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Structured Output Spaces

Examples
Trees.

Graphs.

Lattices.

Sequences.

We consider sequences.

eg: 1) Natural language text, where
words (or its derived characteristics)
form a sequence.
2) Activity Recognition, where activities
performed by a person are in a
sequential order.

Problem: To label each element in a
sequence of observations.
Observation: Labels at successive time
steps are dependent. Ex: Cooking
followed by dinner (Activity Recognition).
Conventional approaches: Hidden
Markov Models [Rabiner,1989], Conditional
Random Fields [Lafferty et al.,2001].
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Hidden Markov Model (HMM) [Rabiner,1989]

xt-1 xt xt+1

BedRoom
DoorSensor

Bathroom
DoorSensor

Microwave
Sensor

yt-1 yt yt+1

WakeUp Bath BreakFast

Initial state distribution: P(y1)
Transition distribution: P(yt|yt−1)
Emission distribution: P(xt|yt).

Joint probability

P(X,Y) = ∏
T
t=1 P(yt|yt−1)P(xt|yt)
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xt-1 xt xt+1

BedRoom
DoorSensor

Bathroom
DoorSensor

Microwave
Sensor

yt-1 yt yt+1

WakeUp Bath BreakFast

Hidden States (Activity)

Single variable observations (on/off sensor fired) 

Initial state distribution: P(y1)
Transition distribution: P(yt|yt−1)
Emission distribution: P(xt|yt).

Joint probability
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T
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xt-1 xt xt+1

BedRoom
DoorSensor

Bathroom
DoorSensor

Microwave
Sensor

yt-1 yt yt+1

WakeUp Bath BreakFast

State transition relationship

Observation
relationship

Initial state distribution: P(y1)
Transition distribution: P(yt|yt−1)
Emission distribution: P(xt|yt).

Joint probability
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xt-1 xt xt+1

BedRoom
DoorSensor

Bathroom
DoorSensor

Microwave
Sensor

yt-1 yt yt+1

WakeUp Bath BreakFast

  yt is independent of all 
other variables given yt-1.

  xt is independent of all 
other variables given yt.

Initial state distribution: P(y1)
Transition distribution: P(yt|yt−1)
Emission distribution: P(xt|yt).

Joint probability
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Hidden Markov Model (HMM) [Rabiner,1989]

xt-1 xt xt+1

BedRoom
DoorSensor

Bathroom
DoorSensor

Microwave
Sensor

yt-1 yt yt+1

WakeUp Bath BreakFast

Parameters are learned by maximizing 
the joint probability, P(X,Y), in the training 
data.

For inference, the parameters are used to 
determine the sequence of labels that 
best explains the given sequence of 
observations.

Initial state distribution: P(y1)
Transition distribution: P(yt|yt−1)
Emission distribution: P(xt|yt).

Joint probability

P(X,Y) = ∏
T
t=1 P(yt|yt−1)P(xt|yt)
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Conditional Random Field (CRF) [Lafferty et al.,2001]

xt-1 xt xt+1

BedRoom
DoorSensor

Bathroom
DoorSensor

Microwave
Sensor

yt-1 yt yt+1

WakeUp Bath BreakFast

In Conditional Random 
Fields (CRF), conditional 
probability is maximized.

φt(yt,X), φt−1(yt−1,yt,X) are
potential functions
Z(X) is the partition function.

Conditional probability

p(Y|X) = 1
Z(X) exp

T
∑

t=1
φt(yt,X)+φt−1(yt−1,yt,X)
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SVM on Structured Output Spaces [Tsochantaridis et al., 2004,2006]

Models structured output classification in a large margin
framework.
Generalizes Support Vector Machines to capture
relationships in output space.

We focus on sequence labeling.
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Sequence labeling problem: Training objective

Let scoring function, F(X,Y; f) = 〈f,ψ(X,Y)〉
X: input sequence; Y: output sequence; ψ(X,Y): feature vector (observation and transition); f: parameter vector

Objective: Learn features that maximize F(X,Y; f) − max
Ŷ 6=Y

F(X, Ŷ; f)

Inference:

Ŷ = F (X; f) = argmax
Y∈Y

F(X,Y; f)

Loss function:
∆(Y, Ŷ) for true output Y and prediction Ŷ.

Predicted sequences that deviate more from the actual should be penalized
more.
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SVM for structured output spaces (StructSVM) [Tsochantaridis et al., 2004,2006]

min
f,ξ

1
2
‖ f ‖2 +

C
m

m

∑
i=1

ξi, s.t. ∀i : ξi ≥ 0,

∀i, ∀ Y 6= Yi : 〈f,ψδ
i (Y)〉 ≥ 1− ξi

∆(Yi,Y)

‖ . ‖: 2-norm regularizer.

C: regularization parameter.

m: no of example sequences in training set

〈f,ψδ
i (Y)〉= 〈f,ψ(Xi,Yi)〉−〈f,ψ(Xi,Y)〉

Xi and Yi: ith input and output sequences in the training set.

ξ : slack variables to allow errors in the training set in a soft margin SVM.
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SVM for structured output spaces (StructSVM) [Tsochantaridis et al., 2004,2006]

min
f,ξ

1
2
‖ f ‖2 +

C
m

m

∑
i=1

ξi, s.t. ∀i : ξi ≥ 0,

∀i, ∀ Y 6= Yi : 〈f,ψδ
i (Y)〉 ≥ 1− ξi

∆(Yi,Y)

Difference with regular SVMs ?

Margin is defined as the difference in scores of true and wrong output
sequences.

The loss function also scales the slackness in margin. If the loss is
large, less tolerance is allowed; and vice-versa
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SVM for structured output spaces (StructSVM)[Tsochantaridis et al., 2004,2006]

min
f,ξ

1
2
‖ f ‖2 +

C
m

m

∑
i=1

ξi, s.t. ∀i : ξi ≥ 0,

∀i, ∀ Y 6= Yi : 〈f,ψδ
i (Y)〉 ≥ 1− ξi

∆(Yi,Y)

The number of constraints can be extremely large.

Cutting plane method for finding polynomially sized subset of
constraints [Tsochantaridis et al., 2004,2006].

Start with no constraints.
Incrementally add constraints that violates the margin more than a
threshold ε.
Repeat until no constraint violates the margin more than ε.
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The cutting plane algorithm

Input: kernels, C, εmargin
1. Si← φ ∀i = 1, ...,m
2. repeat
3. for i = 1, ...,m do //for each example
4. Define H(Y)≡

[
1−〈f,ψδ

i (Y)〉
]
∆(Yi,Y) //Margin Violation

5. Compute Ŷ = argmax
Y∈Y

H(Y). //Max Margin Violation

6. Compute ξi = max{0,max
Y∈Si

H(Y)}. //Current Max Margin Violation

7. if H(Ŷ)> ξi + εmargin, then
8. Si← Si

⋃
{Ŷ}. //adding constraints

9. α ← optimize dual over S, S =
⋃

i Si. //f can be derived from α

10. end if
11. end for

12.until no Si has changed during the iteration.
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Dual

max
α

∑
i,Y 6=Yi

αiY −
1
2 ∑

i,Y 6=Yi

∑
j,Y ′ 6=Yj

αiYαj,Y ′ 〈ψ
δ
i (Y),ψ

δ
j (Y

′
)〉

such that,

∀i,∀Y 6= Yi : αiY ≥ 0

∀i : n ∑
Y 6=Yi

αiY

∆(Yi,Y)
≤ C
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Dual: kernel

max
α

∑
i,Y 6=Yi

αiY −
1
2 ∑

i,Y 6=Yi

∑
j,Y ′ 6=Yj

αiYαj,Y ′κ
δ

(
(Xi,Yi,Y),(Xj,Yj,Y

′
)
)

such that,

∀i,∀Y 6= Yi : αiY ≥ 0

∀i : n ∑
Y 6=Yi

αiY

∆(Yi,Y)
≤ C
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Kernel

Kernel can be split into emission and transition parts.

κ
δ
(
(Xi,Yi,Y),(Xj,Yj,Y

′
)
)
= κ

δ
T (Yi,Y,Yj,Y

′
)+κ

δ
E
(
(Xi,Yi,Y),(Xj,Yj,Y

′
)
)
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Kernel

From the definition of ψδ
i (Y),

κ
δ
T
(
Yi,Y,Yj,Y

′
) = κT(Yi,Yj)+κT(Y,Y

′
)−κT(Yi,Y

′
)−κT(Yj,Y)

where,

κT(Yi,Yj) =
li−1

∑
p=1

lj−1

∑
q=1

Λ(yp
i ,y

q
j )Λ(y

p+1
i ,yq+1

j )

=
li

∑
p=2

lj

∑
q=2

Λ(yp−1
i ,yq−1

j )Λ(yp
i ,y

q
j ),

where Λ(yp
i ,y

q
j ) = 1 if yp

i = yq
j ; 0 otherwise. yp

i is the pth label of ith

sequence.
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Kernel

Similarly,

κ
δ
E
(
(Xi,Yi,Y),(Xj,Yj,Y

′
)
)
=

li

∑
p=1

lj

∑
q=1

κE(x
p
i ,x

q
j )
(

Λ(yp
i ,y

q
j )+Λ(yp,y

′q)−Λ(yp
i ,y

′q)−Λ(yp,yq
j )
)

The kernel κE(x
p
i ,x

q
j ) can be defined as a Set-Sequence (String) kernel (or any fancy

kernel), where we may be considering some window time steps before and after p and

q, with p and q as pivots.
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Conclusion

Structured Output Spaces

Sequence labeling problems.

Hidden Markov Models.

Conditional Random Fields.

StructSVM.

Cutting Plane Algorithm.

Dual and Kernel.
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