

Figure 1.14: An example subsumption lattice over atoms.

3. If 1; and 1y are conventional atoms with different predicate symbols, then
LUul,=T.

O
Now that we have established the existence of an lub and glb of any 13,15 €
.AJEC, we have shown that the set of atoms ordered by subsumption, is a lattice.

Theorem 24 Let A be the set of atoms. Then < A}, => is a lattice.

Figure 1.14 shows an example subsumption lattice over atoms in St = {
T, L, mem(1,[1,3]), mem(1,[1,2]), mem(2,[2,3]), mem(1,[1,A]), mem(A,[A, B]),
mem(A, [A, 3]), mem(A, [B,C]), mem(A,[B|C]) mem(A, B) } Note that

o | = mem(A,[A, B]) = mem(1,[1,2]) = m since with § = {A/1, B/2},
0=m

o mem(Al,[Al, B1]), mem(A2,[A2,B2])... are all members of the same
equivalence class

Recall that, for atoms [, m € S, subsumption is equivalent to implication. That
is, if I = m then | = m. Least-general-generalisation of atoms will be enountered
in Lab Nos. 5, 6.

What about subsumption over clauses with more than just one literal? Is this
still a quasi-order, with a lattice structure over equivalence classes of clauses?
The short answer is “yes”, but more on this in Chapter 2.

1.4.8 Covers of Atoms

What about the covers relation in the subsumption lattice of atoms? Recall
that covers are the smallest non-trivial steps between individual atoms that we
can take in the lattice. Since 1y is a downward cover of 1; iff 1; is an upward
cover of 15, we will first restrict attention to downward covers.

1.4. FIRST-ORDER LOGIC 87

Downward Covers

Theorem 25 Let 1y be a conventional atom, [an n-ary function symbol (recall
that f can be of zero arity and therefore a constant), z a variable in 1y, and
T1,...,Ty, distinct variables not appearing in 1. Let

1. 6 ={z/f(z1,...,zn)} and
2. 0 =A{wifx;}, i #j

Then 13 = 1,0 and 13 = ly0 are both downward covers of 11. In fact, every
downward cover of 11 must of one of these two forms (note that a special instance
of the first case is when the function f has arity 0 and is therefore a constant).
The substitutions 0 and o are termed elementary substitutions. In ILP, these 3
operations define a “downward refinement operator”

Proof:

Proof for (1): Tt is clear that 1; and ly are not variants, so 1; > lo. Suppose
there is a m such that 1; = mls. Then there are v, u, such that 1,7 = m and
my, = 1y, hence l;yu = 1o = 1;0. Here 7y only acts on variables in 1;, and g only
acts on variables in m.

Let (z,p) be a term occurrence in 1j, where x is a variable. Suppose x # z,
then 26 = x, so (z,p) must also be a term occurrence in lo. Hence 7y must be
a variable, for otherwise (zyu,p) in lo would contain a constant or a function.
Thus v must map all variables other than z to variables. Furthermore, v cannot
unify two distinct variables in 1y, for then 1 would also have to unify these two
variables, which is not the case.

If zv is also a variable, then v would map all variables to variables, and
since 7 cannot unify distinct variables, it would map all distinct variables in
l; to distinct variables. But then v would be a renaming substitution for 1y,
contradicting 1; > m. Hence v must map z to some term containing a function
symbol.

Now the only way we can have liyu = 1o, is if 2y = f(y1, ..., yn) for distinct
y; not appearing in 1y, and no variable in 1; is mapped to some y; by 7. But
then 1;y and 15 would be variants, contradicting 1, = m > 1. Therefore such
a m does not exist, and 1y is a downward cover of 1;.

Proof for (2): It is clear that 1; > l3. Suppose there is a m such that
l; > m > 13. Then there are v, u, such that 1y = m and mp = 13, hence
liyu =13 = 1y0. Here v only acts on variables in 1;, and ¢ only on variables
in m. Note that v and p can only map variables to variables, since otherwise
liyu = 13 would contain more occurrences of functions or constants than 1y,
contradicting 10 = 13, since o does not add any occurrences of function symbols
to 11.

If v does not unify any variables in 13, then 1; and m would be variants,
contradicting 1; > m. If v unifies any other variables than z and x, then we could
not have 1;yu = 13. Hence v must unify z and x, and cannot unify any other
variables. But then 1;y and 13 would be variants, contradicting ;v = m > 13.
Therefore such a m does not exist, and 13 is a downward cover of 1; O

88 CHAPTER 1. SETS, RELATIONS AND LOGIC

Application of the elementary substitutions on T results in its downward
covers called most general atoms, that consist of all n-ary predicate symbols,
each with n-distinct variables as arguments. Dually, 15 is an upward cover of 1;
iff 1; is a downward cover of 1. Thus the upward covers of some conventional
atom 1; are also of two types, which can be constructed by inverting the two el-
ementary substitutions discussed in theorem 25. Trivially, every ground atom?®
is an upward cover of L.

Further, it can be proved that given two atoms 1; and ls such that 1; > 1,
(Iz > 1;), there is a finite sequence of downward (upward) covers from 1; (Iz) to
a variant of 15 (1;). This means that if we want to get from 1; to (a variant of) Iy,
we only need to consider downward (upward) covers of 1y, downward (upward)
covers of downward (upward) covers of 11, ete. In fact, there is a finite downward
cover chain algorithm for this purpose, which is outlined in Figure 1.15.

INPUT: Conventional atoms 1, m, such that 1 > m.

OUTPUT: A finite chain 1 =15 = 1; = ... = 1,_7 = 1, = m, where each
;11 is a downward cover of 1;.

Set lp =1 and ¢ = 0, let 8y be such that 10y = m; (1)

if No term in ; contains a function or a constant; (2) then

Goto 3.
else if z/f(t1,...,t,) is a binding in 0; (n > 0) then
Choose new distinct variables zj, ..., zy,;

Set 1i+1 = li{x/f(zl, ey Zn)}7
Set 61'_;,_1 = (91 \ {l‘/f(tl, PN ,tn)}) @] {Zl/tl, ey Zn/tn};
Set 7 to ¢ + 1 and goto 2;
end if
if There are distinct variables x,y in 1;, such that z6; = y6; (3) then
Set li+1 = lz{m/y},
Set 91'_;'_1 = 91 \ {x/x@z},
Set i to i + 1 and goto 3;
else if Such x, y do not exist then
Set n =i and stop;
end if

Figure 1.15: Finite Downward Cover Chain Algorithm.

The subsumption ordering on atoms can be summarized through the follow-
ing example:

o | = mem(A,[A,B]) = mem(1,[1,2]) = m since with § = {A/1, B/2},
0=m

e mem(Al,[Al, B1]), mem(A2,[A2,B2])... are all members of the same
equivalence class

29Number of ground atoms can be infinite if the language consists of a function symbol of
arity > 1.

1.4. FIRST-ORDER LOGIC 89

Upward Covers

To construct a finite chain of upward covers to 1y, starting from ls, where 1; > 1o,
the algorithm 1.15 needs to be reversed. While algorithm 1.15 first instantiates
variables to functions and constants, and then unifies some variables, the reverse
algorithm ”undoes” unifications and instantiations using inverse substitution
(which is, strictly speaking, not a function).

One asymmetry of the downward and upward cases concerns the upward
covers of L. In case of a language without constants but with at least one
function symbol of arity > 1, the bottom element 1 has no upward covers at
all, let alone a finite complete set of upward covers. In case of a language with
at least one constant and at least one function symbol of arity > 1, there are an
infinite number of conventional ground atoms, each of which is an upward cover
of 1. Together these ground atoms comprise a complete set of upward covers of
1, but again 1 has no finite complete set of upward covers in this case. However,
each conventional atom does have a finite complete set of upward covers. The
top element T does not have any upward covers at all, but it has the empty set
as a finite complete set of upward covers, since no element lies ”above” T.

1.4.9 The Subsumption Theorem Again

The Subsumption Theorem holds for first-order logic, just as it did for proposi-
tional logic:

If 3 is a set of first-order clauses and D is a first-order clause. Then
Y = D if and only if D is a tautology or there is a clause C' such
that there is a derivation of C from ¥ using resolution (X Fgr C)
and C subsumes D.

By “derivation of a clause C” here, we mean the same as in propositional logic
(page 30), that is, there is a sequence of clauses Ry, ..., Ry = C such that each
R; is either in ¥ or is a resolvent of a pair of clauses in {Ry,...,R;—1}. While
extending the proof of theorem 9, the proof of this is a bit involved and we do
not present it here: we refer you to [NCdW97] for a complete proof that shows
that the result does indeed hold.

An immediate consequence is that the refutation-completeness of resolution
follows for first-order logic as well. It is not possible, therefore, to decide, using
resolution, whether a set ¥ of Horn clauses is, in fact, unsatisfiable (that is,
Y = O: in fact, we will see later that the roots of this undecidability is more
fundamental than just to do with Horn clauses or resolution).?? All that we are
saying with refutation-completeness is that if ¥ = O then there is a resolution

30T his gives us another difference between implication and subsumption. Unlike implication,
subsumption between a pair of clauses is decidable, although not necessarily efficiently in all
cases. We can informally show that it is decidable whether a clause C subsumes a clause D.
If C > D, then there is a substitution # which maps each 1; € C to some 1; € D. If C contains
n literals, and D contains m literals, then there are m™ ways in which the literals in C' can
be paired up with literals in D. Then we can decide C > D by checking whether for at least
one of those m™ ways of pairing the n literals in C' to some of the m literals in D, there is a

