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Goal: Given document z, and hierachy

T = (V, F), predict multilabel

y € {4+1,-1}* where the positive
microlabels y; form a union of partial
paths in 7T’
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Frequently used learning strategies for hierarchies I

e Flatten the hierarchy: Learn each microlabel independently with

classification learner of your choice
e Computationally relatively inexpensive
e Does not make use of the dependencies between the microlabels
e Hierarchical training: Train a node j with examples (z,y) that belong to
the parent, i.e. y,q(;) = 1.
e Some of the microlabel dependencies are learned.

e However, training data fragments towards the leaves, hence estimation

becomes less reliable

e Model is not explicitly trained in terms of a loss function for the hierarchy.

We wish to improve on these approaches...
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The classification model '

Make the hierarchy a Conditional Random Field (aka Markov Network) T'= (V| E)
with the exponential family.

P(yle,w) = Z(z,w) ™" [] exp (Wl ¢e(.ye)) = exp (wd(z,y))
eck

e y. = (yi,y;) is an edge-labeling, i.e. a restriction of the whole multilabel y into
the edge e = (i, j)

e d.(,y.) is a joint feature map for the pair (z,y.)

o W= (W), .p is the weight vector to be learned

© Z(x, W) =) ciy_13r €XP (wl¢(x,y)) is a normalization factor (aka partition

function).
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Feature vectors '

The joint feature vector ¢(x,y) is composed of blocks

¢ (z,ye) = [ye = ufop(@),e € E,uc € {+1,-1}

where ¢(z) is some feature representation of x (e.g. bag of words, substring

spectrum,...)

e This representation allows us to learn different feature weights for different
contexts.

e The special structure of repeating ¢(x) can be utilized to save memory

For an example (x,y), where y., = (+1, —1) we get the following:

el 62 e

n
oxy) | PR q’ez(xy) . ®, (X:)
(-1,-1) (-1,+1) (+1,-1) (+1,+1.). )
®, (X.¥e) 0 0 ®(x) 0

~
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Loss functions for hierarchies '

Consider a true multilabel y = (y1,...,yx) € {+1,—1}*, and a predicted one

A

y = (1,---,9%). Many choices:
e Zero-one loss: {y,(y,¥) = [y # y]: treats all incorrect multilabels alike
e Hamming loss: {a(y,y) = >_;[y; # 9;]; counts incorrect microlabels.
Neither of the above takes the hierarchy into account. These do:

e Path loss (Cesa-Bianchi et al. 2004):
Cu(y,y) =22 ¢ily; # 95 & yr = kVk € ancestors(j)]; the first mistake
along a path is penalized

o Edge loss: Eﬁ(Ya }A’) — Zj Cj Hyj 7& gj & Yparent(j) = gparent(j)]]; mistake in the
child is penalized if the parent was correct.
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Max-margin Structured output learning
(Taskar et al., 2004; Tsochantaridis et al., 2004; ...)

Goal:

e Separate the correct multilabel from the incorrect ones by a large margin.
e Let the targeted margin scale proportionally to the loss of the multilabel

e Allow slack for non-separability of data
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/ Optimization problem I

Primal form:

~

1
min > HWII +CY &

w.E>0 2

s.t. WT (QS(XMYZ) o QS(XMY)) > e(y7«7 ) §Z7VZ y € {_'_1 _1}k

Dual:
%138( ; a(xz’y yl’ 9 Z Z « x%y TK xz?Y? z7Y) ( '/L'7y/)
1,y mmyx ,y
s.t.Za(azi,y) < C,Vi
y

e Exponential number (in size of the hierarchy) of primal constraints and dual
variables, one per pseudo-example (x;,y)

e Cannot be solved in this form for realistic-sized datasets, many approaches to
make the model tractable (Taskar et al., 2004, 2005; Tshochantaridis et al.

k 2004) /
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Marginalized problem I

A polynomial-sized problem can be obtained by marginalization (c.f. Taskar et al. ,
2004), if the loss function and the feature representation is chosen suitably.

Our choices:

o Edge-marginals of dual variables : pe(2,ye) = Dy, =y, ®(z, 1)

o Loss function decomposable by the edges: {(y,y’) = > .cp {(Ye,y.); Hamming
loss and edge loss apply

o Kernel decomposable by the edges: K(z,y;2',y") = > .cp Ke(2,¥e; 2, ¥0);
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Marginalized problem I
b

1
T, 1 T
ey D pele =5 D e Ko
eck eck
s.t Biephice < C,Vi,e € F,

e The matrices B;. encode box constraints Zy y te(i,y,y') < C

e The matrices A; encode marginal consistency constraints

Doy (YY) =D e (6,9,Y'), Yy, (e,€) : e = parent(e’); these need to be
inserted to make the problem correspond to the original dual problem.

e The number of marginal dual variables p. is O(m|E|), the edge-kernels K. take

O(m?|E|) space, which is too much even for medium-sized datasets

e c.g. optimizing 1372 examples by 188 microlabels will consume > 10Gb

memory!
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Decomposing the model I

1
T, L T
ey D pele =5 D e Ko
eck eck
S.t Bielllie < C,V 1,e € B,

e Consistency constraints A;u; = 0 tie the edges together
e Kernels K. tie training examples together

e But the gradient of the objective g = £ — (Kp), . does not the contain

example interactions

= Iterative, gradient-based methods allow decomposed training, one example at a

time
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Conditional Gradient method '

We use Conditional Gradient Descent (c.f. Bertsekas, 1999) to optimize the
marginalized dual problem Ingredients:
e Iterative gradient search in the feasible set

e Update direction is the highest feasible point assuming current gradient; found

by solving a constrained linear program: maxuer (€ — Kpo)' p

e updates within single-example subspaces can be done independently, after

obtaining an initial gradient.
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Conditional Gradient Ascent

Gradient

o
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Conditional Gradient Ascent

Condyional
gragierit

Gradient
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Conditional Gradient Ascent

Saddle point

o
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Conditional Gradient Ascent '
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Conditional Gradient Ascent '
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Conditional Gradient Ascent

o
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Conditional Gradient Ascent
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Using inference to find update directions I

e Solving the update direction max,e (€ — Kpo)' p with an LP solver will
constitute a bottleneck for scalability

e By utilizing the hierarchical structure, we solve the problem efficiently

e Theorem: if u is a vertex of F there is a unique multilabel y that corresponds

to that vertex.

e We can solve the update direction by finding multilabel y* that maximizes the
gradient

e Message-passing over the hierarchy T', dynamic programming implementaiton

works in linear time.
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Experiments I

Datasets:

e Reuters Corpus Volume 1 ("CCAT’ family), 34 microlabels, maximum tree
depth 3, bag-of-words with TFIDF wieghting, 2500 documents were used for
training and 5000 for testing.

e WIPO-alpha patent dataset (D section), 188 microlabels, maximum tree depth
4, 1372 documents for training, 358 for testing.
Algorithms:

e Our algorithm: H-M? ("Hierarchical Maximum Margin Markov’)

e Comparison: Flat SVM, hierarchically trained SVM, hierarchical regularized
least squares algorithm (Cesa-Bianchi et al. 2004)

e Implementation in MATLAB 7, LIPSOL solver used in the gradient ascent
e Tests run on a high-end Pentium PC with 1GB RAM
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Optimization efficiency I

Optimization efficiency on WIPO dataset (1372 training examples, 188
microlabels) on a 3GHZ Pentium 4, 1GB main memory

LP = update directions via linear programming DP = update directions via

Dynamic programming vs. Linear Programming for finding the update direction

— — Linear programming
—— Dynamic programming
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/ Prediction accuracy: Levelwise F1 I \

F1 statistics computed for each node depth separately for Reuters (left) and WIPO
(right)

Levelwise F1: Reuters Levelwise F1: WIPO
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Flat SVM is poor in recalling deep nodes, H-M3-¢ 7 1s the best prediction method in/

the leaves.

IA’06 Helsinki, Finland July 8, 2006 Juho Rousu 23



4 A

Scalability? I

e Dual variables and the gradient require O(m|E|) storage
o Kernel K(z,2') requires O(m?) storage
e ~ 10000 examples by 1000 microlabels fit to PC main memory, 100000
examples by 10000 microlabels will take up 100Gb hard disk!
Possibilities:
e Chunking to keep only a part of data in main memory at any given time

e Parallel implementation of conditional gradient algorithm is straight-forward.
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Conclusions '

e Kernel-based approach for hierarchical text classification when documents can

belong to more than one category at a time
e Improved prediction accuracy on deep hierarchies

e Tractable optimization via decomposition into single-example subproblems,
incremental conditional gradient search, and efficient inference algorithms to

find update directions

e Tractable optimization for medium-sized datasets (thousands of examples x
hundreds of microlabels)
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