
1.4. FIRST-ORDER LOGIC 85

w � l2. Thus there are substitutions γ, µ, ν, such that uγ = w, l1 = wµ = uγµ
and l2 = wν = uγν. Then uθ = l1 = uγµ and uσ = l2 = uγν (see Figure 1.13
for illustration). Hence, if x is a variable occurring in u, then xθ = xγµ and
xσ = xγν.

We will now show that u and w = uγ are variants, by showing that γ is a
renaming substitution for u. Suppose it is not. Then γ maps some variable x
in u to a term that is not a variable, or γ unifies two distinct variables x, y in
u.

Suppose x is a variable in u, such that xγ = t, where t is a term that is not
a variable. If x is not one of the zj ’s, then xγµ = xθ = x, contradicting the
assumption that xγ = t is not a variable. But on the other hand, if x equals
some zj , then tµ = xγµ = xθ = sj and tν = xγν = xσ = tj . Then sj and tj
would both start with the first symbol of t, contradicting theorem 21, part 3.
So this case leads to a contradiction.

Suppose x and y are distinct variables in u such that γ unifies x and y.
Then,

1. If neither x nor y is one of the zj ’s, then xγµ = xθ = x 6= y = yθ = yγµ,
contradicting xγ = yγ

2. If x equals some zj and y does not, then xγµ = xθ = sj and xγν = xσ =
tj , so xγµ 6= xγν by theorem 21, part 3. But yγµ = yθ = y = yσ = yγν,
contradicting xγ = yγ.

3. Similarly for the case where y equals some zj and x does not.

4. If x = zj and y = zk, then j 6= k, since x 6= y. Furthermore, sj = xθ =
xγµ = yγµ = yθ = sk and tj = xσ = xγν = yγν = yσ = tk. But this
contradicts theorem 21, part 4.

Thus, the assumption that γ unifies two variables in u also leads to a con-
tradiction. Thus γ is a renaming substitution for u, and hence u and w are
variants. Finally, since v � w, we have v � u. 2

It is however a more straightforward matter to see the following:

Theorem 23 If A+

E is a set of equivalance classes of atoms A augmented by
the two elements > and ⊥, then for any pair of elements l1, l2 ∈ A+

E, l1 t l2
always exists.

Proof: The possibilities for each of l1 and l2 are that they are either: (1) some
variant of >; (2) some variant of ⊥; or (3) an atom from S. It can be verified
that l1 u l2 is defined in all 9 cases.

1. If l1 = > or l2 = >, then l1 t l2 = >. If l1 = ⊥, then l1 t l2 = l2. If
l2 = ⊥, then l1 t l2 = l1.

2. If l1 and l2 are conventional atoms with the same predicate symbol, l1t l2
is given by the Anti-Unification Algorithm.



86 CHAPTER 1. SETS, RELATIONS AND LOGIC

Figure 1.14: An example subsumption lattice over atoms.

3. If l1 and l2 are conventional atoms with different predicate symbols, then
l1 t l2 = >.

2

Now that we have established the existence of an lub and glb of any l1, l2 ∈
A+

E , we have shown that the set of atoms ordered by subsumption, is a lattice.

Theorem 24 Let A be the set of atoms. Then < A+

E ,�> is a lattice.

Figure 1.14 shows an example subsumption lattice over atoms in S+ = {

>, ⊥, mem(1, [1, 3]), mem(1, [1, 2]), mem(2, [2, 3]), mem(1, [1, A]), mem(A, [A, B]),

mem(A, [A, 3]), mem(A, [B, C]), mem(A, [B|C]) mem(A, B) } Note that

• l = mem(A, [A, B]) � mem(1, [1, 2]) = m since with θ = {A/1, B/2},
lθ = m

• mem(A1, [A1, B1]), mem(A2, [A2, B2]) . . . are all members of the same
equivalence class

Recall that, for atoms l,m ∈ S, subsumption is equivalent to implication. That
is, if l |= m then l � m. Least-general-generalisation of atoms will be enountered
in Lab Nos. 5, 6.

What about subsumption over clauses with more than just one literal? Is this
still a quasi-order, with a lattice structure over equivalence classes of clauses?
The short answer is “yes”, but more on this in Chapter 2.

1.4.8 Covers of Atoms

What about the covers relation in the subsumption lattice of atoms? Recall
that covers are the smallest non-trivial steps between individual atoms that we
can take in the lattice. Since l2 is a downward cover of l1 iff l1 is an upward
cover of l2, we will first restrict attention to downward covers.



1.4. FIRST-ORDER LOGIC 87

Downward Covers

Theorem 25 Let l1 be a conventional atom, f an n-ary function symbol (recall
that f can be of zero arity and therefore a constant), z a variable in l1, and
x1, . . . , xn, distinct variables not appearing in l1. Let

1. θ = {z/f(x1, . . . , xn)} and

2. σ = {xi/xj}, i 6= j

Then l2 = l1θ and l3 = l1σ are both downward covers of l1. In fact, every
downward cover of l1 must of one of these two forms (note that a special instance
of the first case is when the function f has arity 0 and is therefore a constant).
The substitutions θ and σ are termed elementary substitutions. In ILP, these 3
operations define a “downward refinement operator”

Proof:
Proof for (1): It is clear that l1 and l2 are not variants, so l1 � l2. Suppose

there is a m such that l1 � ml2. Then there are γ, µ, such that l1γ = m and
mµ = l2, hence l1γµ = l2 = l1θ. Here γ only acts on variables in l1, and µ only
acts on variables in m.

Let (x, p) be a term occurrence in l1, where x is a variable. Suppose x 6= z,
then xθ = x, so (x, p) must also be a term occurrence in l2. Hence xγ must be
a variable, for otherwise (xγµ, p) in l2 would contain a constant or a function.
Thus γ must map all variables other than z to variables. Furthermore, γ cannot
unify two distinct variables in l1, for then l2 would also have to unify these two
variables, which is not the case.

If zγ is also a variable, then γ would map all variables to variables, and
since γ cannot unify distinct variables, it would map all distinct variables in
l1 to distinct variables. But then γ would be a renaming substitution for l1,
contradicting l1 � m. Hence γ must map z to some term containing a function
symbol.

Now the only way we can have l1γµ = l2, is if zγ = f(y1, . . . , yn) for distinct
yi not appearing in l1, and no variable in l1 is mapped to some yi by γ. But
then l1γ and l2 would be variants, contradicting l1γ = m � l2. Therefore such
a m does not exist, and l2 is a downward cover of l1.

Proof for (2): It is clear that l1 � l3. Suppose there is a m such that
l1 � m � l3. Then there are γ, µ, such that l1γ = m and mµ = l3, hence
l1γµ = l3 = l1σ. Here γ only acts on variables in l1, and µ only on variables
in m. Note that γ and µ can only map variables to variables, since otherwise
l1γµ = l3 would contain more occurrences of functions or constants than l1,
contradicting l1σ = l3, since σ does not add any occurrences of function symbols
to l1.

If γ does not unify any variables in l1, then l1 and m would be variants,
contradicting l1 � m. If γ unifies any other variables than z and x, then we could
not have l1γµ = l3. Hence γ must unify z and x, and cannot unify any other
variables. But then l1γ and l3 would be variants, contradicting l1γ = m � l3.
Therefore such a m does not exist, and l3 is a downward cover of l1 2



88 CHAPTER 1. SETS, RELATIONS AND LOGIC

Application of the elementary substitutions on > results in its downward
covers called most general atoms, that consist of all n-ary predicate symbols,
each with n-distinct variables as arguments. Dually, l2 is an upward cover of l1
iff l1 is a downward cover of l2. Thus the upward covers of some conventional
atom l1 are also of two types, which can be constructed by inverting the two el-
ementary substitutions discussed in theorem 25. Trivially, every ground atom29

is an upward cover of ⊥.
Further, it can be proved that given two atoms l1 and l2 such that l1 � l2

(l2 � l1), there is a finite sequence of downward (upward) covers from l1 (l2) to
a variant of l2 (l1). This means that if we want to get from l1 to (a variant of) l2,
we only need to consider downward (upward) covers of l1, downward (upward)
covers of downward (upward) covers of l1, etc. In fact, there is a finite downward
cover chain algorithm for this purpose, which is outlined in Figure 1.15.

INPUT: Conventional atoms l,m, such that l � m.
OUTPUT: A finite chain l = l0 � l1 � . . . � ln−1 � ln = m, where each
li+1 is a downward cover of li.
Set l0 = l and i = 0, let θ0 be such that lθ0 = m; (1)
if No term in θi contains a function or a constant; (2) then

Goto 3.
else if x/f(t1, . . . , tn) is a binding in θi (n ≥ 0) then

Choose new distinct variables zl, . . . , zn;
Set li+1 = li{x/f(z1, . . . , zn)};
Set θi+1 = (θi \ {x/f(t1, . . . , tn)}) ∪ {z1/t1, . . . , zn/tn};
Set i to i + 1 and goto 2;

end if
if There are distinct variables x, y in li, such that xθi = yθi (3) then

Set li+1 = li{x/y};
Set θi+1 = θi \ {x/xθi};
Set i to i + 1 and goto 3;

else if Such x, y do not exist then
Set n = i and stop;

end if

Figure 1.15: Finite Downward Cover Chain Algorithm.

The subsumption ordering on atoms can be summarized through the follow-
ing example:

• l = mem(A, [A, B]) � mem(1, [1, 2]) = m since with θ = {A/1, B/2},
lθ = m

• mem(A1, [A1, B1]), mem(A2, [A2, B2]) . . . are all members of the same
equivalence class

29Number of ground atoms can be infinite if the language consists of a function symbol of

arity ≥ 1.



1.4. FIRST-ORDER LOGIC 89

Upward Covers

To construct a finite chain of upward covers to l1, starting from l2, where l1 � l2,
the algorithm 1.15 needs to be reversed. While algorithm 1.15 first instantiates
variables to functions and constants, and then unifies some variables, the reverse
algorithm ”undoes” unifications and instantiations using inverse substitution
(which is, strictly speaking, not a function).

One asymmetry of the downward and upward cases concerns the upward
covers of ⊥. In case of a language without constants but with at least one
function symbol of arity ≥ 1, the bottom element ⊥ has no upward covers at
all, let alone a finite complete set of upward covers. In case of a language with
at least one constant and at least one function symbol of arity ≥ 1, there are an
infinite number of conventional ground atoms, each of which is an upward cover
of ⊥. Together these ground atoms comprise a complete set of upward covers of
⊥, but again ⊥ has no finite complete set of upward covers in this case. However,
each conventional atom does have a finite complete set of upward covers. The
top element > does not have any upward covers at all, but it has the empty set
as a finite complete set of upward covers, since no element lies ”above” >.

1.4.9 The Subsumption Theorem Again

The Subsumption Theorem holds for first-order logic, just as it did for proposi-
tional logic:

If Σ is a set of first-order clauses and D is a first-order clause. Then
Σ |= D if and only if D is a tautology or there is a clause C such
that there is a derivation of C from Σ using resolution (Σ `R C)
and C subsumes D.

By “derivation of a clause C” here, we mean the same as in propositional logic
(page 30), that is, there is a sequence of clauses R1, . . . , Rk = C such that each
Ri is either in Σ or is a resolvent of a pair of clauses in {R1, . . . , Ri−1}. While
extending the proof of theorem 9, the proof of this is a bit involved and we do
not present it here: we refer you to [NCdW97] for a complete proof that shows
that the result does indeed hold.

An immediate consequence is that the refutation-completeness of resolution
follows for first-order logic as well. It is not possible, therefore, to decide, using
resolution, whether a set Σ of Horn clauses is, in fact, unsatisfiable (that is,
Σ |= 2: in fact, we will see later that the roots of this undecidability is more
fundamental than just to do with Horn clauses or resolution).30 All that we are
saying with refutation-completeness is that if Σ |= 2 then there is a resolution

30This gives us another difference between implication and subsumption. Unlike implication,

subsumption between a pair of clauses is decidable, although not necessarily efficiently in all

cases. We can informally show that it is decidable whether a clause C subsumes a clause D.

If C � D, then there is a substitution θ which maps each li ∈ C to some lj ∈ D. If C contains

n literals, and D contains m literals, then there are mn ways in which the literals in C can

be paired up with literals in D. Then we can decide C � D by checking whether for at least

one of those mn ways of pairing the n literals in C to some of the m literals in D, there is a


