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Motivation

 Markov Logic Network (MLN) combining 

probability and first-order logic is an 

expressive formalism which subsumes other 

SRL models

 All of the existing training methods for MLNs 

learn a model that produce good predictive 

probabilities

2



Motivation (cont.)

 In many applications, the actual goal is to 

optimize some application specific 

performance measures such as classification 

accuracy, F1 score,  etc…

 Max-margin training methods, especially 

Structural Support Vector Machines (SVMs), 

provide the framework to optimize these 

application specific measures

 Training MLNs under the max-margin 

framework 
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 An MLN is a weighted set of first-order formulas

 Larger weight indicates stronger belief that the 

clause should hold

 Probability of a possible world (a truth 

assignment to all ground atoms) x:

Markov Logic Networks (MLNs)
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[Richardson & Domingos, 2006]

0.25 HasWord(“assignment”,p) => PageClass(Course,p)

0.19 PageClass(Course,p1) ̂  Linked(p1,p2) => PageClass(Faculty,p2)
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Inference in MLNs

 MAP/MPE inference: find the most likely state 
of a set of query atoms given the evidence

MaxWalkSAT algorithm [Kautz et al., 1997] 

Cutting Plane Inference algorithm [Riedel, 2008]

 Computing the marginal conditional 
probability of a set of query atoms: P(y|x)

MC-SAT algorithm  [Poon & Domingos, 2006]

 Lifted first-order belief propagation [Singla & 
Domingos, 2008]

)|(maxarg xyPy YyMAP 
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Existing weight learning methods in MLNs

 Generative: maximize the Pseudo-Log 

Likelihood [Richardson & Domingos, 2006]

 Discriminative : maximize the Conditional 

Log Likelihood (CLL) [Singla & Domingos, 2005], 

[Lowd & Domingos, 2007], [Huynh & Mooney, 2008]
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Generic Strutural SVMs[Tsochantaridis et.al., 2004]
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 Learn a discriminant function f: X x Y → R

 Predict for a given input x:

 Maximize the separation margin:

 Can be formulated as a quadratic optimization 

problem
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Generic Strutural SVMs (cont.)
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 [Joachims et.al., 2009] proposed the 1-slack 

formulation of the Structural SVM:

Make the original cutting-plane algorithm 

[Tsochantaridis et.al., 2004] run faster and more 

scalable















n

i

ii

n

i

iiii

Tn

n

T

w

yy
n

yxyxw
n

Yyyst

Cww

11

1

0,

),(
1

)],(),([
1

:),...,(.

2

1
min



Cutting plane algorithm for solving the structural SVMs

Structural SVM Problem

 Exponential constraints

 Most are dominated by a small set 

of “important” constraints

Cutting plane algorithm

 Repeatedly finds the next most 

violated constraint…

 … until cannot find any new 

constraint

*Slide credit: Yisong Yue 11
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Applying the generic structural SVMs to a new problem
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 Representation: Φ(x,y)

 Loss function: Δ(y,y')

 Algorithms to compute

 Prediction:

Most violated constraint: separation oracle

[Tsochantaridis et.al., 2004] or loss-augmented 

inference [Taskar et.al.,2005]
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Max-Margin Markov Logic Networks
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 Maximize the ratio:

 Equivalent to maximize the separation margin:

 Can be formulated as a 1-slack Structural 

SVMs

Formulation
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 MPE inference:

 Loss-augmented MPE inference:

Problem: Exact MPE inference in MLNs are 

intractable

Solution: Approximation inference via relaxation 

methods [Finley et.al.,2008]

Problems need to be solved
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Relaxation MPE inference for MLNs

19

 Many work on approximating the Weighted MAX-
SAT via Linear Programming (LP) relaxation 
[Goemans and Williamson, 1994], [Asano and Williamson, 2002], 
[Asano, 2006]

Convert the problem into an Integer Linear 
Programming (ILP) problem

Relax the integer constraints to linear 
constraints

Round the LP solution by some randomized 
procedures

Assume the weights are finite and positive



Relaxation MPE inference for MLNs (cont.)
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 Translate the MPE inference in a ground MLN 

into an Integer Linear Programming (ILP) 

problem:

Convert all the ground clauses into clausal form

 Assign a binary variable yi to each unknown 

ground atom and a binary variable zj to each non-

deterministic ground clause

 Translate each ground clause into linear 

constraints of yi’s and zj’s



Relaxation MPE inference for MLNs (cont.)
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3 InField(B1,Fauthor,P01)

0.5 InField(B1,Fauthor,P01) v InField(B1,Fvenue,P01)

-1 InField(B1,Ftitle,P01) v InField(B1,Fvenue,P01)

!InField(B1,Fauthor,P01) v !InField(a1,Ftitle,P01).

!InField(B1,Fauthor,P01) v !InField(a1,Fvenue,P01).

!InField(B1,Ftitle,P01) v !InField(a1,Fvenue,P01).

Ground MLN Translated ILP problem
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 LP-relaxation: relax the integer constraints 

{0,1} to linear constraints [0,1].

 Adapt the ROUNDUP [Boros and Hammer, 2002]

procedure to round the solution of the LP 

problem

 Pick a non-integral component and round it in 

each step

Relaxation MPE inference for MLNs (cont.)



Loss-augmented LP-relaxation MPE inference
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 Represent the loss function as a linear 

function of yi’s:

 Add the loss term to the objective of the LP-

relaxation  the problem is still a LP problem 

 can be solved by the previous algorithm
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Experiments
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Collective multi-label webpage classification
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 WebKB dataset [Craven and Slattery, 2001] [Lowd and 

Domingos, 2007]

 4,165 web pages and 10,935 web links of 4 

departments

 Each page is labeled with a subset of 7 

categories: Course, Department, Faculty, 

Person, Professor, Research Project, Student

 MLN [Lowd and Domingos, 2007] :

Has(+word,page) → PageClass(+class,page)

¬Has(+word,page) → PageClass(+class,page)

PageClass(+c1,p1) ^ Linked(p1,p2) → PageClass(+c2,p2)



Collective multi-label webpage classification (cont.)
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 Largest ground MLN for one department:

 8,876 query atoms

 174,594 ground clauses



Citation segmentation
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 Citeseer dataset [Lawrence et.al., 1999] [Poon and 

Domingos, 2007]

 1,563 citations, divided into 4 research topics

 Each citation is segmented into 3 fields: 

Author, Title, Venue

 Used the simplest MLN in [Poon and Domingos, 2007]

 Largest ground MLN for one topic:

 37,692 query atoms

 131,573 ground clauses



Experimental setup

 4-fold cross-validation

 Metric: F1 score

 Compare against the Preconditioned Scaled 

Conjugated Gradient (PSCG) algorithm

 Train with 5 different values of C: 1, 10, 100, 1000, 

10000 and test with the one that performs best on 

training

 Use Mosek to solve the QP and LP problems
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F1 scores on WebKB

29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cornell Texas Washington Wisconsin Average

PSCG-MCSAT MM-Hamming-LPRelax



Where does the improvement come from?
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 PSCG-LPRelax: run the new LP-relaxation 

MPE algorithm on the model learnt by PSCG-

MCSAT

 MM-Hamming-MCSAT: run the MCSAT 

inference on the model learnt by MM-

Hamming-LPRelax



F1 scores on WebKB(cont.)
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F1 scores on Citeseer
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Sensitivity to the tuning parameter
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Future work
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 Approximation algorithms for optimizing other 

application specific loss functions

 More efficient inference algorithm

 Online max-margin weight learning

 1-best MIRA [Crammer et.al., 2005]

 More experiments on structured prediction and 

compare to other existing models



Summary

 All existing discriminative weight learners for 
MLNs try to optimize the CLL

 Proposed a max-margin approach to weight 
learning in MLNs, which can optimize 
application specific measures

 Developed a new LP-relaxation MPE inference 
for MLNs

 The max-margin weight learner achieves 
better or equally good but more stable 
performance.
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Thank you!
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Questions?



Cutting plane algorithm [Joachims et.al., 2009] 
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