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Motivation

o Markov Logic Network (MLN) combining
probability and first-order logic is an
expressive formalism which subsumes other
SRL models

o All of the existing training methods for MLNs
learn a model that produce good predictive
probabillities



Motivation (cont.)

o In many applications, the actual goal is to
optimize some application specific
performance measures such as classification
accuracy, F, score, etc...

o Max-margin training methods, especially
Structural Support Vector Machines (SVMs),
provide the framework to optimize these
application specific measures

-> Training MLNs under the max-margin
framework
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Background



Markov Logic Networks (MLNSs)

[Richardson & Domingos, 2006]

o An MLN is a weighted set of first-order formulas

0.25 HasWord(“assignment”,p) => PageClass(Course,p)
0.19 PageClass(Course,pl) * Linked(p1,p2) => PageClass(Faculty,p2)

o Larger weight indicates stronger belief that the
clause should hold

o Probability of a possible world (a truth
assignment to all ground atoms) x:

P(X —x)—iexp( Wi, (x)]

NN

Weight of formula i No. of true groundings of formula i in x




Inference iIn MLNS

o MAP/MPE inference: find the most likely state
of a set of query atoms given the evidence

Ymap =argmax, ., P(y|x)
o MaxWalkSAT algorithm [Kautz et al., 1997]
o Cutting Plane Inference algorithm [Riedel, 2008]
o Computing the marginal conditional
probability of a set of query atoms: P(y|x)
o MC-SAT algorithm [Poon & Domingos, 2006]

o Lifted first-order belief propagation [Singla &
Domingos, 2008]




Existing weight learning methods in MLNs

0 Generative: maximize the Pseudo-Log
Likelihood [Rrichardson & Domingos, 2006]

o Discriminative : maximize the Conditional

Log Likelihood (CLL)[Singla & Domingos, 2005],
[Lowd & Domingos, 2007], [Huynh & Mooney, 2008



G enerlC StI’UtU ral SVMS[Tsochantaridis et.al., 2004]

0 Learn a discriminant functionf: XxY — R
f (X, y;w)=wO(x, y)

o Predict for a given input x:

h(x; w) = arg max w' ®(x, y)
yeY

o Maximize the separation margin:
y(X, ;W) =W (X, y) —max w' d(X, y')

y'eY\y

o Can be formulated as a quadratic optimization
problem



Generic Strutural SVMs (cont.)

o [Joachims et.al., 2009] proposed the 1-slack
formulation of the Structural SVM:

1
min —w W+
w,E>0 2 @

st eY”:%wTi[cD(xi,yi)—cb(xi,yo]z%iA(yi,y;)—@

->Make the original cutting-plane algorithm
| Tsochantaridis et.al., 2004] run faster and more
scalable
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Cutting plane algorithm for solving the structural SVMs

Structural SVM Problem Cutting plane algorithm
o Exponential constraints o Repeatedly finds the next most
o Most are dominated by a small set violated constraint...
of “important” constraints o ... until cannot find any new
constraint

*Slide credit: Yisong Yue 11
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Applying the generic structural SVMs to a new problem

1 Representation: ®(X,y)
1 Loss function: A(y,y")

o Algorithms to compute
o Prediction:

§ =arg max ., {w' ®(x, y)}
o Most violated constraint. separation oracle

[Tsochantaridis et.al., 2004] or |0SS-augmented
Inference [Taskar et.al.,2005]

§ =arg max{w' (X, y)+A(y, y')}

y'eY
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Max-Margin Markov Logic Networks
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Formulation

o Maximize the ratio:
P(y[x) _ 2. Wn(xY)
P(YIX) > wini(x,9)
y =argmax ., P(Y]X)
o Equivalent to maximize the separation margin:
7 (X, y;w) =w'n(x, y) —w'n(x, )

T :
= w' [N - U GO Joint feature: B(x,y)
yerly

1 Can be formulated as a 1-slack Structural
SVMs
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Problems need to be solved

o MPE Inference:
§ =argmax,., W n(x,y")

0 Loss-augmented MPE inference:

y =arg max{A(y, y')+w'n(x, y')}

y'eY

Problem: Exact MPE inference in MLNSs are
Intractable

Solution: Approximation inference via relaxation
methods [Finley et.al.,2008]
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Relaxation MPE inference for MLNS

o Many work on approximating the Weighted MAX-

SAT via Linear Programming (LP) relaxation

[Goemans and Williamson, 1994], [Asano and Williamson, 2002],
[Asano, 2006]

o Convert the problem into an Integer Linear
Programming (ILP) problem

o Relax the integer constraints to linear
constraints

o Round the LP solution by some randomized
procedures

o Assume the weights are finite and positive
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Relaxation MPE inference for MLNs (cont.)

o Translate the MPE inference in a ground MLN
Into an Integer Linear Programming (ILP)
problem:

o Convert all the ground clauses into clausal form

o Assign a binary variable y; to each unknown
ground atom and a binary variable z to each non-
deterministic ground clause

o Translate each ground clause into linear
constraints of y;'s and z's
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Relaxation MPE inference for MLNs (cont.)

Ground MLN ‘Translated ILP problem \
|3 InField(B1, Fauthor,POL) max(3y] -+ 0i5g] +z,

-1 InField(B1,Ftitle,P01) v InField(B1,Fvenue,P01)

Vi, Z; €01y
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Relaxation MPE inference for MLNs (cont.)

o LP-relaxation: relax the integer constraints
{0,1} to linear constraints [0,1].

o Adapt the ROUNDUP [Boros and Hammer, 2002]
procedure to round the solution of the LP
problem

o Pick a non-integral component and round it in
each step
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Loss-augmented LP-relaxation MPE inference

0 Represent the loss function as a linear
function of y;'s:

AHammming (yT , y) — Z Yit Z(l_ y|)

iyl =0 iy =1

o Add the loss term to the objective of the LP-
relaxation - the problem is still a LP problem
—> can be solved by the previous algorithm
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Experiments
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Collective multi-label webpage classification

0 WebKB dataset [craven and Slattery, 2001] [Lowd and
Domingos, 2007]

0 4,165 web pages and 10,935 web links of 4
departments

0 Each page is labeled with a subset of 7
categories: Course, Department, Faculty,
Person, Professor, Research Project, Student

1 MLN [Lowd and Domingos, 2007] :

Has(+word,page) — PageClass(+class,page)
~Has(+word,page) — PageClass(+class,page)
PageClass(+cl,pl) * Linked(p1,p2) — PageClass(+c2,p2)
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Collective multi-label webpage classification (cont.)

o Largest ground MLN for one department:
o 8,8/6 guery atoms
o 174,594 ground clauses
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Citation segmentation

1 Citeseer dataset [Lawrence et.al., 1999] [Poon and
Domingos, 2007]

o 1,563 citations, divided into 4 research topics

o Each citation is segmented into 3 fields:
Author, Title, Venue

0 Used the simplest MLN In [Poon and Domingos, 2007]

o Largest ground MLN for one topic:
o 37,692 guery atoms
o 131,573 ground clauses
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Experimental setup

0 4-fold cross-validation

o Metric: F, score

1 Compare against the Preconditioned Scaled
Conjugated Gradient (PSCG) algorithm

o Train with 5 different values of C: 1, 10, 100, 1000,
10000 and test with the one that performs best on
training

o Use Mosek to solve the QP and LP problems
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F, scores on WebKB
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0.8

0.7
0.6

0.5

0.4 -
0.3 -
0.2 -
0.1

Cornell Texas  Washington Wisconsin  Average



Where does the improvement come from?

0 PSCG-LPRelax: run the new LP-relaxation
MPE algorithm on the model learnt by PSCG-
MCSAT

0 MM-Hamming-MCSAT: run the MCSAT
Inference on the model learnt by MM-
Hamming-LPRelax
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F, scores on WebKB(cont.)

m PSCG-MCSAT m PSCG-LPRelax
® MM-Hamming-MCSAT = MM-Hamming-LPRelax

0.601

Average F1
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F, scores on Citeseer

mPSCG-MCSAT mMM-Hamming-LPRelax
0.939 0.934

Average F1
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Sensitivity to the tuning parameter

|
PSCG-MCSAT MM-Hamming-LPRelax
0.939 0.934 0.932 0.932 0.933 0.935
0.864 0.861
0.801
0. 656
1000 10000

Number of iterations C
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Future work

0 Approximation algorithms for optimizing other
application specific loss functions

o More efficient inference algorithm

o Online max-margin weight learning
o 1-best MIRA [Crammer et.al., 2005]

o More experiments on structured prediction and
compare to other existing models
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Summary

o All existing discriminative weight learners for
MLNSs try to optimize the CLL

0 Proposed a max-margin approach to weight
learning in MLNSs, which can optimize
application specific measures

o Developed a new LP-relaxation MPE inference
for MLNs

o The max-margin weight learner achieves
better or equally good but more stable
performance.
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Questions?

Thank you!
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Cutting plane algorithm poachims et.al., 2009)

Separation oracle

The most violated constraint

Stopping condition




