
30 CHAPTER 1. SETS, RELATIONS AND LOGIC

and C2 = D ∨ ¬L, giving R = C ∨D. Now, L is either true or false. Suppose
L is true. Then clearly C1 is true, but since ¬L is false and C2 is true (by
assumption), it must be that D, and hence R must be true. It is easy to see
that we similarly arrive to the same conclusion about R even if L was false. 2

So, the theorems obtained by applying resolution to a set of axioms are all
logical consequences of the axioms. In general, we will denote a clause C derived
from a set of clauses Σ using resolution by Σ ⊢R C. This means that there is
a finite sequences of clauses R1, . . . , Rk = C such that each Ci (where Ci is
a clause being resolved upon in the ith resolution step) is either in Σ or is a
resolvent of a pair of clauses already derived (that is, from {R1, . . . , Ri−1}) .
Now, although it is the case that if Σ ⊢R α then Σ |= α, the reverse does not
hold. For example, a moment’s thought should convince you that:

{Fred is an ape, Fred is human } |= Fred is an ape ← Fred is human

However, using resolution, there is no way of deriving Fred is an ape ← Fred is

human from Fred is an ape and Fred is human. As an inference rule, resolution
is thus incomplete. However, it does have an extremely useful property known
as refutation completeness. This is that if a formula Σ is inconsistent, then the
empty clause 2 will be eventually derivable by resolution.

Thus, since Fred is an ape ← Fred is human is a logical consequence of Fred

is an ape and Fred is human, then the formula:

Σ : {Fred is an ape, Fred is human, ¬(Fred is an ape ← Fred is human)}

must be inconsistent. This can be verified using resolution. First, the clausal
form of (Fred is an ape ← Fred is human) is (Fred is an ape ∨ ¬ Fred is human).
Using De Morgan’s Law on this clausal form, we can see that ¬(Fred is an ape

← Fred is human) is equivalent to ¬ Fred is an ape ∧ Fred is human. We can now
rewrite Σ :

Σ′ : {Fred is an ape, Fred is human, ¬Fred is an ape}

Resolution of the pair Fred is an ape, ¬Fred is an ape would immediately result
in the empty clause 2. The general steps in a refutation proof procedure using
resolution are therefore:

• Let S be a set of clauses and α be a propositional formula. Let C =
S ∪ {¬α}.

• Repeatedly do the following:

1. Select a pair of clauses C1 and C2 from C that can be resolved on
some proposition P .

2. Resolve C1 and C2 to give R.

3. If R = 2 then stop. Otherwise, if R contains both a proposition Q

and its negation ¬Q then discard R. Otherwise add R to C.

1.2. LOGIC 31

In general, we know that any formula F can be converted to a conjunction
of clauses. We can distinguish between the following sets. Res0(F), which
is simply the set of clauses in F . Resn(F), for n > 0, which is the clauses
containing all clauses in Resn−1(F) and all clauses obtained by resolving a pair
of clauses from Resn−1(F). Since there are only a finite number of propositional
symbols in F and a finite number of clauses in its CNF, we can see that there
will only be a finite number of clauses that can be obtained using resolution.
That is, there is some m such that Resm(F) = Resm−1(F). Let us call this
final set consisting of all the original clauses and all possible resolvents Res∗(F).
Then, the property of refutation-completeness for resolution can be stated more
formally as follows:

Theorem 7 For some formula F , 2 ∈ Res∗(F) if and only if F is unsatisfiable.

Though the resolution rule by itself is not (affirmation) complete for clauses
in general, this property states that it is complete with respect to unsatisfiable
sets of clauses. The complete proof of this will be provided on page 33. To get
you started however, we show that if 2 ∈ Res∗(F) then F is unsatisfiable. We
can assume that 2 6∈ Res0(F), since 2 is not a disjunction of literals. Therefore
there must be some k for which 2 6∈ Resk(F) and 2 ∈ Resk+1(F). This can
only mean that both L and ¬L are in Resk(F). That is L and ¬L are obtained
from F by resolution. By the property of soundness of resolution, this means
that F |= (L ∧ ¬L). That is, F is unsatisfiable.

There are also other proof processes that are refutation-complete. Examples
of such processes are the Davis-Putnam Procedure13, Tableaux Procedure, etc.

In the worst case, the resolution search procedure can take exponential time.
This, however, very probably holds for all other proof procedures. For CNF
formulae in propositional logic, a type of resolution process called the Davis-
Putnam Procedure (backtracking over all truth values) is probably (in practice)
the fastest refutation-complete process.

The Subsumption Theorem

A property related to logical implication is that of subsumption. A propositional
clause C subsumes a propositional clause D if C ⊆ D. What does this mean?
It just means that every literal in C appears in D. Here are a pair of clauses C

and D such that C subsumes D:

C : Fred is an ape

D : Fred is an ape← Fred is human

In general, it should be easy to see that if C and D are clauses such that C ⊆ D,
then C |= D. In fact, for propositional logic, it is also the case that if C |= D

then C subsumes D (we see why this is so shortly).
The notion of subsumption acts as the basis for an important result linking

resolution and logical implication, called the subsumption theorem:

13It can be proved that the Davis-Putnam procedure is sound as well as complete.

