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Chapter 1

Sets, Relations and Logic

‘Crime is common. Logic is rare. Therefore it is upon the logic
rather than the crime that you should dwell.’ Sherlock Holmes in
Conan Doyle’s The Copper Breeches.

1.1 Sets and Relations

1.1.1 Sets

A set is a fundamental concept in mathematics. Simply speaking, it consists
of some objects, usually called its elements. Here are some basic notions about
sets that you must already know about:

– A set S with elements a, b and c is usually written as S = {a, b, c}. The
fact that a is an element of S is usually denoted by a ∈ S.

– A set with no elements is called the “empty set” and is denoted by ∅.

– Two sets S and T are equal (S = T ) if and only if they contain precisely
the same elements. Otherwise S 6= T .

– A set T is a subset of a set S (T ⊆ S) if and only if every element of T is
also an element of S. If T ⊆ S and S ⊆ T then S = T . Sometimes T ⊆ S

may sometimes also be written as S ⊇ T . If T ⊆ S and S has at least
one element not in T , then T ⊂ S (T is said to be “proper subset” of S).
Again, T ⊂ S may sometimes be written as S ⊃ T .

We now look at the meanings of the union, intersection, and equivalence of
sets. The intersection, or product, of sets S and T , denoted by S ∩ T or ST or
S · T consists of all elements common to both S and T . ST ⊂ S and ST ⊆ T

for all sets S and T . Now, if S and T have no elements in common, then they
are said to be disjoint and ST = ∅. It should be easy for you to see that ∅ ⊆ S

for all S and ∅ · S = ∅ for all S. The union, or sum, of sets S and T , denoted
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4 CHAPTER 1. SETS, RELATIONS AND LOGIC

by S ∪ T or S + T , is the set consisting of elements that belong at least to S

or T . Once again, it should be a straightforward matter to see S ⊆ S + T and
T ⊆ S + T for all S and T . Also, S + ∅ = S for all S. Finally, if there is a
one-to-one correspondence between the elements of set S and set T , then S and
T are said to be equivalent (S ∼ T ). Equivalence and subsets form the basis
of the definition of an infinte set: if T ⊂ S and S ∼ T then S is said to be an
infinite set. The set of natural numbers N is an example of an infinite set (any
set S ∼ N is said to be countable set).

1.1.2 Relations

A finite sequence is simply a set of n elements with a 1− 1 correspondence with
the set {1, . . . , n} arranged in order of succession (an ordered pair , for example,
is just a finite sequence with 2 elements). Finite sequences allow us to formalise
the concept of a relation. If A and B are sets, then the set A×B is called the
cartesian product of A and B and is denoted by all ordered pairs (a, b) such
that a ∈ A and b ∈ B. Any subset of A × B is a binary relation, and is called
a relation from A to B. If (a, b) ∈ R, then aRb means “a is in relation R to b”
or, “relation R holds for the ordered pair (a, b)” or “relation R holds between a

and b.” A special case arises from binary relations within elements of a single
set (that is, subsets of A × A). Such a relation is called a “relation in A” or a
“relation over A”. There are some important kinds of properties that may hold
for a relation R in a set A:

Reflexive. The relation is said to be reflexive if the ordered pair (a, a) ∈ R for
every a ∈ A.

Symmetric. The relation is said to be symmetric if (a, b) ∈ R iff (b, a) ∈ R for
a, b ∈ A.

Transitive. The relation is said to be transitive if (a, b) ∈ R and (b, c) ∈ R,
then (a, c) ∈ R for a, b, c ∈ A.

Here are some examples:

• The relation ≤ on the set of integers is reflexive and transitive, but not
symmetric.

• The relation R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} on the set A =
{1, 2, 3, 4} is reflexive, symmetric and transitive.

• The relation ÷ on the set N defined as the set {(x, y) : ∃z ∈ N s.t. xz = y}
is reflexive and transitive, but not symmetric.

• The relation ⊥ on the set of lines in a plane is symmetric but neither
reflexive nor transitive.
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It should be easy to see a relation like R above is just a set of ordered pairs.
Functions are just a special kind of binary relation F which is such that if
(a, b) ∈ F and (a, c) ∈ F then b = c. Our familiar notion of a function F from
a set A to a set B is one which associates with each a ∈ A exactly one element
b ∈ B such that (a, b) ∈ F . Now, a function from a set A to itself is usually
called a unary operation in A. In a similar manner, a binary operation in A is
a function from A × A to A (recall A × A is the Cartesian product of A with
itself: it is sometimes written as A2). For example, if A = N , then addition (+)
is a binary operation in A. In general, an n-ary operation F in A is a function
from An to A, and if it is defined for every element of An, then A is said to be
closed with respect to the operation F . A set which is closed for one or more
n-ary operations is called an algebra, and a sub-algebra is a subset of such a set
that remains closed with respect to those operations. For example:

• N is closed wrt the binary operations of + and ×, and N along with +,×
form an algebra.

• The set E of even numbers is a subalgebra of algebra of N with +,×. The
set O of odd numbers is not a subalgebra.

• Let S ⊆ U and S′ ⊆ U be the set with elements of U not in S (the unary
operation of complementation). Let U = {a, b, c, d}. The subsets of U

with the operations of complementation, intersection and union form an
algebra. (How many subalgebras are there of this algebra?)

Equivalence Relations

Any relation R in a set A for which all three properties hold (that is, R is
reflexive, symmetric, and transitive) is said to be an “equivalence relation”.
Suppose, for example, we are looking at the relation R over the set of natural
numbers N , which consists of ordered pairs (a, b) such that a + b is even1 You
should be able to verify that R is an equivalence relation over N . In fact, R

allows us to split N into two disjoint subsets: the set of odd numbers O and the
set of even numbers E such that N = O ∪ E and R is an equivalence relation
over each of O and E . This brings us to an important property of equivalence
relations:

Theorem 1 Any equivalence relation E over a set S partitions S into disjoint
non-empty subsets S1, . . . , Sk such that S = S1 ∪ · · · ∪ Sk.

Let us see how E can be used to partition S by constructing subsets of S in the
following way. For every a ∈ S, if (a, b) ∈ E then a and b are put in the same
subset. Let there be k such subsets. Now, since (a, a) ∈ E for every a ∈ S,
every element of S is in some subset. So, S = S1 ∪ · · · ∪ Sk. It also follows that
the subsets are disjoint. Otherwise there must be some c ∈ Si, Sj . Clearly, Si

1Equivalence is often denoted by ≈. Thus, for an equivalence relation E, if (a, b) ∈ E, then
a ≈ b.
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and Sj are not singleton sets. Suppose Si contains at least a and c. Further let
there be a b 6∈ Si but b ∈ Sj . Since a, c ∈ Si, (a, c) ∈ E and since c, b ∈ Sj ,
(c, b) ∈ E. Thus, we have (a, c) ∈ E and (c, b) ∈ E, which must mean that
(a, b) ∈ E (E is transitive). But in this case b must be in the same subset as a

by construction of the subsets, which contradicts our assumption that b 6∈ Si.
The converse of this is also true:

Theorem 2 Any partition of a set S partitions into disjoint non-empty subsets
S1, . . . , Sk such that S = S1 ∪ · · · ∪ Sk results in an equivalence relation over S.

(Can you prove that this is the case? Start by constructing a relation E, with
(a, b) ∈ E if and only if a and b are in the same block, and prove that E is an
equivalence relation.)

Each of the disjoint subsets S1, S2, . . . are called ”equivalence classes”, and
we will denote the equivalence class of an element a in a set S by [a]. That is,
for an equivalence relation E over a set S:

[a] = {x : x ∈ S, (a, x) ∈ E}

What we are saying above is that the collection of all equivalence classes of
elements of S forms a partition of S; and conversely, given a partition of the set
S, there is an equivalence relation E on S such that the sets in the partition
(sometimes also called its ”blocks”) are the equivalence classes of S.

Partial Orders

Given an equality relation = over elements of a set S, a partial order � over S

is a relation over S that satisfies the following properties:

Reflexive. For every a ∈ S, a � a

Anti-Symmetric. If a � b and b � a then a = b

Transitive. If a � b and b � c then a � c

Here are some properties about partial orders that you should know (you will
be able to understand them immediately if you take, as a special case, � as
meaning ≤ and ≺ as meaning <):

• If a � b and a 6= b then a ≺ b

• b � a means a � b, b � a means a ≺ b

• If a � b or b � a then a, b are comparable, otherwise they are not compa-
rable.

A set S over which a relation of partial order is defined is called a partially
ordered set . It is sometimes convenient to refer to a set S and a relation R

defined over S together by the pair < S, R >. So, here are some examples of
partially ordered sets < S,�>:
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Figure 1.1: The lattice structure of 〈S,�〉, where S is the power set of {a, b, c}.

• S is a set of sets, S1 � S2 means S1 ⊆ S2

• S = N , n1 � n2 means n1 = n2 or there is a n3 ∈ N such that n1+n3 = n2

• S is the set of equivalence relations E1, . . . over some set T , EL � EM

means for u, v ∈ T , uELv means uEMv (that is, (u, v) ∈ EL means
(u, v) ∈ EM ).

Given a set S = {a, b, . . .} if a ≺ b and there is no x ∈ S such that a ≺ x ≺ b

then we will say b covers a or that a is a downward cover of b. Now, suppose
Sdown be a set of downward covers of b ∈ S. If for all x ∈ S, x ≺ b implies
there is an a ∈ Sdown s.t. x � a ≺ b, then Sdown is said to be a complete set of
downward covers of b. Partially ordered sets are usually shown as diagrams like
in Figure 1.1.
The diagrams, as you can see, are graphs (sometimes called Hasse graphs or
Hasse diagrams). In the graph, vertices represent elements of the partially
ordered set. A vertex v2 is at a higher level than vertex v1 whenever v1 ≺ v2,
and there is an edge between the two vertices only if v2 covers v1 (that is, v2

is an immediate predecessor). The graph is therefore really a directed one, in
which there is a directed edge from a vertex v2 to v1 whenever v2 covers v1.
Also, since the relation is anti-symmetric, there can be no cycles. So, the graph
is a directed acyclic graph, or DAG.

In the diagram in Figure ?? on the left, S is the set of non-empty subsets
of {a, b, c} and � denotes the subset relationship (that is, S1 � S2 if and only
if S1 ⊂ S2). The diagram on the right is an example of a chain, or a totally
ordered set.

You should be able to see that a finite chain of length n can be put in a
one-to-one correspondence to a finite sequence of natural numbers (1, . . . , n)
(the correct way to say this is that a finite chain is isomorphic with a finite
sequence of natural numbers). In general, a partially ordered set S is a chain
if for every pair a, b ∈ S, a ≺ b or b ≺ a. There is a close relationship between
a partially ordered set and a chain. Suppose S is a partially ordered set. We
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can always associate a function f from the elements of S to N (the set of
natural numbers), so that if a ≺ b for a, b ∈ S, then f(a) < f(b). f is called
a consistent enumeration of S, and is not unique and we can use it to define a
chain consistent with S. (We will leave the proof of the existence a consistent
enumeration for you. One way would be to use the method of induction on
the number of elements in S: clearly there is such an enumeration for |S| = 1.
Assume that an enumeration exists for |S| = n− 1 and prove it for |S| = n.)

Some elements of a partially ordered set have special properties. Let < S,�>

be a p.o. set and T ⊆ S. Then (in the following, you should read the symbol ∃
as being shorthand for “there exists”, and ∀ as “for all”):

− Least element of T − Greatest element of T

a ∈ T s.t. ∀t ∈ T a � t a ∈ Ts.t. ∀t ∈ T a � t

− Least element, if it exists, − Greatest element, if it exists

is unique. If T = S this is is unique. If T = S then this is

the “zero” element the “unity” element

− Minimal element of T − Maximal element of T

a ∈ T 6 ∃t ∈ T s.t. t ≺ a a ∈ T 6 ∃t ∈ T s.t. t � a

− Minimal element need − Maximal element need

not be unique not be unique

− Lower bound of T − Upper bound of T

b ∈ S s.t. b � t ∀t ∈ T b ∈ S s.t. b � t ∀t ∈ T

− Glb g of T − Lub g of T

b � g ∀b, g : lbs of T b � g ∀b, g : ubs of T

− If it exists, the glb is unique − If it exists the lub is unique

As you would have observed, there is a difference between a least element and
a minimal element (and correspondingly, between greatest and maximal ele-
ments). The requirement of a minimal (maximal) upper bound is, in some
sense, a weakening of the requirement of a least (greatest) upper bound. If x

and y are both lub’s of some set T ⊆ S, then y � x and z � y, so then x ≈ y.
This means that all lub’s of T are equivalent. Dually, if x and y are glb’s of some
T , then also x ≈ y. Thus, if a least element exists, then it is unique: this is not
necessarily the case with a minimal element. Also, least and greatest elements
must belong to the set T , but lower and upper bounds need not.
For this example, S has: (1) one upper bound b; (2) no lower bound; (3) a
greatest element b; (4) no least element; (5) no greatest lower bound; (6) two
minimal elements a and e; and (7) one maximal element b. Can you identify
what the corresponding statements are for T?
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Figure 1.2: {a, b} has no lub here.

The glb and lub are sometimes also taken to be binary operations on a
partially ordered set S, that assigns to an ordered pair in S2 the corresponding
glb or lub. The first operation is called the product or meet and is denoted by ·
or u. The second operation is sometimes called the sum or join and is denoted
by + or t.

In a quasi-ordered set, a subset need not have a lub or glb. We will take an
example to illustrate this. Let S = {a, b, c, d}, and let � be defined as a � c,
b � c, a � d and d � b. Then since c and d are incomparable, the set a, b has
no lub in this quasi-order. See Figure 1.2.

Similarly, a set need not have a maximal or a minimal, nor upward or down-
ward covers. For instance, let S be the infinite set {y, xl, x2, x3, . . .}, and let �
be a quasi-order on S, defined as y ≺ . . . xn+1 ≺ xn ≺ . . . ≺ x2 ≺ x1. Then
there is no upward cover of y: for every xn, there always is an xn+l such that
y ≺ xn+1 ≺ xn. In this case, y has no complete set of upward covers.

Note that a complete set of upward covers for y need not contain all upward
covers of y. However, in order to be complete, it should contain at least one
element from each equivalence class of upward covers. On the other hand,
even the set of all upward covers of y need not be complete for y. For the
example given above, the set of all upward covers of y is empty, but obviously
not complete.

A notion of some relevance later is that of a function f defined on a partially
ordered set < S,�>. Specifically, we would like to know if the function is: (a)
monotonic; and (b) continuous. Monotonicity first:

A function f on < S,�> is monotonic if and only if for all u, v ∈ S,
u � v means f(u) � f(v)

Now, suppose a subset S1 of S have a least upper bound lub(S1) (with some
abuse of notation: here lub(X) is taken to be the lub of the elements in set X).
Such subsets are called “directed” subsets of S. Then:

A function f on < S,�> is continuous if and only if for all directed
subsets Si of S, f(lub(Si)) = lub({f(x) : x ∈ Si}).
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That is, if a directed set Si has a least upper bound lub(Si), then the set
obtained by applying a continuous function f to the elements of Si has least
upper bound f(lub(Si)). Functions that are both monotonic and continuous on
some partially ordered set < S,�> are of interest to us because they can be
used, for some kinds of orderings, to guarantee that for some s ∈ S, f(s) = s.
That is, f is said to have a “fixpoint”.

Lattices

A lattice is just a partially ordered set < S,�> in which every pair of elements
a, b ∈ S has a glb (represented by u) and a lub (represented by t). From the
definitions of lower and upper bounds, we are able to show that in any such
partially ordered set, the operations will have the following properties:

• a u b = b u a, and a t b = b t a (that is, they are are commutative).

• a u (b u c) = (a u b) u c, and a t (b t c) = (a t b) t c (that is, they are
associative).

• a u (a t b) = a, and a t (a u b) = a (that is, they are “absorptive”).

• a u b = a and a t b = b.

We will not go into all the proofs here, but show one for illustration. Since au b

is the glb of a and b, aub � a. Clearly then at (aub), which is the lub of a and
a u b, is a. This is one of the absorptive properties above. You should also be
able to see, from these properties, that a lattice can also be seen simply as an
algebra with two binary operations u and t that are commutative, associative
and absorptive.

Theorem 3 A lattice is an algebra with the binary operations of t and u.

Here is an example of a lattice: let S be all the subsets of {a, b, c}, and for
X, Y ∈ S, X � Y means X ⊆ Y , X uY = X ∩Y and X tY = X ∪Y . Then
< S,⊆> is a lattice. The empty set ∅ is the zero element, and S is the unity
element of the lattice. More generally, a lattice that has a zero or least element
(which we will denote ⊥), and a unity or greatest element (which we will denote
>) is called a bounded lattice. In such lattices, the following necessarily hold:
a t > = >; a u > = a; a t ⊥ = a; and a u ⊥ = ⊥. A little thought should
convince you that a finite lattice will always be bounded: if the lattice is the
set S = {a1, . . . , an} then > = a1 t · · · t an and ⊥ = a1 u · · · u an. (But, does
the reverse hold: will a bounded lattice always be finite?)

Two properties of subsets of lattices are of interest to us. First, a subset
M of a lattice L is called a sublattice of L if M is also closed under the same
binary operations of t and u defined for L (that is, M is a lattice with the
same operations as those of L). Second, if a lattice L has the property that
every subset of L has a lub and a glb, then the L is said to be a complete
lattice. Clearly, every finite lattice is complete. Further, since every subset of
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L has a lub and a glb, this must certainly be true of L itself. So, L has a lub,
which must necessarily be the greatest element of L. Similarly, L has a glb,
which must necessarily be the least element of L. In fact, the elements of L are
ordered in such a way that each element is on some path from > to ⊥ in the
Hasse diagram. An example of an ordered set that is always a complete lattice
is the set of all subsets of a set S, ordered by ⊆, with binary operations ∩ and
∪ for the glb and lub. This set, the “powerset” of S, is often denoted by 2S .
So, if S = {a, b, c}, 2S is the set {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
Clearly, every subset of s of 2S has both a glb and a lub in S.

There are two important results concerning complete lattices and functions
defined on them. The Knaster-Tarski Theorem tells us that every monotonic
function on a complete lattice < S,�> has a least fixpoint.

Theorem 4 Let < S,�> be a complete lattice and let f : S → S be a monotonic
function. Then the set of fixed points of f in L is also a complete lattice < P,�>

(which obviously means that f has a greatest as well as a least fixpoint).

Proof Sketch:2 Let D = {x|x � f(x)}. From the very definition of D, it
follows that every fixpoint is in D. Consider some x ∈ D. Then because f is
monotone we have f(x) � f(f(x)). Thus,

∀ x ∈ D, f(x) ∈ D (1.1)

Let u = lub(D) (which should exist according to our assumption that <

S,�> is a complete lattice. Then x � u and f(x) � f(u), so x � f(x) � f(u).
Therefore f(u) is an upper bound of D. However, u is the least upper bound,
hence u � f(u), which in turn implies that, u ∈ D. From (1.1), it follows that
f(u) ∈ D. From u = lub(D), f(u) ∈ D and u � f(u), it follows that f(u) = u.
Because every fixpoint is in D we have that u is the greatest fixpoint of f .
Similarly, it can be proved that if E = {x|f(x) � x}, then v = glb(E) is a fixed
point and therefore the smallest fixpoint of f . 2

Kleene’s First Recursion Theorem tells us how to find the element s ∈ S that
is the least fixpoint, by incrementally constructing lubs starting from applying
a continuous function to the least element of the lattice (⊥).

Theorem 5 Let S be a complete partial order and let f : S → S be a contin-
uous (and therefore monotone) function. Then the least fixed point of f is the
supremum of the ascending Kleene chain of f:

⊥ � f(⊥) � f(f(⊥)) � . . . � fn(⊥) � . . .

In the special case that � is ⊆, the incremental procedure starts with the
empty set ∅, and progressive lub’s are obtained by application of the set-union
operation ∪. We will not give the proofs of this result here.

2Can you complete the proof?
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Figure 1.3: Example lattice for illustrating the concept of lattice length.

A final concept we will need is the concept of the length of a lattice. For a
pair of elements a, b in a lattice L such that a � b, the interval [a, b] is the set
{x : x ∈ L, a � x � b}. Now, consider a subset of [a, b] that contains both
a and b, and is such that any pair of elements in the subset are comparable.
Then that subset is a chain from a to b: if the number of elements in the subset
is n, then the length of the chain is n − 1. Maximal chains from a to b are
those of the form a = x1 ≺ x2 ≺ · · · ≺ xn = b such that each xi is covered
by xi+1. If all maximal chains from a to b are finite, then the longest of these
defines the length of the interval [a, b]. For a bounded lattice, the length of the
interval [⊥,>] defines the length of the lattice. So, in the lattice in Figure 1.3,
there are two maximal chains between ⊥ and >, of lengths 2 and 3 (what are
these?). The length of lattice is thus equal to 3. Now, it should be evident that
finite lattices will always have a finite length, but it is possible for lattices to
have a finite length, but have infinitely many elements. For example, the lattice
L = {⊥,>, x1, x2, . . .} such that ⊥ ≺ xi ≺ > has a finite length (all maximal
chains are of length 2). (Indeed, it is even possible to have an infinite set in
which maximal chains are of finite, but increasing in lengths of 1, 2 . . ..)

Quasi-Orders

A quasi-order Q in a set S is a binary relation over S that satisfies the following
properties:

Reflexive. For every a ∈ S, aQa

Transitive. If aQb and bQc then aQc

You can see that a quasi-order differs from an equivalence relation in that sym-
metry is not required. Further, it differs from a partial order because no equality
is defined, and therefore the property of anti-symmetry property cannot be de-
fined either. There are two important properties of quasi-orders, which we will
present here without proof:
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• If a quasi-order Q is defined on a set S = {a, b, . . .}, and we define a binary
relation E as follows: aEb iff aQb and bQa. Then E is an equivalence
relation.

• Let E partition S into subsets X, Y, . . . of equivalent elements. Let T =
{X, Y, . . .} and � be a binary relation in T meaning X � Y in T if and
only if xQy in S for some x ∈ X, y ∈ Y . Then T is partially ordered by
�.

What these two properties say is simply this:

A quasi-order order Q over a set S results in a partial ordering over
a set of equivalence classes of elements in S.

1.2 Logic

Logic, the study of arguments and ‘correct reasoning’, has been with us for
at least the better part of two thousand years. In Greece, we associate its
origins with Aristotle (384 B.C.–322 B.C.); in India with Gautama and the Nyaya
school of philosophy (3rd Century B.C.?); and in China with Mo Ti (479 B.C.–
381 B.C.) who started the Mohist school. Most of this dealt with the use and
manipulation of syllogisms. It would only be a small injustice to say that little
progress was made until Gottfried Wilhelm von Leibniz (1646–1716). He made
a significant advance in the use of logic in mathematics by introducing symbols
to represent statements and relations. Leibniz hoped to reduce all errors in
human reasoning to minor calculational mistakes. Later, George Boole (1815–
1864) established the connection between logic and sets, forming the basis of
Boolean algebra. This link was developed further by John Venn (1834–1923)
and Augustus de Morgan (1806–1872). It was around this time that Charles
Dodgson (1832–1898), writing under the pseudonym Lewis Carroll, wrote a
number of popular logic textbooks. Fundamental changes in logic were brought
about by Friedrich Ludwig Gottlob Frege (1848–1925), who strongly rejected
the idea that the laws of logic are synonymous with the laws of thought. For
Frege, the former were laws of truth, having little to say on the processes by
which human beings represent and reason with reality. Frege developed a logical
framework that incorporated propositions with relations and the validity of
arguments depended on the relations involved. Frege also introduced the device
of quantifiers and bound variables, thus laying the basis for predicate logic, which
forms the basis of all modern logical systems. All this and more is described
by Bertrand Russell (1872–1970) and Alfred North Whitehead (1861–1947) in
their monumental work, Principia Mathematica. And then in 1931, Kurt Gödel
(1906–1978) showed much to the dismay of mathematicians everywhere that
formal systems of arithmetic would remain incomplete.

Rational agents require knowledge of their world in order to make rational
decisions. With the help of a declarative (knowledge representation) language,
this knowledge (or a portion of it) is represented and stored in a knowledge
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base. A knowledge-base is composed of sentences in a language with a truth
theory (logic), so that someone external to the system can interpret sentences as
statements about the world (semantics). Thus, to express knowledge, we need
a precise, declarative language. By a declarative language, we mean that

1. The system believes a statement S iff it considers S to be true, since one
cannot believe S without an idea of what it means for the world to fulfill
S.

2. The knowledge-based must be precise enough so that we must know, (1)
which symbols represent sentences, (2) what it means for a sentence to be
true, and (3) when a sentence follows from other sentences.

Two declarative languages will be discussed in this chapter: (0 order or)
propositional logic and first order logic.

1.3 Propositional Logic

Formal logic is concerned with statements of fact, as opposed to opinions, com-
mands, questions, exclamations etc. Statements of fact are assertions that are
either true or false, the simplest form of which are called propositions. Here are
some examples of propositions:

The earth is flat.

Humans are monkeys.

1 + 1 = 2

At this stage, we are not saying anything about whether these are true or false:
just that they are sentences that are one or the other. Here are some examples
of sentences that are not propositions:

Who goes there?

Eat your broccoli.

This statement is false.

It is normal to represent propositions by letters like P,Q, . . .. For exam-
ple, P could represent the proposition ‘Humans are monkeys.’ Often, simple
statements of fact are insufficient to express complex ideas. Compound state-
ments can be combining two or more propositions with logical connectives (or
simply, connectives). The connectives we will look at here will allow us to form
sentences like the following:

It is not the case that P

P and Q

P or Q

P if Q
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The P ’s and Q’s above are propositions, and the words underlined are the
connectives. They have special symbols and names when written formally:

Statement Formally Name

It is not the case that P ¬P Negation

P and Q P ∧Q Conjunction

P or Q P ∨Q Disjunction

P if Q P ← Q Conditional

There is, for example, a form of argument known to logicians as the disjunctive
syllogism. Here is one due to the Stoic philosopher Chrysippus, about a dog
chasing a rabbit. The dog arrives at a fork in the road, sniffs at one path and
then dashes down the other. Chrysippus used formal logic to describe this:3

Statement Formally

The rabbit either went down Path A or Path B. P ∨Q

It did not go down Path A. ¬P

Therefore it went down Path B. ∴ Q

Here P represents the proposition ‘The rabbit went down Path A’ and Q the
proposition ‘The rabbit went down Path B.’ To argue like Chrysippus requires
us to know how to write correct logical sentences, ascribe truth or falsity to
propositions, and use these to derive valid consequences. We will look at all
these aspects in the sections that follow.

1.3.1 Syntax

Every language needs a vocabulary . For the language of propositional logic, we
will restrict the vocabulary to the following:

Propositional symbols: P,Q, . . .

Logical connectives4 : ¬,∧,∨,←

Brackets: (, )

The next step is to specify the rules that decide how legal sentences are to be
formed within the language. For propositional logic, legal sentences or well-
formed formulæ (wffs for short) are formed using the following rules:

1. Any propositional symbol is a wff;

2. If α is a wff then ¬α is a wff; and

3There is no suggestion that the principal agent in the anecdote employed similar means
of reasoning.
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3. If α and β are wffs then (α ∧ β), (α ∨ β), and (α← β) are wffs.

Wffs consisting simply of propositional symbols (Rule 1) are sometimes called
atomic wffs and others compound wffs Informally, it is acceptable to drop out-
ermost brackets. Here are some examples of wffs and ‘non-wffs’:

Formula Comment

(¬P ) Not a wff. Parentheses are only allowed

with the connectives in Rule 3

¬¬P P is wff (Rule 1),

¬P is wff (Rule 2),

∴ ¬¬P is wff (Rule 2)

(P ← (Q ∧R)) P, Q, R are wffs (Rule 1),

∴ (Q ∧R) is a wff (Rule 3),

∴ (P ← (Q ∧R)) is a wff (Rule 3)

P ← (Q ∧R) Not a wff, but acceptable informally

((P ) ∧ (Q)) Not a wff. Parentheses are only allowed

with the connectives in Rule 3

(P ∧Q ∧R) Not a wff. Rule 3 only allows two symbols

within a pair of brackets

One further kind of informal notation is widespread and quite readable. The
conditional (P ← ((Q1 ∧Q2) . . . Qn))) is often written as (P ← Q1, Q2, . . . Qn)
or even P ← Q1, Q2, . . . Qn.

It is one thing to be able to write legal sentences, and quite another matter
to be able to assess their truth or falsity. This latter requires a knowledge of
semantics, which we shall look at shortly.

Normal Forms

Every formulae in propositional logic is equivalent to a formula that can be
written as a conjunction of disjunctions. That is, something like (A∨B)∧ (C ∨
D) ∧ · · · . When written in this way the formula is said to be in conjunctive
normal form or CNF. There is another form, which consists of a disjunction of
conjunctions, like (A∧B)∨ (C ∧D)∨ · · · , called the disjunctive normal form or
DNF. In general, a formula F in CNF can be written somewhat more cryptically
as:

F =
n
∧

i=1





m
∨

j=1

Li,j





and a formula G in DNF as:
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G =

n
∨

i=1





m
∧

j=1

Li,j





Here,
∨

Fi is short for F1 ∨ F2 ∨ · · · and
∧

Fi is short for Fi ∧ F2 ∧ · · · . In
both CNF and DNF forms above, the Li,j are either propositions or negations
of propositions (we shall shortly call these “literals”).

1.3.2 Semantics

There are three important concepts to be understood in the study of semantics
of well-formed formulæ: interpretations, models, and logical consequence.

Interpretations

For propositional logic, an interpretation is simply an assignment of either true
or false to all propositional symbols in the formula. For example, given the wff
(P ← (Q ∧R)) here are two different interpretations:

P Q R

I1 : true false true

I2 : false true true

You can think of I1 and I2 as representing two different ‘worlds’ or ‘contexts’.
After a moment’s thought, it should be evident that for a formula with N

propositional symbols, there can never be more than 2N possible interpretations.
Truth or falsity of a wff only makes sense given an interpretation (by the

principle of bivalence, any interpretation can only result in a wff being either
true or false). Clearly, if the wff simply consists of a single propositional symbol
(recall that this was called an atomic wff), then the truth-value is simply that
given by the interpretation. Thus, the wff P is true in interpretation I1 and
false in interpretation I2. To obtain the truth-value of compound wffs like
(P ← (Q ∧ R)) requires a knowledge the semantics of the connectives. These
are usually summarised in a tabular form known as truth tables. The truth
tables for the connectives of interest to us are given below.

Negation. Let α be a wff5. Then the truth table for ¬α is as follows:

α ¬α

false true

true false

Conjunction. Let α and β be wffs. The truth table for (α ∧ β) is as follows:

5We will use Greek characters like α, β to stand generically for any wff.
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α β (α ∧ β)

false false false

false true false

true false false

true true true

Disjunction. Let α and β be wffs. The truth table for (α ∨ β) is as follows:

α β (α ∨ β)

false false false

false true true

true false true

true true true

Conditional. Let α and β be wffs. The truth table for (α← β) is as follows:

α β (α← β)

false false true

false true false

true false true

true true true

We are now in a position to obtain the truth-value of a compound wff. The
procedure is straightforward: given an interpretation, we find the truth-values
of the smallest ‘sub-wffs’ and then use the truth tables for the connectives to
obtain truth-values for increasingly complex sub-wffs. For (P ← (Q ∧ R)) this
means:

1. First, obtain the truth-values of P,Q, R using the interpretation;

2. Next, obtain the truth-value of (Q ∧ R) using the truth table for ‘Con-
junction’ and the truth-values of Q and R (Step 1); and

3. Finally, obtain the truth-value (P ← (Q ∧ R)) using the truth table for
‘Conditional’ and the truth-values of P (Step 1) and (Q ∧R) (Step 2).

For the interpretations I1 and I2 earlier these truth-values are as follows:

P Q R (Q ∧R) (P ← (Q ∧R))

I1 : true false true false true

I2 : false true true true false

Thus, (P ← (Q ∧R)) is true in interpretation I1 and false in I2.
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Models

Every interpretation (that is, an assignment of truth-values to propositional
symbols) that makes a well-formed formula true is said to be a model for that
formula. Take for example, the two interpretations I1 and I2 above. We have
already seen that I1 is a model for (P ← (Q ∧ R)); and that I2 is not a model
for the same formula. In fact, I1 is also a model for several other wffs like: P ,
(P ∧R), (Q∨R), (P ← Q), etc. Similarly, I2 is a model for Q, (Q∧R), (P ∨Q),
(Q← P ), etc.

As another example, let {P,Q, R} be the set of all atoms in the language,
and α be the formula ((P ∧ Q) ↔ (R → Q)). Let I be the interpretation that
makes P and R true, and Q false (so I = {P,R}). We determine whether α is
true or false under I as follows:

1. P is true under I, and Q is false under I, so (P ∧Q) is false under I.

2. R is true under I, Q is false under I, so (R→ Q) is false under I.

3. (P ∧Q) and (R→ Q) are both false under I, so α is true under I.

Since α is true under I, I is a model of α. Let I ′ = {P}. Then (P ∧ Q) is
false, and (R → Q) is true under I ′. Thus α is false under I ′, and I ′ is not a
model of α.

The definition of model can be extended to a set of formulæ; an interpretation
I is said to be a model of a set of formulæ Σ if I is a model of all formulæ α ∈ Σ.
Σ is then said to have I as a model. We will offer an example to illustrate
this extended definition. Let Σ = {P, (Q ∨ I), (Q → R)}, and let I = {P,R},
I ′ = {P,Q, R}, and I” = {P,Q} be interpretations. I and I ′ satisfy all formulas
in Σ, so I and I ′ are models of Σ. On the other hand, I” falsifies (Q→ R), so
I” is not a model of Σ.

At this point, we can distinguish amongst two kinds of formulæ:

1. A wff may be such that every interpretation is a model. An example is
(P ∨¬P ). Since there is only one propostional symbol involved (P ), there
are at most 21 = 2 interpretations possible. The truth table summarising
the truth-values for this formula is:

P ¬P (P ∨ ¬P )

I1 : false true true

I2 : true false true

(P ∨ ¬P ) is thus true in every possible ‘context’. Formulæ like these, for
which every interpretation is a model are called valid or tautologies

2. A wff may be such that none of the interpretations is a model. An example
is (P ∧ ¬P ). Again there is only one propostional symbol involved (P ),
and thus only two interpretations possible. The truth table summarising
the truth-values for this formula is:
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P ¬P (P ∧ ¬P )

I1 : false true false

I2 : true false false

(P ∧ ¬P ) is thus false in every possible ‘context’. Formulæ like these,
for which none of the interpretations is a model are called unsatisfiable or
inconsistent

Finally, any wff that has at least one interpretation as a model is said to be
satisfiable.

Logical Consequence

We are often interested in establishing the truth-value of a formula given that
of some others. Recall the Chrysippus argument:

Statement Formally

The rabbit either went down Path A or Path B. P ∨Q

It did not go down Path A. ¬P

Therefore it went down Path B. ∴ Q

Here, we want to establish that if the first two statements are true, then the third
follows. The formal notion underlying all this is that of logical consequence. In
particular, what we are trying to establish is that some well-formed formula α

is the logical consequence of a conjunction of other well-formed formulæ Σ (or,
that Σ logically implies α). This relationship is usually written thus:

Σ |= α

Σ being the conjunction of several wffs, it is itself a well-formed formula6. Log-
ical consequence can therefore also be written as the following relationship be-
tween a pair of wffs:

((β1 ∧ β2) . . . βn) |= α

It is sometimes convenient to write Σ as the set {β1, β2, . . . , βn} which is un-
derstood to stand for the conjunctive formula above. But how do we determine
if this relationship between Σ and α does indeed hold? What we want is the
following: whenever the statements in Σ are true, α must also be true. In formal
terms, this means: Σ |= α if every model of Σ is also model of α. Decoded:

6There is therefore nothing special needed to extend the concepts of validity and unsatisfi-
ability to conjunctions of formulæ like Σ. Thus, Σ is valid if and only if every interpretation is
a model of the conjunctive wff (in other words, a model for each wff in the conjunction); and
it is unsatisfiable if and only if none of the interpretations is a model of the conjunctive wff.
It should be apparent after some reflection that if Σ is valid, then all logical consequences of
it are also valid. On the other hand, if Σ is unsatisfiable, then any well-formed formula is a
logical consequence.
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• Recall that a model for a formula is an interpretation (assignment of truth-
values to propositions) that makes that formula true;

• Therefore, a model for Σ is an interpretation that makes ((β1 ∧β2) . . . βn)
true. Clearly, such an interpretation will make each of β1, β2, . . . , βn true;

• Let I1, I2, . . . , Ik be all the interpretations that satisfy the requirement
above: that is, each is a model for Σ and there are no other models for
Σ (recall that if there are N propositional symbols in Σ and α together,
then there can be no more than 2N such interpretations);

• Then to establish Σ |= α, we have to check that each of I1, I2, . . . , Ik is
also a model for α (that is, each of them make α true).

The definition of logical entailment can be extended to the entailment of sets
of formulæ. Let Σ and Γ be sets of formulas. Then Γ is said to be a logical
consequence of Σ (written as Σ |= Γ), if Σ |= α, for every formula α ∈ Γ. We
also say Σ (logically) implies Γ.

We are now in a position to see if Chrysippus was correct. We wish to see
if ((P ∨Q) ∧ ¬P ) |= Q. From the truth tables on page 17, we can construct a
truth table for ((P ∨Q) ∧ ¬P ):

P Q (P ∨Q) ¬P ((P ∨Q) ∧ ¬P )

I1 : false false false true false

I2 : false true true true true

I3 : true false true false false

I4 : true true true false false

It is evident that of the four interpretations possible only one is a model for
((P ∨Q) ∧ ¬P ), namely: I2. Clearly I2 is also a model for Q. Therefore, every
model for ((P ∨Q)∧¬P ) is also a model for Q7. It is therefore indeed true that
((P ∨Q)∧¬P ) |= Q. In fact, you will find you can ‘move’ formulæ from left to
right in a particular manner. Thus if:

((P ∨Q) ∧ ¬P ) |= Q

then the following also hold:

(P ∨Q) |= (Q← ¬P ) and ¬P |= (Q← (P ∨Q))

These are consequences of a a more general result known as the deduc-
tion theorem, which we look at now. Using a set-based notation, let Σ =
{β1, β2, . . . , βi, . . . , βn}. Then, the deduction theorem states:

7Although I4 is also a model for Q, the test for logical consequence only requires us to
examine those interpretations that are models of ((P ∨Q) ∧ ¬P ). This precludes I4.
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Theorem 6

Σ |= α if and only if Σ− {βi} |= (α← βi)

.

Proof: Consider first the case that Σ |= α. That is, every model of Σ is a model
of α. Now assume Σ− {βi} 6|= (α← βi). That is, there is some model, say M ,
of Σ − {βi} that is not a model of (α ← βi). That is, βi is true and α is false
in M . That is M is a model for Σ− {βi} and for βi, but not a model for α. In
other words, M is a model for Σ but not a model for α which is not possible.
Therefore, if Σ |= α then Σ − {βi} 6|= (α ← βi). Now for the “only if” part.
That is, let Σ − {βi} |= (α ← βi). We want to show that Σ |= α. Once again,
let us assume the contrary (that is, Σ 6|= α. This means there must be a model
M for Σ that is not a model for α. However, since Σ = {β1, β2, . . . , βi, . . . , βn},
M is both a model for Σ− {βi} and a model for each of the βi. So, M cannot
be a model for (α ← βi). We are therefore in a position that there is a model
M for Σ − {βi} that is not a model of (α ← βi), which contradicts what was
given. 2

The deduction theorem isn’t restricted to propositional logic, and holds for first-
order logic as well. It can be invoked repeatedly. Here is an example of using it
twice:

Σ |= α if and only if Σ− {βi, βj} |= (α← (βi ∧ βj))

With Chrysippus, applying the deduction theorem twice results in:

{(P ∨Q),¬P} |= Q if and only if ∅ |= (Q← ((P ∨Q) ∧ ¬P ))

If ∅ |= (Q ← ((P ∨ Q) ∧ ¬P )) then every model for ∅ must be a model for
(Q ← ((P ∨ Q) ∧ ¬P )). By convention, every interpretation is a model for ∅8.
It follows that every interpretation must be a model for (Q← ((P ∨Q)∧¬P )).
Recall that this is just another way of stating that (Q ← ((P ∨ Q) ∧ ¬P )) is
valid (page 19)9.

What is the difference between the concepts of logical consequence denoted
by |= and the connective → in a statement such as Σ |= Γ? where, Σ = {(P ∧
Q), (P → R)} and Γ = {P,Q, R}? And how do these two notions of implication
relate to the phrase ‘if....then’, often used in propositions or theorems? We
delineate the differences below:

8That is, we take the empty set to denote a distinguished proposition True that is true

in every interpretation. Correctly then, the formula considered is not ((β1 ∧ β2) . . . βn))) but
(True ∧ ((β1 ∧ β2) . . . βn)))).

9To translate declarative knowledge into action (as in the case of the dog from Chrysippus’s
anecdote), one of two possible strategies can be adopted. The first is called ‘Negative selection’
which involves excluding any provably futile actions. The second is called ‘Positive selection’
which involves suggesting only actions that are provably safe. There can be some actions that
are neither provably safe nor provably futile.
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1. The connective→ is a syntactical symbol called ‘if ... then’ or ‘implication’,
which appears within formulæ. The truth value of the formula (α → ξ)
depends on the particular interpretation I we happen to be considering:
according to the truth table, (α→ ξ) is true under I if α is false under I

and/or ξ is true under I; (α→ ξ) is false otherwise.

2. The concept of ‘logical consequence’ or ‘(logical) implication’, denoted by
’|=’ describes a semantical relation between formulæ. It is defined in terms
of all interpretations: ’α |= ξ’ is true if every interpretation that is a model
of α, is also a model of ξ.

3. The phrase ’if. .. then’, which is used when stating, for example, propo-
sitions or theorems is also sometimes called ’implication’. This describes
a relation between assertions which are phrased in (more or less) natural
language. It is used for instance in proofs of theorems, when we state that
some assertion implies another assertion. Sometimes we use the symbols
’ ’ or . ¡=’ for this. If assertion A implies assertion B, we say that B is a
necessary condition for A (i.e., if A is true, B must necessarily be true),
and A is a. Ilufficient condition for B (i.e., the truth of B is sufficient to
make A true). In (’tum A implies B, and B implies A, we write ”A iff B”,
where ’iff’ abbreviates ’if, and only if’.

Closely related to logical consequence is the notion of logical equivalence. A
pair of wffs α and β are logically equivalent means:

α |= β and β |= α

This means the truth values for α and β are the same in all cases, and is usually
written more concisely as:

α ≡ β

Examples of logically equivalent formulæ are provided by De Morgan’s laws:

¬(α ∨ β) ≡ ¬α ∧ ¬β

¬(α ∧ β) ≡ ¬α ∨ ¬β

Also, if True denotes the formula that is true in every interpretation and False

the formula that is false in every interpretation, then the following equivalences
should be self-evident:

α ≡ (α ∧ True)

α ≡ (α ∨ False)
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More on the Conditional

We are mostly concerned with rules that utilise the logical connective ←. This
makes this particular connective more interesting than the others, and it is worth
noting some further details about it. Although we will present these here using
examples from the propositional logic, the main points are just as applicable to
formulæ in the predicate logic.

Recall the truth table for the conditional from page 18:

α β (α← β)

false false true

false true false

true false true

true true true

There is, therefore, only one interpretation that makes (α← β) false. This may
come as a surprise. Consider for example the statement:

The earth is flat ← Humans are monkeys

An interpretation that assigns false to both ‘The earth is flat’ and ‘Humans are
monkeys’ makes this statement true (line 1 of the truth table). In fact, the only
world in which the statement is false is one in which the earth is not flat, and
humans are monkeys10. Consider now the truth table for (α ∨ ¬β):

α β ¬β (α ∨ ¬β)

false false true true

false true false false

true false true true

true true false true

It is evident from these truth tables that every model for (α ← β) is a model
for (α ∨ ¬β) and vice-versa. Thus:

(α← β) ≡ (α ∨ ¬β)

Thus, the conditional:

(Fred is human ← (Fred walks upright ∧ Fred has a large brain))

is equivalent to:

10The unusual nature of the conditional is due to the fact that it allows premises and
conclusions to be completely unrelated. This is not what we would expect from conditional
statements in normal day-to-day discourse. For this reason, the ← connective is sometimes
referred to as the material conditional to distinguish it from a more intuitive notion.
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(Fred is human ∨ ¬ (Fred walks upright ∧ Fred has a large brain))

Or, using De Morgan’s Law (page 23) and dropping some brackets for clarity:

Fred is human ∨ ¬ Fred walks upright ∨ ¬ Fred has a large brain

In this form, each of the premises on the right-hand side of the the original
conditional (Fred walks upright, Fred has a large brain) appear negated in the final
disjunction; and the conclusion (Fred is human) is unchanged. For a reason that
will become apparent later we will use the term clauses to denote formulæ that
contain propositions or negated propositions joined together by disjunction (∨).
We will also use the term literals to denote propositions or negated propositions.
Clauses are thus disjunctions of literals.

It is common practice to represent a clause as a set of literals, with the
disjunctions understood. Thus, the clause above can be written as:

{ Fred is human, ¬ Fred walks upright, ¬ Fred has a large brain }

The equivalence α ← β ≡ α ∨ ¬β also provides an alternative way of pre-
senting the deduction theorem.

On page 22 the statement of this theorem was:

Σ |= α if and only if Σ− {βi} |= (α← βi)

This can now be restated as:

Σ |= α if and only if Σ− {βi} |= (α ∨ ¬βi)

The theorem thus operates as follows: when a formula moves from the left of |=
to the right, it is negated and disjoined (using ∨) with whatever exists on the
right. The theorem can also be used in the “other direction”: when a formula
moves from the right of |= to the left, it is negated and conjoined (using ∧ or ∪
in the set notation) to whatever exists on the left. Thus:

Σ |= (α ∨ ¬β) if and only if Σ ∪ {¬α} |= ¬β

A special case of this arises from the use of the equivalence α ≡ (α ∨ False)
(page 23):

Σ |= α if and only if Σ |= (α ∨ False) if and only if Σ ∪ {¬α} |= False

The formula False is commonly written as 2 and the result above as:

Σ |= α if and only if Σ ∪ {¬α} |= 2

The conditional (α← β) is sometimes mistaken to mean the same as (α∧β).
Comparison against the truth table for (α ∧ β) shows that these two formulæ
are not equivalent:
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α β (α ∧ β)

false false false

false true false

true false false

true true true

There are a number of ways in which (α ← β) can be translated in English.
Some of the more popular ones are:

If β, then α α, if β β implies α

β only if α β is sufficient for α α is necessary for β

All β’s are α’s

Note the following related statements:

Conditional (α← β)

Contrapositive (¬β ← ¬α)

It should be easy to verify the following equivalence:

Conditional ≡ Contrapositive (α← β) ≡ (¬β ← ¬α)

Errors of reasoning arise by assuming other equivalences. Consider for example
the pair of statements:

S1 : Fred is an ape ← Fred is human
S2 : Fred is human ← Fred is an ape

S2 is the sometimes called the converse of S1. An interpretation that assigns
true to ‘Fred is an ape’ and false to ‘Fred is human’ is a model for S1 but not
a model for S2. The two statements are thus not equivalent.

More on Normal Forms

We are now able to state two properties concerning normal forms:

1. If F is a formula in CNF and G is a formula in DNF, then ¬F is a
formula in DNF and ¬G is a formula in CNF. This is a generalisation of
De Morgan’s laws and can be proved using the technique of mathematical
induction (that is, show truth for a formula with a single literal; assume
truth for a formula with n literals; and then show that it holds for a
formula with n + 1 literals.)
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2. Every formula F can be written as a formula F1 in CNF and a formula F2

in DNF. It is straightforward to see that any formula F can be written as
a DNF formula by examining the rows of the truth table for F for which
F is true. Suppose F consists of the propositions A1, A2, . . . , An. Then
each such row is equivalent to some conjunction of literals L1, L2, . . . , Ln,
where Li is equal to Ai if Ai is true in that row and equal to ¬Ai otherwise.
Clearly, the disjunction of each row for which F is true gives the DNF
formula for F . We can get the corresponding CNF formula G by negating
the DNF formula (using the property above), or by examining the rows
for which F is false in the truth table.

It should now be clear that a CNF expression is nothing more than a conjunction
of a set of clauses (recall a clause is simply a disjunction of literals). It is therefore
possible to convert any propositional formula F into CNF—either using the
truth table as described, or using the following procedure:

1. Replace all conditionals statements of the form A← B by the equivalent
form using disjunction (that is, A ∨ ¬B). Similarly replace all A ↔ B

with (A ∨ ¬B) ∧ (¬A ∨B).

2. Eliminate double negations (¬¬A replaced by A) and use De Morgan’s
laws wherever possible (that is, ¬(A ∧ B) replaced by (¬A ∨ ¬B) and
¬(A ∨B) replaced by (¬A ∧ ¬B)).

3. Distribute the disjunct ∨. For example, (A ∨ (B ∧ C)) is replaced by
(A ∨B) ∧ (A ∨ C).

An analogous process converts any formula to an equivalent formula in DNF. We
should note that during conversion, formulæ can expand exponentially. How-
ever, if only satisfiability should be preserved, conversion to CNF formula can
be done polynomially.

1.3.3 Inference

Enumerating and comparing models is one way of determining whether one
formula is a logical consequence of another. While the procedure is straightfor-
ward, it can be tedious, often requiring the construction of entire truth tables.
A different approach makes no explicit reference to truth values at all. Instead,
if α is a logical consequence of Σ, then we try to show that we can infer or
derive α from Σ using a set of well-understood rules. Step-by-step applica-
tion of these rules results in a proof that deduces that α follows from Σ. The
rules, called rules of inference, thus form a system of performing calculations
with propositions, called the propositional calculus11. Logical implication can
be mechanized by using a propositional calculus. We will first concentrate on a
particular inference rule called resolution.

11In general, a set of inference rules (potentially including so called logical axioms) is called
a calculus.



28 CHAPTER 1. SETS, RELATIONS AND LOGIC

1.3.4 Resolution

Before proceding further, some basic terminology from proof theory may be
helpful (this is not specially confined to the propositional calculus). Proof theory
considers the derivability of formulæ, given a set of inference rules R. Formulæ
given initially are called axioms and those derived are theorems. That formula
α is a theorem of a set of axioms Σ using inference rules R is denoted by:

Σ `R α

When R is obvious, this is simply written as Σ ` α. The axioms can be valid
(that is, all interpretations are models), or problem-specific (that is, only some
interpretations may be models). The axioms together with the inference rules
constitute what is called an inference system. The axioms together with all the
theorems that are derivable from it is called a theory . A theory is said to be
inconsistent if there is a formula α such that the theory contains both α and
¬α.

We would like the theorems derived to be logical consequences of the axioms
provided. For, if this were the case then by definition, the theorems will be true
in all models of the axioms (recall that this is what logical consequence means).
They will certainly be true, therefore, in any particular ‘intended’ interpretation
of the axioms. Ensuring this property of the theorems depends entirely on the
inference rules chosen: those that have this property are called sound . That is:

if Σ `R α then Σ |= α

Some well-known sound inference rules are:

Modus ponens: {β, α← β} ` α

Modus tollens: {¬α, α← β} ` ¬β

Theorems derived by the use of sound inference rules can be added to the original
set of axioms. That is, given a set of axioms Σ and a theorem α derived using
a sound inference rule, Σ ≡ Σ ∪ {α}.

We would also like to derive all logical consequences of a set of axioms and
rules with this property at said to be complete:

if Σ |= α then Σ `R α

Axioms and inference rules are not enough: we also need a strategy to select and
apply the rules. An inference system (that is, axioms and inference rules) along
with a strategy is called a proof procedure. We are especially interested here in a
special inference rule called resolution and a strategy called SLD (the meaning
of this is not important at this point: we will come to it later). The result is a
proof procedure called SLD-resolution. Here we will simply illustrate the rule
of resolution for manipulating propositional formulæ, and use an unconstrained
proof strategy. A description of SLD will be left for a later section.

Suppose we are given as axioms the conditional formulæ (using the informal
notation that replaces ∧ with commas):
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β1 : Fred is an ape ← Fred is human

β2 : Fred is human ← Fred walks upright, Fred has a large brain

Then the following is a theorem resulting from the use of resolution:

α : Fred is an ape ← Fred walks upright, Fred has a large brain

That α is indeed a logical consequence of β1∧β2 can be checked by constructing
truth tables for the formulæ: you will find that every interpretation that makes
β1 ∧β2 true will also make α true. More generally, here is the rule of resolution
when applied to a pair of conditional statements:

{(P ← Q1, . . . , Qi, . . . Qn), (Qi ← R1, . . . Rm)} `

P ← Q1, . . . , Qi−1, R1, . . . Rm, Qi+1, . . . , Qn

The equivalence from page 24 (α← β ≡ α∨¬β) allows resolution to be presented
in a different manner (we have taken the liberty of dropping some brackets here):

{(P ∨ ¬Q1 ∨ . . .¬Qi ∨ . . . ∨ ¬Qn), (Qi ∨ ¬R1 ∨ . . . ∨ ¬Rm)} `

P ∨ ¬Q1 ∨ . . . ∨ ¬Qi−1 ∨ ¬R1 ∨ . . . ∨ ¬Rm ∨ ¬Qi+1 ∨ . . . ∨ ¬Qn

On page 25, we introduced the terms clauses and literals. Thus, resolution
applies to a pair of ‘parent’ clauses that contain complementary literals ¬L and
L. The result (the ‘resolvent’) is a clause containing all literals from each clause,
except the complementary pair. Or, more abstractly, let C1 and C2 be a pair of
clauses, and let L ∈ C1 and ¬L ∈ C2. Then, the resolvent of C1 and C2 is the
clause:

R = (C1 − {L}) ∪ (C2 − {¬L})

Resolution of a pair of unit clauses—those that contain just single literals L

and ¬L—results in the the empty clause12, or 2, which means that the parent
clauses were inconsistent.

We can show that resolution is a sound inference rule.

Theorem 7 Suppose R is the resolvent of clauses C1 and C2. That is, {C1, C2} `
R. The resolution is sound, that is, {C1, C2} |= R.

Proof:: We want to show that if C1 and C2 are true and R is a resolvent of
C1 and C2 then R is true. Let us assume C1 and C2 are true, and that R was
obtained by resolving on some literal L in C1 and C2. Further, let C1 = C ∨ L

12Note the difference between an empty clause 2 and empty set of clauses {}. An interpre-
tation I logically entails C iff there exists an l ∈ C such that I |= l. I logically entails Σ if for
all C ∈ Σ, I |= C. Thus, by definition, for all interpretations I, I 6|= 2 and I 6|= {2}, whereas
I |= {}.



30 CHAPTER 1. SETS, RELATIONS AND LOGIC

and C2 = D ∨ ¬L, giving R = C ∨D. Now, L is either true or false. Suppose
L is true. Then clearly C1 is true, but since ¬L is false and C2 is true (by
assumption), it must be that D, and hence R must be true. It is easy to see
that we similarly arrive to the same conclusion about R even if L was false. 2

So, the theorems obtained by applying resolution to a set of axioms are all
logical consequences of the axioms. In general, we will denote a clause C derived
from a set of clauses Σ using resolution by Σ `R C. This means that there is
a finite sequences of clauses R1, . . . , Rk = C such that each Ci (where Ci is
a clause being resolved upon in the ith resolution step) is either in Σ or is a
resolvent of a pair of clauses already derived (that is, from {R1, . . . , Ri−1}) .
Now, although it is the case that if Σ `R α then Σ |= α, the reverse does not
hold. For example, a moment’s thought should convince you that:

{Fred is an ape, Fred is human } |= Fred is an ape ← Fred is human

However, using resolution, there is no way of deriving Fred is an ape ← Fred is
human from Fred is an ape and Fred is human. As an inference rule, resolution is
thus incomplete13. However, it does have an extremely useful property known
as refutation completeness. This is that if a formula Σ is inconsistent, then the
empty clause 2 will be eventually derivable by resolution. We will distinguish
between the two completeness by referring to general completeness as affirmation
completeness.

Thus, since Fred is an ape ← Fred is human is a logical consequence of Fred
is an ape and Fred is human, then the formula:

Σ : {Fred is an ape, Fred is human, ¬(Fred is an ape ← Fred is human)}

must be inconsistent. This can be verified using resolution. First, the clausal
form of (Fred is an ape ← Fred is human) is (Fred is an ape ∨ ¬ Fred is human).
Using De Morgan’s Law on this clausal form, we can see that ¬(Fred is an ape
← Fred is human) is equivalent to ¬ Fred is an ape ∧ Fred is human. We can now
rewrite Σ :

Σ′ : {Fred is an ape, Fred is human, ¬Fred is an ape}

Resolution of the pair Fred is an ape, ¬Fred is an ape would immediately result
in the empty clause 2. The general steps in a refutation proof procedure using
resolution are therefore:

• Let S be a set of clauses and α be a propositional formula. Let C =
S ∪ {¬α}.

• Repeatedly do the following:

1. Select a pair of clauses C1 and C2 from C that can be resolved on
some proposition P .

13It can be however proved that resolution is affirmation complete with respect to atomic
conclusions.
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2. Resolve C1 and C2 to give R.

3. If R = 2 then stop. Otherwise, if R contains both a proposition Q

and its negation ¬Q then discard R. Otherwise add R to C.

In general, we know that any formula F can be converted to a conjunction
of clauses. We can distinguish between the following sets. Res0(F ), which
is simply the set of clauses in F . Resn(F ), for n > 0, which is the clauses
containing all clauses in Resn−1(F ) and all clauses obtained by resolving a pair
of clauses from Resn−1(F ). Since there are only a finite number of propositional
symbols in F and a finite number of clauses in its CNF, we can see that there
will only be a finite number of clauses that can be obtained using resolution.
That is, there is some m such that Resm(F ) = Resm−1(F ). Let us call this
final set consisting of all the original clauses and all possible resolvents Res∗(F ).
Then, the property of refutation-completeness for resolution can be stated more
formally as follows:

Theorem 8 For some formula F , 2 ∈ Res∗(F ) if and only if F is unsatisfiable.

Though the resolution rule by itself is not (affirmation) complete for clauses
in general, this property states that it is complete with respect to unsatisfiable
sets of clauses. The complete proof of this will be provided on page 33. To get
you started however, we show that if 2 ∈ Res∗(F ) then F is unsatisfiable. We
can assume that 2 6∈ Res0(F ), since 2 is not a disjunction of literals. Therefore
there must be some k for which 2 6∈ Resk(F ) and 2 ∈ Resk+1(F ). This can
only mean that both L and ¬L are in Resk(F ). That is L and ¬L are obtained
from F by resolution. By the property of soundness of resolution, this means
that F |= (L ∧ ¬L). That is, F is unsatisfiable.

There are also other proof processes that are refutation-complete. Examples
of such processes are the Davis-Putnam Procedure14, Tableaux Procedure, etc.
In the worst case, the resolution search procedure can take exponential time.
This, however, very probably holds for all other proof procedures. For CNF
formulae in propositional logic, a type of resolution process called the Davis-
Putnam Procedure (backtracking over all truth values) is probably (in practice)
the fastest refutation-complete process.

The Subsumption Theorem

A property related to logical implication is that of subsumption. A propositional
clause C subsumes a propositional clause D if C ⊆ D. What does this mean?
It just means that every literal in C appears in D. Here are a pair of clauses C

and D such that C subsumes D:

C : Fred is an ape

D : Fred is an ape← Fred is human

14It can be proved that the Davis-Putnam procedure is sound as well as complete.
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In general, it should be easy to see that if C and D are clauses such that C ⊆ D,
then C |= D. In fact, for propositional logic, it is also the case that if C |= D

then C subsumes D (we see why this is so shortly).
The notion of subsumption acts as the basis for an important result linking

resolution and logical implication, called the subsumption theorem:

Theorem 9 If Σ is a set of clauses and D is a clause. Then Σ |= D if and
only if D is a tautology or there is a clause C such that there is a derivation of
C from Σ using resolution (Σ `R C) and C subsumes D.

By “derivation of a clause C” here, we mean the same as on page 30, that is,
there is a sequence of clauses R1, . . . , Rk = C such that each Ri is either in Σ or
is a resolvent of a pair of clauses in {R1, . . . , Ri−1}. In effect, the Subsumption
Theorem tells us that logical implication can be decomposed into a sequence of
resolution steps, followed by a subsumption step:

C

subsumes

D

Proof of Subsumption Theorem:

We will show that “only if” part of the theorem holds using the method of
induction on the size of Σ:

1. Let |Σ| = 1. That is Σ = {α1}. Let Σ |= D. Since the only result of
applying resolution to Σ is α1, we need to show that α1 ⊆ D. Suppose
α1 6⊆ D. Let L be a literal in α1 that is not in D. Let I be an interpretation
that assigns L to true and all literals in D to false. Clearly I is a model for
α1 but not a model for D, which is not possible since Σ |= D. Therefore,
α1 ⊆ D.

2. Let the theorem hold for |Σ| = n. We will see that it follows that it
holds for |Σ| = n + 1. Let Σ = {α1, . . . , αn+1} and Σ |= D. By the
Deduction Theorem, we know that this means Σ−{αn+1} |= (D ← αn+1),
or Σ − {αn+1} |= (D ∨ ¬αn+1). Let us set Σ′ = Σ − {αn+1}, and let
L1, . . . , Lk be the literals in αn+1 that do not appear in D. That is αn+1 =
L1 ∨ · · · ∨Lk ∨D′, where D′ ⊆ D. Σ′ |= (D ∨¬αn+1), you should be able
to see that Σ′ |= (D ∨ ¬Li) for 1 ≤ i ≤ k. Since |Σ′| = n and we
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believe, by the induction hypothesis, that the subsumption theorem holds
for |Σ′| = n, there must be some βi for each Li, such that Σ′ `R βi and
βi ⊆ (D ∨ ¬Li). Suppose ¬Li 6∈ βi. Then βi ⊆ D, which means that
βi subsumes D. Since Σ′ |= βi and Σ |= Σ′, the result follows. Now
suppose ¬Li ∈ βi. That is, βi = ¬Li ∨ β′

i, where β′
i ⊆ D. Clearly,

we can resolve this with αn+1 = L1 ∨ · · · ∨ Li ∨ · · · ∨ Lk ∨ D′ to give
L1 ∨ · · · ∨Li−1 ∨β′

i ∨ · · · ∨Lk ∨D′. Progressively resolving against each of
the βi, we will be left with the clause C = β′

1∨β′
2∨· · ·∨β′

k∨D′. Since C is
the result of resolutions using a clause from Σ (that is αn+1) and clauses
derivable from Σ′ ⊂ Σ, it is evident that Σ `R C. Also, since β′

i ⊆ D and
D′ ⊆ D, C ⊆ D and the result follows.

You should be able to see that the proof in the other direction (the “if” part)
follows easily enough from the soundness of resolution. 2

An immediate consequence of the Subsumption Theorem is that refutation-
completeness of resolution follows.
Proof of Theorem 8

Recall what refutation completeness of resolution means: if Σ is a set of
clauses that is unsatisfiable, then the empty clause 2 is derivable using reso-
lution. If Σ is unsatisfiable, then Σ |= 2. From the Subsumption Theorem,
we know that if Σ |= 2, there must be a clause C such that Σ `R C and C

subsumes 2. But the only clause subsuming 2 is 2 itself. Hence C = 2, which
means that if Σ |= 2 then Σ `R 2.

Proofs Using Resolution

So far, we have no strategy for directing the clauses obtained using resolution.
Clauses are derived using any pair of clauses with complementary literals, and
the process simply continues until we find the clause we want (for example,
2 if we are interested in a proof of unsatisfiability). This procedure is clearly
quite inefficient, since there is almost nothing constraining a proof, other than
the presence of complementary literals. A “proof” for a clause C then ends up
looking something like this:

C

Being creatures of limited patience and resources, we would like more directed
approach. We can formalise this by changing our notion of a derivation. Recall
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what we have been using so far: the derivation of a clause C from a set of
clauses Σ means there is a sequence of clauses R1, . . . , Rk = C such that each
Ci is either in Σ or is a resolvent of a pair of clauses in {R1, . . . , Ri−1}. This
results in the unconstrained form of a proof for C. We will say that there is
a linear derivation for C from Σ if there is a sequence R0, . . . , Rk = C such
that R0 ∈ Σ and each Ri (1 ≤ i ≤ k) is a resolvent of Ri−1 and a clause
Ci ∈ Σ∪ {R0, . . . , Ri−2}. With a little thought, you should be able to convince
yourself that this will result in a derivation with a “linear” look:

C

Here, you can see that each new resolvent forms one of the clauses for the next
resolution step. The other clause—sometimes called the “side clause”—can be
any one of the clauses in Σ or a previous resolvent. For reasons evident from the
diagram above, the proof strategy is called linear resolution, and we will extend
our notation to indicate both the inference rule and the proof strategy. Thus
Σ `LR C will mean that C is derived from Σ using linear resolution. We can
restrict things even further, by requiring side clauses to be only from Σ. The
resulting proof strategy, called input resolution is important as it is a generalised
form of SLD resolution, first mentioned on page 28.

While the restrictions imposed by the proof strategies ensure that proofs
are more directed (and hence efficient), it is important at this point to ask: at
what cost? Of course, since we are still using resolution as an inference rule,
the individual (and overall) inference steps remain sound. But what about com-
pleteness? By this we mean refutation-completeness, since this is the only kind
of completeness we were able to show with unconstrained resolution. In fact, it
is the case that linear resolution retains the property of refutation-completeness,
but input resolution for arbitrary clauses does not. That input resolution is not
refutation complete can be proved using a simpe counter-example:

C0 : Fred is an ape ← Fred is human

C1 : Fred is an ape ← ¬ Fred is human

C2 : ¬ Fred is an ape ← Fred is human

C3 : ¬ Fred is an ape ← ¬ Fred is human

Now, a little effort should convince you that this set of clauses is unsatisfiable.
But input resolution will simply yield a sequence of resolvents: Fred is human,
Fred is an ape, Fred is human, . . . .
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Figure 1.4: Part of case 1 of the proof for theorem 10.

Theorem 10 If Σ is an unsatisfiable set of clauses, and C ∈ Σ such that Σ\{C}
is satisfiable, then there is a linear refutation of Σ with C as top clause.

Proof:

We can assume Σ is finite. Let n be the number of distinct atoms occurring
in literals in literals in Σ. We prove the lemma by induction on n

1. If n = 0, then Σ = {2}. Since Σ \ {C} is satisfiable, C = 2.

2. Suppose the lemma holds for n ≤ m, and suppose m + 1 distinct atoms
appear in Σ. We distinguish two cases.

• Case 1: Suppose C = L, where L is a literal. We first delete all
clauses from Σ which contain the literal L (so we also delete C itself
from Σ). Then we replace clauses which contain the literal ¬L by
clauses constructed by deleting these ¬L (so for example, Ll∨¬L∨L2

will be replaced by L1 ∨L2). Call the finite set obtained in this way
Γ.

Note that neither the literal L, nor its negation, appears in clauses
in Γ. If M were a Herbrand model of Γ, then M ∪ {L} (i.e., the
Herbrand interpretation which makes L true, and is the same as M

for other literals) would be a Herbrand model of Σ. Thus since Σ is
unsatisfiable, Γ must be unsatisfiable.

Now let Σ′ be an unsatisfiable subset of Γ, such that every proper
subset of Σ′ is satisfiable. Σ′ must contain a clause D′ obtained from
a member of Σ which contained ¬L, for otherwise the unsatisfiable
set Σ′ would be a subset of Σ\{C}, contradicting the assumption that
Σ \ {C} is satisfiable. By construction of Σ′, we have that Σ′ \ {D′}
is satisfiable. Furthermore, Σ′ contains at most m distinct atoms, so
by the induction hypothesis there exists a linear refutation of Σ′ with
top clause D′. See the Figure 1.4 for illustration.

Each side clause in this refutation that is not equal to a previous
center clause, is either a member of Σ or is obtained from a member
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Figure 1.5: The complete picture of case 1 of the proof for theorem 10.

of Σ by means of the deletion of ¬L. In the latter kind of side
clauses, put back the deleted ¬L literals, and add these ¬L to all
later center clauses. Note that afterwards, these center clauses may
contain multiple copies of ¬L. In particular, the last center clause
changes from 2 to ¬L ∨ . . . ∨ ¬L. Since D′ is a resolvent of C and
D = ¬L ∨ D′ ∈ Σ, we can add C and D as parent clauses on top
of the previous top clause D′. That way, we get a linear derivation
of ¬L ∨ . . . ∨ ¬L from Σ, with top clause C. Finally, the literals in
¬L ∨ . . . ∨ ¬L can be resolved away using the top clause C = L as
side clause. This yields a linear refutation of Σ with top clause C

(see Figure 1.5).

• Case 2: Exercise

2

The incompleteness of input also means that the Subsumption Theorem will
not hold for input resolution in general. What, then, can we say about SLD
resolution? The short answer is that it too is incomplete. But, for a restricted
form of clauses, input and SLD resolution are complete. The restriction is
to Horn clauses: recall that these are clauses that have at most 1 positive
literal. Indeed, it is this restriction that forms the basis of theorem-proving in
the Prolog language, which is restricted (at least in its pure form) to Horn
clauses, albeit in first-order logic (but the result still holds in that case as well).

Proofs Using SLD Resolution

Before we get to SLD, we first make our description of input resolution a little
more precise: the derivation of a clause C from a set of clauses Σ using input
resolution means there is a sequence of clauses R0, . . . , Rk = C such that R0 ∈ Σ
and each Ri (1 ≤ i ≤ k) is a resolvent of Ri−1 and a clause Ci ∈ Σ. Now, we
add further restrictions. Let Σ be a set of Horn clauses. Further, let Ri be
a resolvent of a selected negative literal in Ri−1 and the positive literal of a
definite clause Ci ∈ Σ. The selection rule is called the “computation rule” and
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the resulting proof strategy is called SLD resolution (“Selected Linear Definite”
resolution). We illustrate this with an example. Let Σ be the set of clauses:

C0 : ¬ Fred is an ape

C1 : Fred is an ape ← Fred is human, Fred has hair

C2 : Fred is human

C3 : Fred has hair

A little thought should convince you that Σ |= 2. We want to see if Σ `SLD 2.
It is evident that C0 and C1 resolve. The resolvent is R1:

C0 : ¬ Fred is an ape

C1 : Fred is an ape ← Fred is human, Fred has hair

R1 : ← Fred is human, Fred has hair

C2 : Fred is human

C3 : Fred has hair

Since we are using SLD, one of the resolvents for the next step has to be R1.
The other resolvent has to be one of the Ci’s. Suppose our selection rule selects
the “rightmost” literal first for resolution (that is, ¬ Fred has hair in R1) This
resolves with C3, giving R2 : ¬ Fred is human, which in turn resolves with C2 to
give 2. The SLD (input) resolution diagram for this is presented in Figure 1.6.

It is more common, especially in the logic-programming literature, to present
instead the search process confronting a SLD-resolution theorem prover in the
form of a tree-diagram, called an SLD-tree. Such a tree effectively contains all
possible derivations that can be obtained using a particular literal selection rule.
Each node in the tree is a “goal” of the form ← L1, L2, . . . , Lk. That is, it is
a clause of the form (¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Lk). Given a set of clauses Σ, the
children of a node in the SLD-tree are the result of resolving with clauses in Σ
(nodes representing the empty clause 2 have no children). The SLD-tree for
the example we just looked at is shown in Figure 1.7

We can now see what refutation-completeness for Horn clauses for SLD-
resolution means in terms of SLD-trees. In effect, this means that if a set of
clauses is unsatisfiable then there will be a leaf in the SLD-tree with the empty
clause 2. Further, the computation rule will not alter this (informally, you
can see that different computation rules will simply move the location of the 2

around). We will have more to say on SLD-resolution with first-order logic in a
later section. There, we will see that in addition to the computation rule, we will
also need a “search” rule that determines how the SLD-tree is searched. Search
trees there can have infinite branches, and although completeness is unaffected
by the choice of the computation rule (that is, there will be a 2 in the tree if the
set of first-order clauses is unsatisfiable), we may not be able to reach it with a
fixed search rule.

Theorem 11 If Σ is an unsatisfiable set of horn clauses, then there is an SLD
refutation of Σ.
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Figure 1.6: Example of SLD-deduction of 2 from Σ.

Figure 1.7: Example SLD-tree with C0 at root.
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Figure 1.8: Illustration of the proof for theorem 11. The SLD refutation of Σ′

is on the left and that for Σ is on the right.

Proof:

We can assume Σ is finite. Let n be the number of facts (clauses consisting
of a single positive literal) in Σ. We prove the lemma by induction on n

1. If n = 0, then 2 ∈ Σ for otherwise the empty set would be a Herbrand
model of I.

2. Suppose the lemma holds for 0 ≤ n ≤ m, and suppose m+1 distinct facts
appear in Σ. If 2 ∈ Σ the lemma is obvious, so suppose 2 6∈ Σ.

Let, A be a fact in Σ. We first delete all clauses from Σ; which have A

as head (so we also delete the fact A from Σ). Then we replace clauses
which have A in their body by clauses constructed by deleting these atoms
A from the body (so for example, B ← A, B1, . . . , Bk will be replaced by
B ← B1, . . . , Bk). Call the set obtained in this way Σ′. If M is a model of
Σ′, then M ∪{A} is a Herbrand model of Σ. Thus since Σ is unsatisfiable,
Σ′ must be unsatisfiable. Σ′ only contains m facts, so by the induction
hypothesis, there is an SLD-refutation of Σ′. If this refutation only uses
clauses from Σ′ which were also in Σ then this is also an SLD-refutation of
Σ, so then we are done. Otherwise, if C is the top clause or an input clause
in this refutation and C 6∈ Σ, then C was obtained from some C ′ ∈ Σ by
deleting all atoms A from the body of Σ. For all such C, do the following:
restore the previously deleted copies of A to the body of C (which turns C

into C ′ again), and add these atoms A to all later resolvents. This way, we
can turn the SLD-refutation of Σ′ into an SLD-derivation of ← A, . . . , A

from Σ. See Figure 1.8 for illustration, where we add previously deleted
atoms A to the bodies of R0 and C2. Since also A ∈ Σ, we can construct
an SLD-refutation of Σ, using A a number of times as input clause to
resolve away all members of the goal ← A, . . . , A.

2
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1.3.5 Davis-Putnam Procedure

The inference problem addressed so far (particularly through the resolution
procedure) is to determine if a proposition α logically follows from a given
logical theory Σ. As we saw, this is achieved by reducing the problem to a
coNP-complete15 unsatisfiability problem; based on the contradiction theorem,
it amounts to negating the goal formula α, add it to the theory and test the
conjunction for unsatisfiability.

However, often, one is faced with the requirement for a model M for a logical
theory Σ. This can turn out to be easier problem than the usual problem of
inference, since it is enough to find one model for the theory, as against trying all
possible truth assignments as in the case of solving an unsatisfiability problem.
For example, theory might describe constraints on the different parts of a car.
And you are interested in a model that satisifes all the constraints. In terms of
search, you search the space of assignment and stop when you find an assignment
that satisifies the theory.

While the resolution procedure can be modified so that it gives you a model,
the Davis-Putnam-Logemann-Loveland (DPLL) procedure is a more efficient
procedure for solving SAT problems. Given a set of clauses Σ defined over a set
of variables V, the Davis-Putnam procedure DPLL(Σ) returns ‘satisfiable’ if is
satisfiable. Otherwise return ‘unsatisfiable’.

The DPLL(Σ) procedure consists of the following steps. The first two steps
specify termination conditions. The last two rules actually work on the clauses
in Σ.

1. If Σ = ∅, return ‘satisfiable’. This convention was introduced on pages 22
when we introduced logical entailment, as also in the footnote on page 29.

2. If 2 ∈ Σ return ‘unsatisfiable’. This convention was discussed in the
footnote on page 29.

3. Unit-propagation Rule: If Σ contains any unit-clause C = {c} (c.f.
page 29 for definition), assign a truth-value to the variable in literal c that
satisfies c, ‘simplify’ Σ to Σ′ and (recursively) return DPLL(Σ′). The
rationale here is that if Σ has any unit clase C = {c}, the only way to
satisfy C is to make c true. The simplification of Σ to Σ′ is achieved by:

(a) removing all clauses from Σ that contain the literal c (since all such
clauses will now be true)

(b) removing the negation of literal c (i.e., ¬c) from every clause in Σ
that contains it

15A decision problem C is Co-NP-complete if it is in Co-NP and if every problem in Co-
NP is polynomial-time many-one reducible to it. The problem of determining whether a
given boolean formula is tautology is a coNP-complete problem as well. A problem C is a
member of co-NP if and only if its complement C is in complexity class NP. For example, the
satisfiability problem is an NP-complete problem. Therefore the unsatisfiability problem is a
coNP-complete problem.
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4. Splitting Rule: Select from V, a variable v which has not been assigned
a truth-value. Assign one truth value t to it, simplify Σ to Σ′ and (recur-
sively) call DPLL(Σ′) .

(a) If the call returns ‘satisfiable’ (i.e., we made a right choice for truth
value of v), then return ‘satisfiable’.

(b) Otherwise (that is, if we made a wrong choice for truth value of v),
assign the other truth-value to v in Σ, simplify to Σ′′ and return
DPLL(Σ′′).

The DPLL procedure can construct a model (if there exists one) by doing
a book-keeping over all the assignments. This procedure is complete (that is,
it constructs a model if there exists one), correct (the procedure always finds
a trutn assignment that is a model) and guaranteed to terminate (since the
space of possible assignments is finite and since DPLL explores that space sys-
tematically). In the worst case, DPLL requires exponential time, owing to the
splitting rule. This is not surprissing, given the NP-completeness of the SAT
problem. Heuristics are needed to determine (i) which variable should be in-
stantiated next and (ii) to what value the instantiated varaible should be set.
In all SAT competitions16 so far, Davis Putnam-based procedures have shown
the best performance.

As an illustration, we will use the DPLL procedure to determine a model
for Σ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}. Since Σ is neither an empty set
nor contains the empty clause, we move on to step 3 of the procedure. Σ
contains a single unit clause {c}, which we will set to true and simplify the
theory to Σ1 = {{a, b}, {¬a,¬b}, {a,¬b}}. Next, we apply the splitting rule.
Let us choose a and set it to ‘false’. This yields Σ2 = {{b}, {¬b}}. It can
be verified that Σ2 ≡ {2}. We therefore backtrack and set a to ‘true’. This
yields Σ3 = {{¬b}}. Thereafter, application of unit propagation yields Σ4 = {},
which is satisfiable according to step 1 of the procedure. Thus, using the DPLL
procedure, we obtain a model for Σ as M = {a, c}.

As another example, consider Σ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}. As
we will see, application to DPLL to this problem does not involve any backtrack-
ing, making the task relatively easier. Σ is neither an empty set nor contains
the empty clause. Hence we apply the unit propagation rule 3 on {d} to obtain
Σ1 = {{a,¬b,¬c}, {b}, {c}}. We can again apply unit propagation to Σ1 on {b}
to obtain Σ2 = {{a,¬c}, {c}}. Finally, we can apply unit propagation to Σ2 on
{c} and then to {a} obtain Σ4 = {}, which is satisfiable. This yields a model
M = {d, b, c, a} of Σ.

The DPLL procedure is similar to the traditional constraint propagation
procedure. The splitting rule in DPLL is similar to the backtracking step in
constraint propagation, while the unit propagation rule is similar to the un-
avoidable steps of consistency checking and forward propagation in traditional
CP.

16http://www.satcompetition.org/
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Phase Transitions

We saw that in the worst case, DPLL requires exponential time. Couldn’t we
do better in the average case? For CNF-formulæ in which the probability for a
positive appearance, negative appearance and non-appearance in a clause is 1/3,
DP needs on average quadratic time [Gol79]. In retrospect, it was discovered
that the formulæ in [Gol79] have a very high probability of being satisfiable.
Thus, these formulæ are not representative of those encountered in practice.
The idea of phase transition was conjectured by [CKT91] to identify hard to
solve problem instances:

All NP-complete problems have at least one order parameter and
the hard to solve problems are around a critical value of this order
parameter. This critical value (a phase transition) separates one
region from another, such as over-constrained and under-constrained
regions of the problem space.

This conjecture was initially confirmed for the graph coloring and Hamilton path
problems and later for other NP-complete problems, including SAT. In the case
of SAT problem, an example of the order parameter is ratio of the number of
variables to the number of clauses.

1. For higher settings of the parameter, the problem is over-constrained (the
formulæ are unsatisfiable). If the probability of a solution is close to 0,
this fact can usually be determined early in the search.

2. For lower settings of the parameter, the problem is under-constrained (the
formulæ are easily satisfiable). When the probability of a solution is close
to 1, there are many solutions, and the first search path of a backtracking
search is usually successful.

When this parameter is varied, the problem moves from the over-constrained
to the under-constrained region (or vice versa). At phase the transition points,
half of the problems are satisfiable and half are not. It is typically in this
region that algorithms have difficulty in solving the problem17. Cook and
Mitchell [CM97] empirically found that for a 3-SAT problem, the phase transi-
tion occurs at a clause:variables ratio of around 4.3 (in this experiment, clauses
were generated by choosing variables for a clause and complementing each
variable with probability 0.5). As an illustration, in the 2003 version of the
SAT competition, the largest instances solved using greedy SAT solvers con-
sisted of 100, 000 variables and 1, 000, 000 clauses (clause:variable ratio of 10),
whereas the smallest unsolved instances comprised 200 variables and 1, 000
clauses (clause:variable ratio of 5). It was also reported in [CM97] that the
runtime for the DPLL procedure peaks at the phase transition. In the phase
transition region, the DPLL algorithm often near successes. Many benchmark
problems are located in the phase transition region, though they have a special
structure in addition.

17Note that hard instances can also exist in regions of the more easily satisfiable or unsat-
isfiable instances.
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1.3.6 Local Search Methods

Local search methods are standard search procedures for optimization prob-
lems. A local search method explores the neighborhood of the current solution
and tries to enhance the solution till it cannot do any better. The hope is to
produce better configurations through local modifications. The value of a con-
figuration in a logical problem could be measured using the number of satisfied
constraints/clauses. However, for logical problems, local maxima are inappro-
priate; it is required to satisfy all clauses in the theory and not just some. But
through random restarts or by noise injection, local maxima can be escaped. In
practice, local search performs quite well for finding satisfying assignments of
CNF formulæ, especially for under-constrained or over-constrained SAT prob-
lems.

GSAT and WalkSat [SKC93] are two local search algorithms to solve boolean
satisfiability problems in CNF. They start by assigning a random value to each
variable. If the assignment satisfies all clauses, the algorithm terminates, return-
ing the assignment. Otherwise, an unsatified clause is selected and the value of
exactly one variable changed. Due to the conjunctive normal form, flipping one
variable will result in that clause becoming satisfied. The above is then repeated
until all the clauses are satisfied. WalkSAT and GSAT differ in the methods used
to select the variable to flip. While GSAT makes the change which minimizes
the number of unsatisfied clauses in the new assignment, WalkSAT selects the
variable that, when flipped, results in no previously satified clauses becoming
unsatified (some sort of downward compatibility requirement). MaxWalkSat is
a variant of WalkSat designed to solve the weighted satisfiability problem, in
which each clause is associated with a weight. The goal in MaxWalkSat is to find
an assignment (which may or may not satisfy the entire formula) that maximizes
the total weight of the clauses satisfied by that assignment. These algorithms
perform very well on the randomly generated formulæ in the phase transition
region. Monitoring the search procedure of these greedy solvers reveals that in
the begginning, each procedure is very good at reducing the number of unsatis-
fied clauses. However, it takes a long time to satisfy the few remaining clauses
(called plateaus). The GSAT algorithm is outlined in Figure 1.9.

1.3.7 Default inference under closed world assumption

Given any set of formulae Σ, the closed-world assumption is the assumption
that Σ determines all the knowledge there is to be had about the formulae in
the language. Thus, if we consider any proposition18 A then A is taken to be
true exactly when Σ (logically) implies A, but is otherwise taken to be false.

The closed-world assumption underlies the mode of reasoning known as de-
fault inference. There are many situations, both in ordinary daily life and in
specific technical computing matters (such as explaining the theory of finite fail-
ure and the relationship it bears to reasoning with negative information), when

18In the first order logic programming context, the propositions in which we are primarily
interested are the atoms of the Herbrand base.
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INPUT: A set of clauses Σ, MAX-FLIPS, and MAX-TRIES.
OUTPUT: A satisfying truth assignment of Σ, if found.
for i = 1 to MAX-TRIES do

T = a randomly-generated truth assignment.
for j:=1 to MAX-FLIPS do

if T satisfies Σ then

return T

end if

v = a propositional variable such that a change in its truth assignment
gives the largest increase in the number of clauses of Σ that are satisfied
by T .
T = T with the truth assignment of v reversed.

end for

end for

return “Unsatisfiable”.

Figure 1.9: Procedure GSAT.

default inference is a necessary supplement to deductive inference. Consider this
simple example of a single clause axiom Σ = {A ← B} for which B(Σ) is just
{A, B}. Under the closed-world assumption, we may infer ¬A for any ground
atom A ∈ B(Σ) that us not implied by Σ. This is a constrained19 application
of the rule of default inference:

Infer ¬A in default of Σ implying A

Motivated by the desire to draw sound conclusions about negative infor-
mation, we will consider two constructions that provide consequence-oriented
meaning for default inference under the closed-world assumption.

1. CWA(Σ) : The combination of Σ with the default conclusions inferred
from it is denoted by CWA(Σ) and is defined by

CWA(Σ) = Σ ∪ {¬A | A ∈ B(Σ) and not Σ |= A}

For the above example, CWA(Σ) = {A← B,¬A,¬B}.

Soundness for the default inference of negative conclusions under the
closed-world assumption can be referred to the the logical construction
CWA(Σ) as follows:

for all A ∈ B(Σ), CWA(Σ) |= ¬A if Σ `CWA ¬A

There some practical problems with CWA:

19Constrained because (i) Σ is assumed to be inconsistent, else Σ would necessarily imply
both A and ¬A (ii) only the case where A is atomic is considered, otherwise if Σ implied, say,
neither A nor ¬A, then the default rule would infer both ¬A and ¬A, which would again be
inconsistent.
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(a) One problem is that, we have no immediate way of writing down
CWA(Σ), for we cannot directly discern which particular negative
facts ¬A to include in it; we would have to infer them all first.

(b) A more serious defect is that, whilst CWA(Σ) is always consistent
when Σ is definite20, it is likely to be inconsistent otherwise. For
example, if Σ comprises just the clause {A ∨ B}, then CWA(Σ) =
{A ∨B,¬A,¬B} which is inconsistent.

2. CWA(Σ) : For default inference applied to indefinite programs, we refer
the soundness criterion to completion COMP(Σ). It is also known as the
completed database of Σ. Unlike CWA(Σ), it can be written down more-
or-less directly and is consistent for all well-structured programs. In the
case of propositional logic, the construction is particularly simple:

(a) Initialize COMP(Σ) = ∅.

(b) Assume that Σ is any set of clauses of the form (A← body).

(c) For each A mentioned in Σ but not defined in Σ, construct ¬A and
add it to COMP(Σ).

(d) For each A having a definition in Σ of the form

A← body − 1

. . .

. . .

A← body − n

construct the clause A iff (body − 1 ∨ . . . ∨ body − n) and add it to
COMP(Σ),

Comp(Σ) can also be viewed as the result of simplifying Σ ∪ only-if(Σ),
where only-if(Σ) comprises every completed definition of the form ¬A for
A 6∈ Σ as well as (q → α) for every completed definition (q iff α) ∈
COMP(Σ).

Following are some characteristics of completions

(a) In general it is also a more economical construction in the sense
that it implies, but does not necessarily declare, various negative
propositions which CWA(Σ) would have to declare explicitly. As an
example, if Σ = {A ← B}, COMP(Σ) = {¬B, A iff B}. While Σ
neither implies A nor implies B, Comp(P ) implies both ¬A and ¬B,
which is exactly the same outcome obtained using CWA(Σ) instead.
Observe, however, that CWA(Σ) declares ¬A explicitly whereas
Comp(Σ) does not.

20Exercise: Prove.
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(b) Generally, completion is more conservative than the closed-world as-
sumption in the negative facts that it implies. For example, with
Σ1 = {A← A}, CWA(Σ1) |= ¬A, whereas COMP(Σ1) 6|= ¬A. Simi-
larly, with Σ2 = {A← ¬B}, CWA(Σ2) |= ¬A∧¬B (is inconsistent),
whereas COMP(Σ2) 6|= ¬A though COMP(Σ2) |= ¬B.

(c) On the other hand, COMP can be sometimes less conservative; for
Σ3 = {A ← ¬A}, COMP(Σ3) |= everything, whereas CWA(Σ3) |=
A and CWA(Σ3) 6|= ¬A.

(d) Completed definitions capture the programmer’s intentions more fully
than do uncompleted definitions in the original program. For compu-
tational purposes however, the program alone happens to be sufficient
for deducing all intended answers.

(e) In cases where Σ is indefinite, the elementary consequences of COMP(Σ)
may arise from the joint contributions of Σ and only-if(Σ) and not
from either of them alone.

(f) There is a syntactic bias built into the process of program com-
pletion. For example, if Σ1 = {A ← ¬B} and Σ2 = B ← ¬A
their respective completions are COMP(Σ1) = {A iff ¬B,¬B} and
COMP(Σ2) = {B iff ¬A,¬A}. These completions are not logically
equivalent despite the fact that the original programs are. The dif-
ference between their completions deliberately reflects the difference
between the procedural intentions suggested by the programs’ syn-
taxes: the first program anticipates queries of the form ?A whilst the
second anticipates queries of the form ?B.

Finite Failure Extension

We look at one further extension of SLD-resolution that is of special interest to
us, namely, the idea of negation as “failure to prove”. We know that SLD

alone is able to deal soundly and completely with all positive atomic

queries A posed to this database. But with the finite failure facility

we can now also ask directly, in our extended language, whether some

atom is not in the database.

This extension enables one to express, via a call ‘fail A’, the condition that
a call A shall finitely fail. In Prolog the fail operator is denoted by ‘not’ and is
referred to as ’negation by failure’. The operational meaning of ‘fail’ is summed
up by the finite failure rule:

A call ‘fail A’ succeeds iff its subcall A finitely fails.

This rule can be incorporated directly into the execution strategy for vir-
tually no cost in terms of implementation overheads - to evaluate a call ‘fail
A’, the interpreter merely evaluates A in the standard way and then responds
to the outcome as just prescribed. The phrase ’A finitely fails’ means that the
execution tree generated by the evaluation of A must be a finitely failed tree -
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that is, it must have finite depth, finite breadth and all the computations con-
tained within it must terminate with failure. By contrast, should one or more of
those computations terminate with success then the call ‘fail A’ is itself deemed
to have finitely failed. Finally, if the evaluation of of A neither succeeds nor
finitely fails, then the same holds for the evaluation of ‘fail A’

The rule of “negation as finite failure” states that if all branches of an SLD-
tree finitely fail for Σ ∪ {← A} for a set of definite clauses Σ and a ground
literal A, we can derive the ground literal ¬A as a result. This combination of
SLD-resolution and negation-as-failure results in the proof strategy we called
SLDNF-resolution. Once again, let us look at an example:

C0 : ¬ Fred is an ape

C1 : Fred is an ape ← not Fred is human, Fred is a primate

C3 : Fred is a primate

Here, not stands for “not provable” (which is not the same as ¬). C0 and C1

resolve to give R1 : ← not Fred is human, Fred is a primate. With a rightmost
literal computation rule as before, the next resolvent is R2 : ← not Fred is
human. It is evident that Fred is human is not provable and 2 results.

SLDNF is sound and complete for propositional definite clauses. However,
there are some important issues in extending SLD with finite failure to first order
logic such as (i) incompleteness when applied to activated non-ground fail calls
and (ii) unsoundness in certain cases. To solve the latter, more serious problem,
a selection policy called safe computation rule is used in practice; this policy
sacrifices completeness for the sake of soundness. These and other concepts such
as floundering will be discussed in a later section.

The SLD finite failure set

Relative to a given Σ and a given inference system R, the SLD finite failure
FF (Σ, R) set comprises exactly propositional atoms for which the query ?q
finitely fails. We shall restrict our attention throughout to the case where Σ is
definite and R is SLD. Once we know what the finite failure set is relative to
SLD inference, we shall also be able to say something about the execution by
SLDNF of queries containing ‘fail calls’ - subject, of course, to the assumption
that the chosen computation rule is safe. The more general situation where ‘fail’
calls may occur also in clause bodies, is significantly more complicated, and will
not be addressed here. For queries of the form ?q using a definite Σ under some
SLD computation rule R partitions B(Σ) into three species of atoms

1. SS(Σ, R), or those for which ?q succeeds. Since, if ?q succeeded in one
SLD tree, it succeeded in all SLD trees, the capacity for ?q to succeed is
independent of the computation rule. So this set can be simply denoted
by SS(Σ).

2. FF (Σ, R), or those for which ?q finitely fails
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3. IF (Σ, R), or those for which ?q infinitely fails.

However, ?q may finitely fail under one computation rule yet infinitely fail
under another. A simple example is where Σ comprises just the clause q ← B∧q.
Under the standard leftmost call rule, the query ?q finitely fails, whereas it
infinitely fails under a rule which always selects the rightmost call. Thus the
boundary between FF (Σ, R) and IF (Σ, R) depends upon R. There is a simple
theoretical way of eliminating this dependence upon R. We invoke the idea of a
particular sort of computation rule which ensures that any call introduced into
a computation is selected after some arbitrary but finite number of execution
steps. Such a rule is called a fair computation rule. Considering the example
again, we might allow a fair computation rule to select ‘q’ calls any finite number
of times, but sooner or later the fairness requirement would demand that an ‘A’
call be selected, thus immediately forcing finite failure. With this new concept,
we can now state the following facts: ?q finitely fails under some computation
rule iff it finitely fails under all fair computation rules21 We can denote by
FF (Σ), the set of all atoms q for which ?q has some finitely failed fair SLD-tree,
and by IF (Σ), the set of all atoms q for which ?q has some infinitely failed fair
SLD-tree. FF (Σ) is called the (fair-) SLD finite failure set of Σ. Referring again
to the example above, we shall have FF (Σ) = {q,A} and IF (Σ) = ∅.

Suppose queries were also allowed to contain ‘fail’ calls besides atomic ones,
but with Σ still restricted to be definite. The following statements then hold
true:

for all q ∈ B(Σ), q ∈ FF (Σ) iff ?fail q succeeds under SLDNF

q ∈ SS(Σ) iff ?q succeeds under SLDNF

We can interpret finite failure (i) in terms of the position of FF (Σ) within
the lattice of interpretations and (ii) in terms of the classical negation (¬), which
provides a semantics for ‘fail’, and some soundness and completeness results for
SLDNF, based upon the logical consequences of COMP(Σ).

Completion Semantics for SLDNF

For pure Horn-clause programs and queries, we had a particularly simple con-
nection between logical meaning and operational meaning:

for all q ∈ B(Σ), Σ |= q iff q ∈ SS(Σ)

The construction of a consequence-oriented semantics for the finite failure ex-
tension is more problematic. A program containing fail is not a construct of
classical logic and so is not amenable to the notion of classical logical conse-
quence. Nevertheless, a variety of analogous connections have been suggested.
The best-known of these is based upon the so-called completion semantics, which
relies upon two ideas:

21Although fair computation rules are not normally implemented, they certainly tidy up
our mathematical account of finite failure.; equivalently, at least one of its SLD-trees is finitely
failed iff all of its fair SLD-trees are finitely failed.
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1. Interpreting ‘fail’ as the classical negation connective ¬ (this is why fail is
commonly referred to as ‘negation by failure’).

2. Relating the success or finite failure of calls to logical consequences of
COMP(Σ) rather than of Σ alone.

On this basis we can then characterize, in logical terms, the soundness of
execution of atomic queries under the (safe-)SLDNF implementation of fail:

for all q ∈ B(Σ), COMP(Σ) |= q if ?q succeeds under SLDNF

COMP(Σ) |= ¬q if ? fail q succeeds under SLDNF

These results hold even if ‘fai;’ calls occur in Σ. The ‘only-if’ part in the two
statements above, which characterizes the completeness for SLDNF holds only
when Σ is definite (so Σ will obviously not contain ‘fail’ calls).

There are two caveats in the above statement(s): (i) COMP(Σ) may itself
be inconsistent and (ii) the SLDNF uses some safe computation rule. Also,
the simplification of analysis of finite failure using fair computation rules is not
possible when the query contains ‘fail’ calls.

1.3.8 Lattice of Models

For any Σ that is a set of definite clausal formula, it can be shown that the
set M(Σ) of models is a complete lattice ordered by set-inclusion (that is, for
models M1, M2 ∈ M(Σ), M1 � M2 if and only if M1 ⊆ M2), and with the
binary operations of ∩ and ∪ as the glb and lub respectively. Recall that a
complete lattice has a unique least upper bound and a unique greatest lower
bound. Since we are really talking about sets thar are ordered by set-inclusion,
this means that there is a a unique smallest one (the size being measured by
the number of elements). This is called the minimal model of the formula, and
it can be shown that this must be the intersection of all models for the formula.
We will illustrate with an example. Consider a Σ consisting of the following
clauses:

C0 : CC ← CL

C1 : CB ← ¬ BL

C2 : CL ← LL

C3 : BL

A fail-safe way of getting a model is to choose the entire set of propositions
B(Σ) ={CC, CL, CB, LC, LL, LB, BC, BL, BB}, which is called the base of Σ.
for then every atom in Σ is assigned true and this in turn makes all of its clauses
true. This model is the (unique) maximal model for Σ. However, such a choice
is clearly excessive-many of the atoms in B(P) do not even occur in G(P) and
so their truth values are irrelevant. Stripping out those irrelevant atoms leaves
a somewhat smaller model {CC, CL, CB, BL, LL}. Which of these atoms must
appear in any model? Clearly BL must, in order to make the program’s fourth
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Figure 1.10: A complete lattice of models.

clause true. Then, since BL must, so also must CB in order to make the second
clause true. The first and third clauses employ only the remaining three atoms
CC, CL and LL, and both those clauses can he made true by making those
atoms false. In conclusion, only BL and CB must be true – thus the (unique)
minimal model for Σ is {BL,CB}.

Some indication of the complete lattice of models for the program is shown
in Figure 1.10 where, edges stand for the covers relationship. Moreover, only a
few of the models are shown-there are 64 models in the entire lattice. Note also
that, in general, most subsets of B(Σ) will be counter-models–for our example
there are 448 of these, of which the smallest is ∅. It can be proved that if Σ is
a set of definite clauses, it must always be satisfiable, and therefore, ∅ 6∈ M(Σ)

The reason why the discussion above has focused solely upon definite clauses
is that, in general, a set of indefinite clauses does not yield a complete lattice
and may therefore have multiple minimal models. The lack of a unique minimal
model makes it harder to assign an unambiguous meaning to such a set.

There is an important result relating a set of definite clausal formulae Σ, its
minimal modelMM(Σ) and the atoms that are logical consequences of Σ:

Theorem 12 If α is an atom then Σ |= α if and only if α ∈MM(Σ).

The proof of theorem 12 makes use of the so-called model intersection prop-
erty:

Theorem 13 If M1, . . . ,Mn are any models for a definite clause set Σ then
their intersection is a model of Σ.

Proof: It is easy to show this by induction. For any k < n, let Ik denote
M1 ∩ . . . ∩Mk. Now consider any clause C ∈ Σ:

C : A← B1 ∧ . . . ∧Bm

We shall prove that, for all k ≤ n, Ik satisfies C.

1. Base case (k = 1): I1 = M1 and therefore satisfies C.

2. Induction step (1 ≤ k ≤ n): Assume that Mk satisfies C;
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if Ik satisfies C then either Bi 6∈ Ik for some i

or Bi ∈ Ik for all i, and A ∈ Ik

if Mk+1 satisfies C then either Bi 6∈Mk+1 for some i

or Bi ∈Mk+1 for all i, and A ∈Mk+1

it then follows that either Bi 6∈ Ik ∩Mk+1 for some i

OR Bi ∈ Ik ∩Mk+1 for all i, and A ∈ Ik ∩Mk+1

And hence Ik+1 satisfies C

Thus for all k ≤ n, Ik satisfies C and-by a similar argument – every other
clause in Σ.

2

We next prove theorem 12 making use of theorem 13.
Proof of theore 12: EXERCISE

Using this result it is now easy to prove the relationship between MM(Σ)
and any atomic consequence q of Σ:

If Σ |= q then q is true in every model of Σ

then q ∈ I∗

then q ∈MM(Σ)

if q ∈MM(Σ) then q is true in every model of Σ

then Σ |= q

2

Thus, the minimal model of a definite clausal formula is identical to the set
of all ground atoms logically implied by that formula, which was defined as the
success set SS(Σ). Thus, the minimal model provides, in effect, the meaning
(or semantics) of the formula. We shall see later that this is just one of several
ways of giving significance to a program’s minimal model.

We can envisage a procedure for enumerating the models of a formula. Con-
sider the powerset of the base B(Σ). Now, we know that this powerset ordered
by ⊆ necessarily forms a complete lattice, with binary operations ∩ and ∪.
Some subset of this powerset is the set of all models, which we know is also a
lattice ordered by ⊆ with the same binary operations. So, the model lattice is
a sublattice of the lattice obtained from the powerset of the base. Suppose now
we start at some point s in this sublattice, and we move to a new point that
consists only of those atoms of the formula made true by the model s. Let us
call these atoms s1. Then, a little thought should convince you that s1 is also
a member of the sublattice of models. Repeating the process with s2 we can
move to models s2, s3 and so on. Will this procedure converge eventually on the
minimal model? Not necessarily, since we could end up moving back-and-forth
between points of the sub-lattice. (When will this happen, and how can we
ensure that we do converge on the minimal model?).
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A slightly more general process can be formalised as the application of a
function TΣ that, for a set of clauses Σ, generates an interpretation (not neces-
sarily a model) from another. That is:

Ik+1 = TΣ(Ik)

where
TΣ(I) = {a : a← body ∈ Σ and body ∈ I}

It can be shown that TΣ is both monotonic and continuous on the complete
lattice obtained by ordering the powerset of the base by ⊆. So, we know from
the Knaster-Tarski Theorem mentioned on page 11, that there must be a least
fixpoint for TΣ in this lattice. We can prove that the procedure of obtaining
Ik+1 from application of TΣ to Ik will yield that fixpoint, and further, that this
fixpoint will be the minimal model.

Theorem 14 MM(Σ) is the least fixpoint of TΣ.

Proof: The definition of TΣ requires that
for all I ⊆ B(Σ) and for all q, q ∈ TΣ(I) iff (∃body)[(q ← body) ∈ Σ and body ∈

I]
whereas, the definition of a model requires that
for all I ⊆ B(Σ), I is a model for Σ iff for all q, q ∈ I if (∃body)[(q ← body) ∈

Σ and body ∈ I].
These two sentences jointly imply

for all I ⊆ B(Σ)

I is a model for Σ iff for all q, q ∈ I if q ∈ TΣ(I)

iff TΣ(I) ⊆ I

iff I is a pre-fixpoint of TΣ

Where, for a function f on < S,�>, an element u ∈ S is a pre-fixpoint of f if
and only if f(u) � u. Then, we can recall from the proof of the Knaster-Tarski
theorem on page 11 that the least fix point is also the least pre-fixpoint. Hence,
since the models are exactly the pre-fixpoints, the least model MM(Σ), which
is the glb of all the pre-fix points, must be the least pre-fixpoint. Finally, by
the Knaster-Tarski theorem, MM(Σ) must also be the least fixpoint. 2

So we now have several equivalent characterizations of the minimal model,
including the success set SS(Σ) and the new one posed in terms of the least
fixpoint of TΣ, denoted LFP (TΣ)

Mathematical Characterization of Finite Failure

It so happens that there is a somewhat related (to the TΣ function) method
of constructing the finite failure set FF (Σ). The set of atoms which occur as
headings in Σ is simply TΣ(B(Σ)), as is plain from the definition of TΣ. The
simplest way for ?q to fail finitely is for there to be no clause in Σ who heading
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unifies with q. In this case the failure is said to occur within depth k = 1 and the
set of all such atoms q ∈ B(Σ) is denoted by FF (Σ, 1) and can be characterized
very easily using the TΣ function as

FF (Σ, 1) = B(Σ)− TΣ(B(Σ))

Generalizing this principle, FF (Σ) just contains each atom q for which ?q
finitely fails within some depth k ∈ N .

FF (Σ) = ∪k∈NFF (Σ, k) = B(Σ)− ∩k∈NT k
Σ(B(Σ))

When we start at the top element B(Σ) of our lattice of interpretations,
repeated application of the TΣ function generates a monotonically decreasing
sequence B(Σ) ⊇ TΣ(B(Σ)) ⊇ T 2

Σ(B(Σ)) . . ., whose limit is the greatest lower
bound (glb) TΣ ↓ of

{

T k
Σ(B(Σ)) | k ∈ N

}

. Thus, the mathematical characteri-
zation of FF (Σ) (independent of the execution mechanism) is

FF (Σ) = B(Σ)− TΣ ↓

Based on this equivalence, what is the value of FF (Σ) for the last example that
we discussed?

It can be proved that TΣ ↑= LFP (TΣ) = MM(Σ) ⊆ TΣ ↓. There is an
assymetry in the relationship between the limits and the extremal fixpoints
of TΣ. Whereas, TΣ ↑ is always equal to the least fix point LFP (TΣ), TΣ ↓
does not always equal the greatest fix point GFP (TΣ), though it does hold
for most ‘sensible’ Σ (at the least for non-recursive clauses and in the case of
first order logic, for function-free programs). The region between TΣ ↑ and TΣ ↓
corresponds to IF (Σ), which comprises exactly those atoms which fail infinitely.
In practice, most sensible programs have IF (Σ) = ∅, leading to TΣ ↑= TΣ ↓ and
therefore B(Σ) = SS(Σ) ∪ FF (Σ).

1.4 First-Order Logic

Suppose you wanted to express logically the statement: ‘All humans are apes.’
One of two ways can be used to formalise this in propositional logic. We can use
a single proposition that stands for the entire statement, or with a well-formed
formula consisting of a lot of conjunctions: Human1 is an ape ∧ Human2 is an
ape . . .. Using a single proposition does not give any indication of the structure
inherent in the statement (that, for example, it is a statement about two sets
of objects—humans and apes—one of which is entirely contained in the other).
The conjunctive expression is clearly tedious in a world with a lot of humans.
Things can get worse. Consider the following argument:

Some animals are humans.

All humans are apes.

Therefore some animals are apes.


