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Hierarchical Multilabel Classification:

union of partial paths model

Goal: Given document x, and hierachy

T = (V, E), predict multilabel

y ∈ {+1,−1}k where the positive

microlabels yi form a union of partial

paths in T

news

entertainment

football athleticsfilm

champions leagueeuro 2004

sport politics

music

jazz classical
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Frequently used learning strategies for hierarchies

• Flatten the hierarchy: Learn each microlabel independently with

classification learner of your choice

• Computationally relatively inexpensive

• Does not make use of the dependencies between the microlabels

• Hierarchical training: Train a node j with examples (x,y) that belong to

the parent, i.e. ypa(j) = 1.

• Some of the microlabel dependencies are learned.

• However, training data fragments towards the leaves, hence estimation

becomes less reliable

• Model is not explicitly trained in terms of a loss function for the hierarchy.

We wish to improve on these approaches...
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The classification model

Make the hierarchy a Conditional Random Field (aka Markov Network) T = (V, E)

with the exponential family.

P (y|x,w) = Z(x,w)−1
∏

e∈E

exp
(

wT
e φφφe(x,ye)

)

= exp
(

wTφφφ(x,y)
)

• ye = (yi, yj) is an edge-labeling, i.e. a restriction of the whole multilabel y into

the edge e = (i, j)

• φφφe(x,ye) is a joint feature map for the pair (x,ye)

• w = (we)e∈E is the weight vector to be learned

• Z(x,w) =
∑

y∈{+1,−1}k exp
(

wTφφφ(x,y)
)

is a normalization factor (aka partition

function).
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Feature vectors

The joint feature vector φφφ(x,y) is composed of blocks

φφφue

e (x,ye) = Jye = ueKφφφ(x), e ∈ E,ue ∈ {+1,−1}2

where φφφ(x) is some feature representation of x (e.g. bag of words, substring

spectrum,...)

• This representation allows us to learn different feature weights for different

contexts.

• The special structure of repeating φφφ(x) can be utilized to save memory

For an example (x,y), where ye1
= (+1,−1) we get the following:

e1 e2 en

Φ(x)Φ (x,y )e1
e1

Φ (x,y )e1
e1

Φ (x,y )e2
e2

Φ (x,y )en
en.  .  .

0 00

Φ(x,y)

(−1,−1) (−1,+1) (+1,−1) (+1,+1)
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Loss functions for hierarchies

Consider a true multilabel y = (y1, . . . , yk) ∈ {+1,−1}k, and a predicted one

ŷ = (ŷ1, . . . , ŷk). Many choices:

• Zero-one loss: `0/1(y, ŷ) = Jy 6= ŷK; treats all incorrect multilabels alike

• Hamming loss: `∆(y, ŷ) =
∑

jJyj 6= ŷjK; counts incorrect microlabels.

Neither of the above takes the hierarchy into account. These do:

• Path loss (Cesa-Bianchi et al. 2004):

`H(y, ŷ) =
∑

j cjJyj 6= ŷj & yk = ŷk∀k ∈ ancestors(j)K; the first mistake

along a path is penalized

• Edge loss: `H̃(y, ŷ) =
∑

j cjJyj 6= ŷj & yparent(j) = ŷparent(j)K; mistake in the

child is penalized if the parent was correct.
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Max-margin Structured output learning

(Taskar et al., 2004; Tsochantaridis et al., 2004; ...)

Goal:

• Separate the correct multilabel from the incorrect ones by a large margin.

• Let the targeted margin scale proportionally to the loss of the multilabel

• Allow slack for non-separability of data

C E CLJ

Fi AM

E

N

S P

Fo

margin

w f(x,{N,E,M,S,A})

f(x,{E,M,J,S})

f(x,{N,E,M,S})

f(x,{N,E,M,S,Fo})

IIIA’06 Helsinki, Finland July 8, 2006 Juho Rousu 7



'

&

$

%

Optimization problem

Primal form:

min
w,ξξξ≥0

1

2
||w||

2
+ C

m
∑

i=1

ξi

s.t. wT (φ(xi,yi) − φ(xi,y)) ≥ `̀̀(yi,y) − ξi, ∀i,y ∈ {+1,−1}k

Dual:

max
ααα>0

∑

i,y

α(xi,y)`(yi,y) −
1

2

∑

xi,y

∑

x′

i
,y′

α(xi,y)T K(xi,y; x′
i,y

′)α(x′
i,y

′)

s.t.
∑

y

α(xi,y) ≤ C, ∀i

• Exponential number (in size of the hierarchy) of primal constraints and dual

variables, one per pseudo-example (xi,y)

• Cannot be solved in this form for realistic-sized datasets, many approaches to

make the model tractable (Taskar et al., 2004, 2005; Tshochantaridis et al.

2004)
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Marginalized problem

A polynomial-sized problem can be obtained by marginalization (c.f. Taskar et al. ,

2004), if the loss function and the feature representation is chosen suitably.

Our choices:

• Edge-marginals of dual variables : µe(x,ye) =
∑

u|ue=ye
α(x,u)

• Loss function decomposable by the edges: `(y,y′) =
∑

e∈E `(ye,y
′
e); Hamming

loss and edge loss apply

• Kernel decomposable by the edges: K(x,y; x′,y′) =
∑

e∈E Ke(x,ye; x,y′
e);
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Marginalized problem
b

max
µµµ>0

∑

e∈E

µµµT
e `̀̀e −

1

2

∑

e∈E

µµµT
e Keµµµe

s.t Bieµµµie ≤ C, ∀ i, e ∈ E,

Aiµµµi = 0, ∀ i

• The matrices Bie encode box constraints
∑

y,y′ µe(i, y, y′) ≤ C

• The matrices Ai encode marginal consistency constraints
∑

y′ µe(i, y
′, y) =

∑

y′ µe′(i, y, y′), ∀y, (e, e′) : e = parent(e′); these need to be

inserted to make the problem correspond to the original dual problem.

• The number of marginal dual variables µe is O(m|E|), the edge-kernels Ke take

O(m2|E|) space, which is too much even for medium-sized datasets

• e.g. optimizing 1372 examples by 188 microlabels will consume > 10Gb

memory!
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Decomposing the model

max
µµµ>0

∑

e∈E

µµµT
e `̀̀e −

1

2

∑

e∈E

µµµT
e Keµµµe

s.t Bieµµµie ≤ C, ∀ i, e ∈ E,

Aiµµµi = 0, ∀ i

• Consistency constraints Aiµµµi = 0 tie the edges together

• Kernels Ke tie training examples together

• But the gradient of the objective g = `̀̀ − (Keµµµe)e∈E does not the contain

example interactions

⇒ Iterative, gradient-based methods allow decomposed training, one example at a

time
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Conditional Gradient method

We use Conditional Gradient Descent (c.f. Bertsekas, 1999) to optimize the

marginalized dual problem Ingredients:

• Iterative gradient search in the feasible set

• Update direction is the highest feasible point assuming current gradient; found

by solving a constrained linear program: maxµµµ∈F (`̀̀ − Kµµµ0)
Tµµµ

• updates within single-example subspaces can be done independently, after

obtaining an initial gradient.
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Conditional Gradient Ascent

Gradient
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Conditional Gradient Ascent

Gradient

Conditional 
gradient
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Conditional Gradient Ascent

Saddle point

Gradient

Conditional 
gradient
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Conditional Gradient Ascent
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Conditional Gradient Ascent
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Conditional Gradient Ascent
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Conditional Gradient Ascent
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Using inference to find update directions

• Solving the update direction maxµµµ∈F (`̀̀ − Kµµµ0)
Tµµµ with an LP solver will

constitute a bottleneck for scalability

• By utilizing the hierarchical structure, we solve the problem efficiently

• Theorem: if µµµ is a vertex of F there is a unique multilabel y that corresponds

to that vertex.

• We can solve the update direction by finding multilabel y∗ that maximizes the

gradient

• Message-passing over the hierarchy T , dynamic programming implementaiton

works in linear time.
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Experiments

Datasets:

• Reuters Corpus Volume 1 (’CCAT’ family), 34 microlabels, maximum tree

depth 3, bag-of-words with TFIDF wieghting, 2500 documents were used for

training and 5000 for testing.

• WIPO-alpha patent dataset (D section), 188 microlabels, maximum tree depth

4, 1372 documents for training, 358 for testing.

Algorithms:

• Our algorithm: H-M3 (’Hierarchical Maximum Margin Markov’)

• Comparison: Flat SVM, hierarchically trained SVM, hierarchical regularized

least squares algorithm (Cesa-Bianchi et al. 2004)

• Implementation in MATLAB 7, LIPSOL solver used in the gradient ascent

• Tests run on a high-end Pentium PC with 1GB RAM
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Optimization efficiency

Optimization efficiency on WIPO dataset (1372 training examples, 188

microlabels) on a 3GHZ Pentium 4, 1GB main memory

LP = update directions via linear programming DP = update directions via

dynamic programmming
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Linear programming
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Prediction accuracy: Levelwise F1

F1 statistics computed for each node depth separately for Reuters (left) and WIPO

(right)
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Flat SVM is poor in recalling deep nodes, h-m
3-`H̃ is the best prediction method in

the leaves.
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Scalability?

• Dual variables and the gradient require O(m|E|) storage

• Kernel K(x, x′) requires O(m2) storage

• ≈ 10000 examples by 1000 microlabels fit to PC main memory, 100000

examples by 10000 microlabels will take up 100Gb hard disk!

Possibilities:

• Chunking to keep only a part of data in main memory at any given time

• Parallel implementation of conditional gradient algorithm is straight-forward.
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Conclusions

• Kernel-based approach for hierarchical text classification when documents can

belong to more than one category at a time

• Improved prediction accuracy on deep hierarchies

• Tractable optimization via decomposition into single-example subproblems,

incremental conditional gradient search, and efficient inference algorithms to

find update directions

• Tractable optimization for medium-sized datasets (thousands of examples ×

hundreds of microlabels)
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