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Chapter 1

Sets, Relations and Logic

‘Crime is common. Logic is rare. Therefore it is upon the logic
rather than the crime that you should dwell.” Sherlock Holmes in
Conan Doyle’s The Copper Breeches.

1.1 Sets and Relations

1.1.1 Sets

A set is a fundamental concept in mathematics. Simply speaking, it consists
of some objects, usually called its elements. Here are some basic notions about
sets that you must already know about:

— A set S with elements a,b and ¢ is usually written as S = {a,b,c}. The
fact that a is an element of S is usually denoted by a € S.

— A set with no elements is called the “empty set” and is denoted by (.

— Two sets S and T are equal (S = T) if and only if they contain precisely
the same elements. Otherwise S # T

— A set T is a subset of a set S (T' C S) if and only if every element of T is
also an element of S. If T'C S and S C T then S =7T. Sometimes T' C S
may sometimes also be written as S O T. If T' C S and S has at least
one element not in T, then T'C S (T is said to be “proper subset” of ).
Again, T' C S may sometimes be written as S O T

We now look at the meanings of the union, intersection, and equivalence of
sets. The intersection, or product, of sets S and 7', denoted by S NT or ST or
S - T consists of all elements common to both S and T. ST C S and ST C T
for all sets S and T. Now, if S and T have no elements in common, then they
are said to be disjoint and ST = (). It should be easy for you to see that ) C S
for all S and @ -S = 0 for all S. The union, or sum, of sets S and T, denoted

3



4 CHAPTER 1. SETS, RELATIONS AND LOGIC

by SUT or S+ T, is the set consisting of elements that belong at least to S
or T. Once again, it should be a straightforward matter to see S C S + T and
T CS+Tforall Sand T. Also, S+ @ = S for all S. Finally, if there is a
one-to-one correspondence between the elements of set S and set T', then S and
T are said to be equivalent (S ~ T'). Equivalence and subsets form the basis
of the definition of an infinte set: if ' C S and S ~ T then S is said to be an
infinite set. The set of natural numbers A is an example of an infinite set (any
set S ~ N is said to be countable set).

1.1.2 Relations

A finite sequence is simply a set of n elements with a 1 — 1 correspondence with
the set {1,...,n} arranged in order of succession (an ordered pair, for example,
is just a finite sequence with 2 elements). Finite sequences allow us to formalise
the concept of a relation. If A and B are sets, then the set A x B is called the
cartesian product of A and B and is denoted by all ordered pairs (a,b) such
that a € A and b € B. Any subset of A X B is a binary relation, and is called
a relation from A to B. If (a,b) € R, then aRb means “a is in relation R to b”
or, “relation R holds for the ordered pair (a,b)” or “relation R holds between a
and b.” A special case arises from binary relations within elements of a single
set (that is, subsets of A x A). Such a relation is called a “relation in A” or a
“relation over A”. There are some important kinds of properties that may hold
for a relation R in a set A:

Reflexive. The relation is said to be reflexive if the ordered pair (a,a) € R for
every a € A.

Symmetric. The relation is said to be symmetric if (a,b) € R iff (b,a) € R for
a,be A

Transitive. The relation is said to be transitive if (a,b) € R and (b,c) € R,
then (a,c) € R for a,b,c € A.

Here are some examples:

e The relation < on the set of integers is reflexive and transitive, but not
symmetric.

e The relation R = {(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)} on the set A =
{1,2,3,4} is reflexive, symmetric and transitive.

e The relation + on the set N defined as the set {(z,y) : Iz € N s.t. 2z = y}
is reflexive and transitive, but not symmetric.

e The relation | on the set of lines in a plane is symmetric but neither
reflexive nor transitive.
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It should be easy to see a relation like R above is just a set of ordered pairs.
Functions are just a special kind of binary relation F which is such that if
(a,b) € F and (a,c) € F then b = ¢. Our familiar notion of a function F from
a set A to a set B is one which associates with each a € A exactly one element
b € B such that (a,b) € F. Now, a function from a set A to itself is usually
called a unary operation in A. In a similar manner, a binary operation in A is
a function from A x A to A (recall A x A is the Cartesian product of A with
itself: it is sometimes written as A2). For example, if A = A/, then addition (+)
is a binary operation in A. In general, an n-ary operation F' in A is a function
from A™ to A, and if it is defined for every element of A™, then A is said to be
closed with respect to the operation F. A set which is closed for one or more
n-ary operations is called an algebra, and a sub-algebra is a subset of such a set
that remains closed with respect to those operations. For example:

e N is closed wrt the binary operations of + and x, and N along with +, x
form an algebra.

e The set £ of even numbers is a subalgebra of algebra of N” with +, x. The
set O of odd numbers is not a subalgebra.

e Let S C U and S’ C U be the set with elements of U not in S (the unary
operation of complementation). Let U = {a,b,c,d}. The subsets of U
with the operations of complementation, intersection and union form an
algebra. (How many subalgebras are there of this algebra?)

Equivalence Relations

Any relation R in a set A for which all three properties hold (that is, R is
reflexive, symmetric, and transitive) is said to be an “equivalence relation”.
Suppose, for example, we are looking at the relation R over the set of natural
numbers N, which consists of ordered pairs (a,b) such that a + b is even! You
should be able to verify that R is an equivalence relation over N. In fact, R
allows us to split A/ into two disjoint subsets: the set of odd numbers O and the
set of even numbers £ such that N' = O U € and R is an equivalence relation
over each of O and £. This brings us to an important property of equivalence
relations:

Theorem 1 Any equivalence relation E over a set S partitions S into disjoint
non-empty subsets Si,...,Sk such that S =S, U---USy.

Let us see how E can be used to partition S by constructing subsets of .S in the
following way. For every a € S, if (a,b) € E then a and b are put in the same
subset. Let there be k such subsets. Now, since (a,a) € E for every a € S,
every element of S is in some subset. So, S = S;U---USg. It also follows that
the subsets are disjoint. Otherwise there must be some c € S;,S;. Clearly, S;

I Equivalence is often denoted by . Thus, for an equivalence relation E, if (a,b) € E, then
a=b.
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and S; are not singleton sets. Suppose S; contains at least a and c. Further let
there be a b ¢ S; but b € S;. Since a,c € S;, (a,¢) € E and since ¢,b € Sj,
(¢,b) € E. Thus, we have (a,¢) € E and (¢,b) € E, which must mean that
(a,b) € E (E is transitive). But in this case b must be in the same subset as a
by construction of the subsets, which contradicts our assumption that b & S;.
The converse of this is also true:

Theorem 2 Any partition of a set S partitions into disjoint non-empty subsets
S1,...,Sk such that S = S1U---USy results in an equivalence relation over S.

(Can you prove that this is the case? Start by constructing a relation E, with
(a,b) € E if and only if a and b are in the same block, and prove that E is an
equivalence relation.)

Each of the disjoint subsets Sp, 5o, ... are called ”equivalence classes”, and
we will denote the equivalence class of an element « in a set S by [a]. That is,
for an equivalence relation E over a set S:

[al| ={z:2 € S,(a,z) € E}

What we are saying above is that the collection of all equivalence classes of
elements of S forms a partition of S; and conversely, given a partition of the set
S, there is an equivalence relation E on S such that the sets in the partition
(sometimes also called its "blocks”) are the equivalence classes of S.

Partial Orders

Given an equality relation = over elements of a set S, a partial order < over S
is a relation over S that satisfies the following properties:

Reflexive. For every a € S, a < a
Anti-Symmetric. If a <band b < a thena =05
Transitive. If a <band b <cthena <¢

Here are some properties about partial orders that you should know (you will
be able to understand them immediately if you take, as a special case, = as
meaning < and < as meaning <):

e Ifa<band a#0bthena<b
e b>ameans a =b, b>a means a<b

e If a X borb=athen a,b are comparable, otherwise they are not compa-
rable.

A set S over which a relation of partial order is defined is called a partially
ordered set. It is sometimes convenient to refer to a set S and a relation R
defined over S together by the pair < S, R >. So, here are some examples of
partially ordered sets < S, <>:
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{a,b,c}

{a b} {a,c} {b, el

Figure 1.1: The lattice structure of (S, <), where S is the power set of {a, b, c}.

e S is a set of sets, S1 = S5 means S; C S5

e S =MN,n; = nymeans n; = ny or there is a nz € A such that n;+n3 = no

e S is the set of equivalence relations F1,... over some set T, B, < E)p
means for u,v € T, uEpv means uEyv (that is, (u,v) € Ep means
(u,v) € En).

Given a set S = {a,b,...} if a < b and there is no x € S such that a < © < b

then we will say b covers a or that a is a downward cover of b. Now, suppose
Sdown be a set of downward covers of b € S. If for all x € S, x < b implies
there is an a € Sgown S.t. © < a < b, then Syu,n is said to be a complete set of
downward covers of b. Partially ordered sets are usually shown as diagrams like
in Figure 1.1.
The diagrams, as you can see, are graphs (sometimes called Hasse graphs or
Hasse diagrams). In the graph, vertices represent elements of the partially
ordered set. A vertex vy is at a higher level than vertex vy whenever vy < o,
and there is an edge between the two vertices only if vy covers vy (that is, vy
is an immediate predecessor). The graph is therefore really a directed one, in
which there is a directed edge from a vertex vo to v; whenever vy covers vy.
Also, since the relation is anti-symmetric, there can be no cycles. So, the graph
is a directed acyclic graph, or DAG.

In the diagram in Figure 7?7 on the left, S is the set of non-empty subsets
of {a,b,c} and < denotes the subset relationship (that is, S; < S if and only
if S4 C S3). The diagram on the right is an example of a chain, or a totally
ordered set.

You should be able to see that a finite chain of length n can be put in a
one-to-one correspondence to a finite sequence of natural numbers (1,...,n)
(the correct way to say this is that a finite chain is isomorphic with a finite
sequence of natural numbers). In general, a partially ordered set S is a chain
if for every pair a,b € S, a < b or b < a. There is a close relationship between
a partially ordered set and a chain. Suppose S is a partially ordered set. We
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can always associate a function f from the elements of S to N (the set of
natural numbers), so that if @ < b for a,b € S, then f(a) < f(b). f is called
a consistent enumeration of S, and is not unique and we can use it to define a
chain consistent with S. (We will leave the proof of the existence a consistent
enumeration for you. One way would be to use the method of induction on
the number of elements in S: clearly there is such an enumeration for |S| = 1.
Assume that an enumeration exists for |S| =n — 1 and prove it for |S| = n.)

Some elements of a partially ordered set have special properties. Let < S, <>
be a p.o. set and T C S. Then (in the following, you should read the symbol 3
as being shorthand for “there exists”, and V as “for all”):

— Least element of T' — Greatest element of T'
a€T st.VteT a=<t a€Tst.VteT art

— Least element, if it exists, — Greatest element, if it exists
is unique. If T'= S this is is unique. If T'= S then this is
the “zero” element the “unity” element

— Minimal element of T' — Maximal element of T'
aeT AteT st.t<a aeT AteT st.t=a

— Minimal element need — Maximal element need
not be unique not be unique

— Lower bound of T' — Upper bound of T’
beSst.b=<tVteT beSst.b=tvteT

—GlbgofT — Lubgof T
b=<gVb,g: lbsof T b>gVb,g: ubsof T

— If it exists, the glb is unique — If it exists the lub is unique

As you would have observed, there is a difference between a least element and
a minimal element (and correspondingly, between greatest and maximal ele-
ments). The requirement of a minimal (maximal) upper bound is, in some
sense, a weakening of the requirement of a least (greatest) upper bound. If x
and y are both lub’s of some set T' C S, then y < x and z < y, so then = = y.
This means that all lub’s of T" are equivalent. Dually, if  and y are glb’s of some
T, then also x =~ y. Thus, if a least element exists, then it is unique: this is not
necessarily the case with a minimal element. Also, least and greatest elements
must belong to the set T', but lower and upper bounds need not.

For this example, S has: (1) one upper bound b; (2) no lower bound; (3) a
greatest element b; (4) no least element; (5) no greatest lower bound; (6) two
minimal elements a and e; and (7) one maximal element b. Can you identify
what the corresponding statements are for 77
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B lee—— %
L —————— -

Figure 1.2: {a, b} has no lub here.

The glb and lub are sometimes also taken to be binary operations on a
partially ordered set S, that assigns to an ordered pair in S? the corresponding
glb or lub. The first operation is called the product or meet and is denoted by -
or M. The second operation is sometimes called the sum or join and is denoted
by + or LI

In a quasi-ordered set, a subset need not have a lub or glb. We will take an
example to illustrate this. Let S = {a,b,c,d}, and let < be defined as a < ¢,
b<c¢,a<dand d =< b. Then since c and d are incomparable, the set a,b has
no lub in this quasi-order. See Figure 1.2.

Similarly, a set need not have a maximal or a minimal, nor upward or down-
ward covers. For instance, let S be the infinite set {y, x;, 2, z3,...}, and let <
be a quasi-order on S, defined as y < ... zp11 < T, < ... < 2 < x1. Then
there is no upward cover of y: for every x,, there always is an z,1; such that
Y < Tpt1 = Tp. In this case, y has no complete set of upward covers.

Note that a complete set of upward covers for y need not contain all upward
covers of y. However, in order to be complete, it should contain at least one
element from each equivalence class of upward covers. On the other hand,
even the set of all upward covers of y need not be complete for y. For the
example given above, the set of all upward covers of y is empty, but obviously
not complete.

A notion of some relevance later is that of a function f defined on a partially
ordered set < S, <>. Specifically, we would like to know if the function is: (a)
monotonic; and (b) continuous. Monotonicity first:

A function f on < S, <> is monotonic if and only if for all u,v € S,
u < v means f(u) < f(v)

Now, suppose a subset S7 of S have a least upper bound lub(S;) (with some
abuse of notation: here lub(X) is taken to be the lub of the elements in set X).
Such subsets are called “directed” subsets of S. Then:

A function f on < S, <> is continuous if and only if for all directed

subsets S; of S, f(lub(S;)) = lub({f(z) : x € S;}).
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That is, if a directed set S; has a least upper bound [ub(S;), then the set
obtained by applying a continuous function f to the elements of S; has least
upper bound f(lub(S;)). Functions that are both monotonic and continuous on
some partially ordered set < S, <> are of interest to us because they can be
used, for some kinds of orderings, to guarantee that for some s € S, f(s) = s.
That is, f is said to have a “fixpoint”.

Lattices

A lattice is just a partially ordered set < S, <> in which every pair of elements
a,b € S has a glb (represented by M) and a lub (represented by Ll). From the
definitions of lower and upper bounds, we are able to show that in any such
partially ordered set, the operations will have the following properties:

e aMb=>bMa,and aUb=>bUa (that is, they are are commutative).

eaf(bNe)=(amMbd)Me,and alU (bUc¢) = (aUb) Uc (that is, they are
associative).

e alM(alb) =a, and all (aMb) = a (that is, they are “absorptive”).
e alb=aand allb=".

We will not go into all the proofs here, but show one for illustration. Since aMb
is the glb of a and b, aMb < a. Clearly then aUl (aMb), which is the lub of a and
a b, is a. This is one of the absorptive properties above. You should also be
able to see, from these properties, that a lattice can also be seen simply as an
algebra with two binary operations M and LI that are commutative, associative
and absorptive.

Theorem 3 A lattice is an algebra with the binary operations of LI and M.

Here is an example of a lattice: let S be all the subsets of {a,b,c}, and for
XYeS X<XYmeans X CY, XMY = XNY and XUUY = XUY. Then
< §,C> is a lattice. The empty set () is the zero element, and S is the unity
element of the lattice. More generally, a lattice that has a zero or least element
(which we will denote L), and a unity or greatest element (which we will denote
T) is called a bounded lattice. In such lattices, the following necessarily hold:
aUT =T;anNT =a;aldl =a;and al L = L. A little thought should
convince you that a finite lattice will always be bounded: if the lattice is the
set S={ay,...,ap}then T=0a;U---Ua, and L = a1 M---Ma,. (But, does
the reverse hold: will a bounded lattice always be finite?)

Two properties of subsets of lattices are of interest to us. First, a subset
M of a lattice L is called a sublattice of L if M is also closed under the same
binary operations of U and M defined for L (that is, M is a lattice with the
same operations as those of L). Second, if a lattice L has the property that
every subset of L has a lub and a glb, then the L is said to be a complete
lattice. Clearly, every finite lattice is complete. Further, since every subset of
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L has a lub and a glb, this must certainly be true of L itself. So, L has a lub,
which must necessarily be the greatest element of L. Similarly, L has a glb,
which must necessarily be the least element of L. In fact, the elements of L are
ordered in such a way that each element is on some path from T to L in the
Hasse diagram. An example of an ordered set that is always a complete lattice
is the set of all subsets of a set S, ordered by C, with binary operations N and
U for the glb and lub. This set, the “powerset” of S, is often denoted by 25.
So, if S = {a,b,c}, 2% is the set {0, {a}, {b},{c},{a, b}, {a,c}, {b,c},{a,b,c}}.
Clearly, every subset of s of 2° has both a glb and a lub in S.

There are two important results concerning complete lattices and functions
defined on them. The Knaster-Tarski Theorem tells us that every monotonic
function on a complete lattice < S, <> has a least fixpoint.

Theorem 4 Let < S, <> be a complete lattice and let f : S — S be a monotonic
function. Then the set of fixed points of f in L is also a complete lattice < P, <>
(which obviously means that f has a greatest as well as a least fixpoint).

Proof Sketch:? Let D = {z|z < f(x)}. From the very definition of D, it
follows that every fixpoint is in D. Consider some x € D. Then because f is
monotone we have f(x) < f(f(z)). Thus,

VeeD, f(x) e D (1.1)

Let u = lub(D) (which should exist according to our assumption that <
S, <> is a complete lattice. Then z < u and f(z) = f(u), so x =X f(x) 2 f(u).
Therefore f(u) is an upper bound of D. However, u is the least upper bound,
hence u < f(u), which in turn implies that, v € D. From (1.1), it follows that
f(u) € D. From u = lub(D), f(u) € D and u < f(u), it follows that f(u) = u.
Because every fixpoint is in D we have that u is the greatest fixpoint of f.
Similarly, it can be proved that if E = {z|f(z) < z}, then v = glb(FE) is a fixed
point and therefore the smallest fixpoint of f. O

Kleene’s First Recursion Theorem tells us how to find the element s € S that
is the least fixpoint, by incrementally constructing lubs starting from applying
a continuous function to the least element of the lattice (L).

Theorem 5 Let S be a complete partial order and let f : S — S be a contin-
uous (and therefore monotone) function. Then the least fized point of f is the
supremum of the ascending Kleene chain of f:

LA 2 FPL) = S ML) =

In the special case that < is C, the incremental procedure starts with the
empty set (), and progressive lub’s are obtained by application of the set-union
operation U. We will not give the proofs of this result here.

2Can you complete the proof?
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/T\
a
1

a——

Figure 1.3: Example lattice for illustrating the concept of lattice length.

A final concept we will need is the concept of the length of a lattice. For a
pair of elements a,b in a lattice L such that a < b, the interval [a,b] is the set
{r:2z €L, a=z=0b}. Now, consider a subset of [a,b] that contains both
a and b, and is such that any pair of elements in the subset are comparable.
Then that subset is a chain from a to b: if the number of elements in the subset
is n, then the length of the chain is n — 1. Maximal chains from a to b are
those of the form a = z1 < 29 < --- < z,, = b such that each z; is covered
by x;+1. If all maximal chains from a to b are finite, then the longest of these
defines the length of the interval [a,b]. For a bounded lattice, the length of the
interval [L, T] defines the length of the lattice. So, in the lattice in Figure 1.3,
there are two maximal chains between L and T, of lengths 2 and 3 (what are
these?). The length of lattice is thus equal to 3. Now, it should be evident that
finite lattices will always have a finite length, but it is possible for lattices to
have a finite length, but have infinitely many elements. For example, the lattice
L={1,T,zy,x9,...} such that L < x; < T has a finite length (all maximal
chains are of length 2). (Indeed, it is even possible to have an infinite set in
which maximal chains are of finite, but increasing in lengths of 1,2....)

Quasi-Orders

A quasi-order @ in a set S is a binary relation over S that satisfies the following
properties:

Reflexive. For every a € S, aQa

Transitive. If aQb and bQc then aQc

You can see that a quasi-order differs from an equivalence relation in that sym-
metry is not required. Further, it differs from a partial order because no equality
is defined, and therefore the property of anti-symmetry property cannot be de-
fined either. There are two important properties of quasi-orders, which we will
present here without proof:
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e If a quasi-order @ is defined on a set S = {a,,. ..}, and we define a binary
relation E as follows: aFEb iff a@Qb and bQa. Then F is an equivalence
relation.

e Let E partition S into subsets X,Y,... of equivalent elements. Let T =
{X,Y,...} and < be a binary relation in 7' meaning X <Y in T if and
only if xQy in S for some x € X,y € Y. Then T is partially ordered by
=.

What these two properties say is simply this:

A quasi-order order @ over a set S results in a partial ordering over
a set of equivalence classes of elements in S.

1.2 Logic

Logic, the study of arguments and ‘correct reasoning’, has been with us for
at least the better part of two thousand years. In Greece, we associate its
origins with Aristotle (384 B.C.—322 B.C.); in India with Gautama and the Nyaya
school of philosophy (3" Century B.C.?); and in China with Mo Ti (479 B.C.—
381 B.C.) who started the Mohist school. Most of this dealt with the use and
manipulation of syllogisms. It would only be a small injustice to say that little
progress was made until Gottfried Wilhelm von Leibniz (1646-1716). He made
a significant advance in the use of logic in mathematics by introducing symbols
to represent statements and relations. Leibniz hoped to reduce all errors in
human reasoning to minor calculational mistakes. Later, George Boole (1815—
1864) established the connection between logic and sets, forming the basis of
Boolean algebra. This link was developed further by John Venn (1834-1923)
and Augustus de Morgan (1806-1872). It was around this time that Charles
Dodgson (1832-1898), writing under the pseudonym Lewis Carroll, wrote a
number of popular logic textbooks. Fundamental changes in logic were brought
about by Friedrich Ludwig Gottlob Frege (1848-1925), who strongly rejected
the idea that the laws of logic are synonymous with the laws of thought. For
Frege, the former were laws of truth, having little to say on the processes by
which human beings represent and reason with reality. Frege developed a logical
framework that incorporated propositions with relations and the validity of
arguments depended on the relations involved. Frege also introduced the device
of quantifiers and bound variables, thus laying the basis for predicate logic, which
forms the basis of all modern logical systems. All this and more is described
by Bertrand Russell (1872-1970) and Alfred North Whitehead (1861-1947) in
their monumental work, Principia Mathematica. And then in 1931, Kurt Godel
(1906-1978) showed much to the dismay of mathematicians everywhere that
formal systems of arithmetic would remain incomplete.

Rational agents require knowledge of their world in order to make rational
decisions. With the help of a declarative (knowledge representation) language,
this knowledge (or a portion of it) is represented and stored in a knowledge
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base. A knowledge-base is composed of sentences in a language with a truth
theory (logic), so that someone external to the system can interpret sentences as
statements about the world (semantics). Thus, to express knowledge, we need
a precise, declarative language. By a declarative language, we mean that

1. The system believes a statement S iff it considers S to be true, since one
cannot believe S without an idea of what it means for the world to fulfill

S.

2. The knowledge-based must be precise enough so that we must know, (1)
which symbols represent sentences, (2) what it means for a sentence to be
true, and (3) when a sentence follows from other sentences.

Two declarative languages will be discussed in this chapter: (0 order or)
propositional logic and first order logic.

1.3 Propositional Logic

Formal logic is concerned with statements of fact, as opposed to opinions, com-
mands, questions, exclamations etc. Statements of fact are assertions that are
either true or false, the simplest form of which are called propositions. Here are
some examples of propositions:

The earth is flat.
Humans are monkeys.
1+1=2

At this stage, we are not saying anything about whether these are true or false:
just that they are sentences that are one or the other. Here are some examples
of sentences that are not propositions:

Who goes there?
Eat your broccoli.
This statement is false.

It is normal to represent propositions by letters like P, Q,.... For exam-
ple, P could represent the proposition ‘Humans are monkeys.” Often, simple
statements of fact are insufficient to express complex ideas. Compound state-
ments can be combining two or more propositions with logical connectives (or

simply, connectives). The connectives we will look at here will allow us to form
sentences like the following:

It is not the case that P
P and Q

Por@

PifQ
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The P’s and @)’s above are propositions, and the words underlined are the
connectives. They have special symbols and names when written formally:

Statement Formally Name

It is not the case that P -P Negation

P and Q PAQ Conjunction
Por@ PVvQ Disjunction
PifQ P—Q Conditional

There is, for example, a form of argument known to logicians as the disjunctive
syllogism. Here is one due to the Stoic philosopher Chrysippus, about a dog
chasing a rabbit. The dog arrives at a fork in the road, sniffs at one path and
then dashes down the other. Chrysippus used formal logic to describe this:?

Statement Formally

The rabbit either went down Path A or Path B. PvQ
It did not go down Path A. -P
Therefore it went down Path B. SQ

Here P represents the proposition ‘The rabbit went down Path A’ and @ the
proposition ‘The rabbit went down Path B.” To argue like Chrysippus requires
us to know how to write correct logical sentences, ascribe truth or falsity to
propositions, and use these to derive valid consequences. We will look at all
these aspects in the sections that follow.

1.3.1 Syntax

Every language needs a vocabulary. For the language of propositional logic, we
will restrict the vocabulary to the following:

Propositional symbols: PQ,...
Logical connectives? : AV, —
Brackets: (,)

The next step is to specify the rules that decide how legal sentences are to be
formed within the language. For propositional logic, legal sentences or well-
formed formule (wifs for short) are formed using the following rules:

1. Any propositional symbol is a wif;

2. If a is a wif then -« is a wif; and

3There is no suggestion that the principal agent in the anecdote employed similar means
of reasoning.
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3. If @ and B are wifs then (a A 8), (a Vv 8), and (« <« () are wifs.

Wils consisting simply of propositional symbols (Rule 1) are sometimes called
atomic wifs and others compound wffs Informally, it is acceptable to drop out-
ermost brackets. Here are some examples of wifs and ‘non-wifs’:

Formula Comment
(=P) Not a wff. Parentheses are only allowed

with the connectives in Rule 3

-—P P is wif (Rule 1),
—P is wff (Rule 2),
-, =P is wif (Rule 2)

(P—(QAR)) P,Q, R are wffs (Rule 1),
- (Q A R) is a wff (Rule 3),
o (P~ (QAR)) is a wff (Rule 3)

P—(QAR) Not a wff, but acceptable informally

(P)AN (@) Not a wff. Parentheses are only allowed
with the connectives in Rule 3

(PAQAR) Not a wff. Rule 3 only allows two symbols
within a pair of brackets

One further kind of informal notation is widespread and quite readable. The
conditional (P« ((Q1 A Q2)...Qy))) is often written as (P «— Q1,Q2,...Qn)
oreven P — Q1,Qs,...Q,.

It is one thing to be able to write legal sentences, and quite another matter
to be able to assess their truth or falsity. This latter requires a knowledge of
semantics, which we shall look at shortly.

Normal Forms

Every formulae in propositional logic is equivalent to a formula that can be
written as a conjunction of disjunctions. That is, something like (AV B) A (C'V
D) A ---. When written in this way the formula is said to be in conjunctive
normal form or CNF. There is another form, which consists of a disjunction of
conjunctions, like (AAB)V (CAD)V---, called the disjunctive normal form or
DNF. In general, a formula F' in CNF can be written somewhat more cryptically
as:

and a formula G in DNF as:
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n

G=\ AL
VAL

i=1

Here, \/ F; is short for F; V F5 V --- and A F; is short for F; A Fx A---. In
both CNF and DNF forms above, the L; ; are either propositions or negations
of propositions (we shall shortly call these “literals”).

1.3.2 Semantics

There are three important concepts to be understood in the study of semantics
of well-formed formulee: interpretations, models, and logical consequence.
Interpretations

For propositional logic, an interpretation is simply an assignment of either true
or false to all propositional symbols in the formula. For example, given the wif
(P «— (Q A R)) here are two different interpretations:

P Q R
Iy :  true false true
I : false true true

You can think of I; and I as representing two different ‘worlds’ or ‘contexts’.
After a moment’s thought, it should be evident that for a formula with N
propositional symbols, there can never be more than 2V possible interpretations.

Truth or falsity of a wif only makes sense given an interpretation (by the
principle of bivalence, any interpretation can only result in a wif being either
true or false). Clearly, if the wif simply consists of a single propositional symbol
(recall that this was called an atomic wif), then the truth-value is simply that
given by the interpretation. Thus, the wiff P is true in interpretation I; and
false in interpretation Is. To obtain the truth-value of compound wifs like
(P «— (Q A R)) requires a knowledge the semantics of the connectives. These
are usually summarised in a tabular form known as truth tables. The truth
tables for the connectives of interest to us are given below.

Negation. Let o be a wif®. Then the truth table for - is as follows:

« -
false | true
true | false

Congunction. Let o and 8 be wifs. The truth table for (a A ) is as follows:

5We will use Greek characters like «, 3 to stand generically for any wff.
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o 8 (a A P)

false false false

false true false
true false false

true  true true

Disjunction. Let « and 8 be wifs. The truth table for (a V ) is as follows:

o 8 (aVB)

false false false

false true true

true false true

true true true

Conditional. Let o and 8 be wifs. The truth table for (o < 3) is as follows:

o B | (a<p)
false false true
false  true false
true false true
true  true true

We are now in a position to obtain the truth-value of a compound wff. The
procedure is straightforward: given an interpretation, we find the truth-values
of the smallest ‘sub-wffs’ and then use the truth tables for the connectives to
obtain truth-values for increasingly complex sub-wiffs. For (P « (Q A R)) this
means:

1. First, obtain the truth-values of P, @, R using the interpretation;

2. Next, obtain the truth-value of (Q A R) using the truth table for ‘Con-
junction’ and the truth-values of @ and R (Step 1); and

3. Finally, obtain the truth-value (P <« (Q A R)) using the truth table for
‘Conditional’” and the truth-values of P (Step 1) and (Q A R) (Step 2).

For the interpretations I; and I earlier these truth-values are as follows:

P Q R |(QAR)| (P (QAR))
Iy : true false true false true

I, : false true true true false

Thus, (P < (Q A R)) is true in interpretation I; and false in I.
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Models

Every interpretation (that is, an assignment of truth-values to propositional
symbols) that makes a well-formed formula true is said to be a model for that
formula. Take for example, the two interpretations I; and I, above. We have
already seen that Iy is a model for (P < (Q A R)); and that I, is not a model
for the same formula. In fact, I is also a model for several other wifs like: P,
(PAR), (QVR), (P — Q), etc. Similarly, I5 is a model for Q, (QAR), (PVQ),
(Q « P), etc.

As another example, let {P,Q, R} be the set of all atoms in the language,
and «a be the formula ((P A Q) < (R — Q)). Let I be the interpretation that
makes P and R true, and Q false (so I = {P, R}). We determine whether « is
true or false under I as follows:

1. P is true under I, and @ is false under I, so (P A Q) is false under I.
2. R is true under I, @ is false under I, so (R — Q) is false under 1.
3. (PAQ) and (R — Q) are both false under I, so « is true under I.

Since « is true under I, I is a model of o. Let I’ = {P}. Then (P A Q) is
false, and (R — @) is true under I’. Thus « is false under I, and I’ is not a
model of a.

The definition of model can be extended to a set of formulae; an interpretation
1 is said to be a model of a set of formulae X if I is a model of all formule o € 3.
> is then said to have I as a model. We will offer an example to illustrate
this extended definition. Let ¥ = {P,(Q V I),(Q — R)}, and let I = {P, R},
I' ={P,Q, R}, and I” = {P,Q} be interpretations. I and I’ satisfy all formulas
in ¥, so I and I’ are models of ¥.. On the other hand, I” falsifies (Q — R), so
I” is not a model of X.

At this point, we can distinguish amongst two kinds of formulae:

1. A wif may be such that every interpretation is a model. An example is
(PV—P). Since there is only one propostional symbol involved (P), there
are at most 2! = 2 interpretations possible. The truth table summarising
the truth-values for this formula is:

P P | (Pv-P)

I : false true true

I, : true false true

(P V —P) is thus true in every possible ‘context’. Formula like these, for
which every interpretation is a model are called wvalid or tautologies

2. A wif may be such that none of the interpretations is a model. An example
is (P A —P). Again there is only one propostional symbol involved (P),
and thus only two interpretations possible. The truth table summarising
the truth-values for this formula is:
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P —-P | (PA-P)

I . false true false

I : true false false

(P A —P) is thus false in every possible ‘context’. Formulee like these,
for which none of the interpretations is a model are called unsatisfiable or
1nconsistent

Finally, any wff that has at least one interpretation as a model is said to be
satisfiable.
Logical Consequence

We are often interested in establishing the truth-value of a formula given that
of some others. Recall the Chrysippus argument:

Statement Formally
The rabbit either went down Path A or Path B. PvQ@
It did not go down Path A. -P
Therefore it went down Path B. S Q

Here, we want to establish that if the first two statements are true, then the third
follows. The formal notion underlying all this is that of logical consequence. In
particular, what we are trying to establish is that some well-formed formula «
is the logical consequence of a conjunction of other well-formed formule ¥ (or,
that X logically implies «). This relationship is usually written thus:

YEa
¥ being the conjunction of several wifs, it is itself a well-formed formulaS. Log-
ical consequence can therefore also be written as the following relationship be-
tween a pair of wifs:

(BLAB2)...0n) Fa

It is sometimes convenient to write ¥ as the set {81, 52,..., s} which is un-
derstood to stand for the conjunctive formula above. But how do we determine
if this relationship between Y and a does indeed hold? What we want is the
following: whenever the statements in ¥ are true, a must also be true. In formal
terms, this means: ¥ = «a if every model of ¥ is also model of o. Decoded:

6There is therefore nothing special needed to extend the concepts of validity and unsatisfi-
ability to conjunctions of formulee like ¥. Thus, ¥ is valid if and only if every interpretation is
a model of the conjunctive wff (in other words, a model for each wff in the conjunction); and
it is unsatisfiable if and only if none of the interpretations is a model of the conjunctive wif.
It should be apparent after some reflection that if ¥ is valid, then all logical consequences of
it are also valid. On the other hand, if ¥ is unsatisfiable, then any well-formed formula is a
logical consequence.
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e Recall that a model for a formula is an interpretation (assignment of truth-
values to propositions) that makes that formula true;

e Therefore, a model for ¥ is an interpretation that makes ((81 A B2) ... Gn)
true. Clearly, such an interpretation will make each of g1, 32, ..., B, true;

o Let I1,15,...,I; be all the interpretations that satisfy the requirement
above: that is, each is a model for ¥ and there are no other models for
Y (recall that if there are N propositional symbols in ¥ and « together,
then there can be no more than 2 such interpretations);

e Then to establish ¥ |= a, we have to check that each of Iy, I, ..., I) is
also a model for « (that is, each of them make « true).

The definition of logical entailment can be extended to the entailment of sets
of formule. Let ¥ and I' be sets of formulas. Then IT" is said to be a logical
consequence of ¥ (written as ¥ =T, if ¥ | «, for every formula o € T. We
also say ¥ (logically) implies T

We are now in a position to see if Chrysippus was correct. We wish to see
if (PV Q)A—P)kE Q. From the truth tables on page 17, we can construct a
truth table for ((PV Q) A =P):

P Q | (PVQ)| P | (PVQ)A-P)
I; . false false false true false
I, : false true true true true
I3: true false true false false
Iy: true true true false false

It is evident that of the four interpretations possible only one is a model for
((PV Q) A—P), namely: I. Clearly I is also a model for ). Therefore, every
model for ((PV Q) A—P) is also a model for Q7. It is therefore indeed true that
((PVQ)A-P) E Q. In fact, you will find you can ‘move’ formule from left to
right in a particular manner. Thus if:

(PVQ)A-P)EQ
then the following also hold:

(PVQ)E(Q«<~-P) and -PE(Q—(PVQ)

These are consequences of a a more general result known as the deduc-
tion theorem, which we look at now. Using a set-based notation, let ¥ =
{B1,82,.--,Bi,---,0n} Then, the deduction theorem states:

7Although I4 is also a model for Q, the test for logical consequence only requires us to
examine those interpretations that are models of ((P V Q) A —=P). This precludes I4.
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Theorem 6

YEo if and only if ¥ — {8} = (o« 5)

Proof: Consider first the case that ¥ = «. That is, every model of ¥ is a model
of a. Now assume ¥ — {8;} = (o < (;). That is, there is some model, say M,
of ¥ — {3;} that is not a model of (o < ;). That is, §; is true and « is false
in M. That is M is a model for ¥ — {3;} and for §;, but not a model for a. In
other words, M is a model for ¥ but not a model for a which is not possible.
Therefore, if ¥ = « then ¥ — {f3;} & (o < ;). Now for the “only if” part.
That is, let ¥ — {3;} = (o < ;). We want to show that ¥ = «. Once again,
let us assume the contrary (that is, ¥ = . This means there must be a model
M for ¥ that is not a model for a. However, since ¥ = {01, 02,...,08:, .-, 6n},
M is both a model for ¥ — {#;} and a model for each of the 3;. So, M cannot
be a model for (a « ;). We are therefore in a position that there is a model
M for ¥ — {3;} that is not a model of (« < f3;), which contradicts what was
given. O

The deduction theorem isn’t restricted to propositional logic, and holds for first-
order logic as well. It can be invoked repeatedly. Here is an example of using it
twice:

Y E o« if and only if ¥ —{3;,8;} E (o — (8 AG)))
With Chrysippus, applying the deduction theorem twice results in:

{(PVQ),-P}E=Q ifand only if 0 =(Q «— (PVQ)A-P))

If0 E(Q « ((PVQ)A~—P)) then every model for ) must be a model for
(Q « ((PVQ)A—P)). By convention, every interpretation is a model for ().
It follows that every interpretation must be a model for (Q « ((PV Q) A—P)).
Recall that this is just another way of stating that (Q «— ((PV Q) A —=P)) is
valid (page 19)°.

What is the difference between the concepts of logical consequence denoted
by = and the connective — in a statement such as ¥ = I'? where, ¥ = {(P A
Q),(P— R)}and ' = {P,Q, R}? And how do these two notions of implication
relate to the phrase ‘if....then’, often used in propositions or theorems? We
delineate the differences below:

8That is, we take the empty set to denote a distinguished proposition True that is true
in every interpretation. Correctly then, the formula considered is not ((81 A B2) ... [Bn))) but
(True A ((B1 A B2) -..- 6n)))-

9To translate declarative knowledge into action (as in the case of the dog from Chrysippus’s
anecdote), one of two possible strategies can be adopted. The first is called ‘Negative selection’
which involves excluding any provably futile actions. The second is called ‘Positive selection’
which involves suggesting only actions that are provably safe. There can be some actions that
are neither provably safe nor provably futile.
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. The connective — is a syntactical symbol called ‘if ... then’ or ‘implication’,

which appears within formulee. The truth value of the formula (o — &)
depends on the particular interpretation I we happen to be considering:
according to the truth table, (o« — &) is true under I if « is false under I
and/or £ is true under I; (o — &) is false otherwise.

. The concept of ‘logical consequence’ or ‘(logical) implication’, denoted by

"=’ describes a semantical relation between formulee. It is defined in terms
of all interpretations: '« |= £ is true if every interpretation that is a model
of a, is also a model of &.

. The phrase ’if. .. then’, which is used when stating, for example, propo-

sitions or theorems is also sometimes called ’implication’. This describes
a relation between assertions which are phrased in (more or less) natural
language. It is used for instance in proofs of theorems, when we state that
some assertion implies another assertion. Sometimes we use the symbols
"7 or . =’ for this. If assertion A implies assertion B, we say that B is a
necessary condition for A (i.e., if A is true, B must necessarily be true),
and A is a. Iufficient condition for B (i.e., the truth of B is sufficient to
make A true). In ("tum A implies B, and B implies A, we write " A iff B”,
where ’iff” abbreviates 'if, and only if’.

Closely related to logical consequence is the notion of logical equivalence. A

pair of wifs @ and 3 are logically equivalent means:

aEpS and fE«

This means the truth values for o and § are the same in all cases, and is usually
written more concisely as:

a=p

Examples of logically equivalent formulae are provided by De Morgan’s laws:

—(aVp)=—-an-4

—(aAB)=-aVv-p

Also, if T'rue denotes the formula that is true in every interpretation and False
the formula that is false in every interpretation, then the following equivalences
should be self-evident:

a = (aATrue)

a = (aV False)
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More on the Conditional

We are mostly concerned with rules that utilise the logical connective <. This
makes this particular connective more interesting than the others, and it is worth
noting some further details about it. Although we will present these here using
examples from the propositional logic, the main points are just as applicable to
formule in the predicate logic.

Recall the truth table for the conditional from page 18:

a Ié; (a — B)
false false true
false true false
true false true
true  true true

There is, therefore, only one interpretation that makes (o «<— ) false. This may
come as a surprise. Consider for example the statement:

The earth is flat < Humans are monkeys

An interpretation that assigns false to both ‘The earth is flat’ and ‘Humans are
monkeys’ makes this statement ¢rue (line 1 of the truth table). In fact, the only
world in which the statement is false is one in which the earth is not flat, and
humans are monkeys'?. Consider now the truth table for (a V —3):

o B | -8 | (aVv-p)
false false | true true
false true | false false
true false | true true
true  true | false true

It is evident from these truth tables that every model for (o « () is a model
for (a vV =) and vice-versa. Thus:

(@ =p)=(aVv-h)
Thus, the conditional:
(Fred is human < (Fred walks upright A Fred has a large brain))

is equivalent to:

10The unusual nature of the conditional is due to the fact that it allows premises and
conclusions to be completely unrelated. This is not what we would expect from conditional
statements in normal day-to-day discourse. For this reason, the «— connective is sometimes
referred to as the material conditional to distinguish it from a more intuitive notion.
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(Fred is human V — (Fred walks upright A Fred has a large brain))
Or, using De Morgan’s Law (page 23) and dropping some brackets for clarity:
Fred is human V — Fred walks upright V — Fred has a large brain

In this form, each of the premises on the right-hand side of the the original
conditional (Fred walks upright, Fred has a large brain) appear negated in the final
disjunction; and the conclusion (Fred is human) is unchanged. For a reason that
will become apparent later we will use the term clauses to denote formulse that
contain propositions or negated propositions joined together by disjunction (V).
We will also use the term literals to denote propositions or negated propositions.
Clauses are thus disjunctions of literals.

It is common practice to represent a clause as a set of literals, with the
disjunctions understood. Thus, the clause above can be written as:

{ Fred is human, — Fred walks upright, — Fred has a large brain }

The equivalence o <+ [ = « V —f also provides an alternative way of pre-
senting the deduction theorem.
On page 22 the statement of this theorem was:

Y Ea if and only if ¥ — {8} E (o < 3)

This can now be restated as:

YEa if and only if ¥ —{5;} E (aV —4;)

The theorem thus operates as follows: when a formula moves from the left of =
to the right, it is negated and disjoined (using V) with whatever exists on the
right. The theorem can also be used in the “other direction”: when a formula
moves from the right of |= to the left, it is negated and conjoined (using A or U
in the set notation) to whatever exists on the left. Thus:

Y E (aVv—p) if and only if XU {-a} E —p

A special case of this arises from the use of the equivalence o = (a Vv False)
(page 23):

Y Ea if and only if ¥ | (aV False) if and only if ¥ U {-a} = False

The formula False is commonly written as O and the result above as:

YEa if and only if YU {-a} O

The conditional (v < () is sometimes mistaken to mean the same as (A f).
Comparison against the truth table for (o A §) shows that these two formulee
are not equivalent:
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o B | (anp)

false false false

false true false
true false false

true  true true

There are a number of ways in which (o « () can be translated in English.
Some of the more popular ones are:

If 8, then « a, if g8 0 implies «
0 only if « 0 is sufficient for « « is necessary for

All B’s are o’s

Note the following related statements:

Conditional (a < 0)

Contrapositive (=B — )
It should be easy to verify the following equivalence:
Conditional = Contrapositive (a0 — B) = (-« —a)

Errors of reasoning arise by assuming other equivalences. Consider for example
the pair of statements:

S1 : Fred is an ape < Fred is human
S5 : Fred is human < Fred is an ape

So is the sometimes called the converse of S;. An interpretation that assigns
true to ‘Fred is an ape’ and false to ‘Fred is human’ is a model for S; but not
a model for S;. The two statements are thus not equivalent.

More on Normal Forms

We are now able to state two properties concerning normal forms:

1. If F is a formula in CNF and G is a formula in DNF, then —F is a
formula in DNF and -G is a formula in CNF. This is a generalisation of
De Morgan’s laws and can be proved using the technique of mathematical
induction (that is, show truth for a formula with a single literal; assume
truth for a formula with n literals; and then show that it holds for a
formula with n 4 1 literals.)



1.3. PROPOSITIONAL LOGIC 27

2. Every formula F' can be written as a formula F) in CNF and a formula F5
in DNF. It is straightforward to see that any formula F' can be written as
a DNF formula by examining the rows of the truth table for F' for which
F' is true. Suppose F' consists of the propositions A1, As, ..., A,. Then
each such row is equivalent to some conjunction of literals Ly, Lo, ..., L,,
where L; is equal to A; if A; is true in that row and equal to —A; otherwise.
Clearly, the disjunction of each row for which F' is true gives the DNF
formula for F'. We can get the corresponding CNF formula G by negating
the DNF formula (using the property above), or by examining the rows
for which F' is false in the truth table.

It should now be clear that a CNF expression is nothing more than a conjunction
of a set of clauses (recall a clause is simply a disjunction of literals). It is therefore
possible to convert any propositional formula F' into CNF—either using the
truth table as described, or using the following procedure:

1. Replace all conditionals statements of the form A < B by the equivalent
form using disjunction (that is, AV —B). Similarly replace all A — B
with (AV =B) A (A V B).

2. Eliminate double negations (——A replaced by A) and use De Morgan’s
laws wherever possible (that is, =(A A B) replaced by (=A V —B) and
—(AV B) replaced by (A A —B)).

3. Distribute the disjunct V. For example, (A V (B A C)) is replaced by
(AVB)A(AVCO).

An analogous process converts any formula to an equivalent formula in DNF. We
should note that during conversion, formulee can expand exponentially. How-
ever, if only satisfiability should be preserved, conversion to CNF formula can
be done polynomially.

1.3.3 Inference

Enumerating and comparing models is one way of determining whether one
formula is a logical consequence of another. While the procedure is straightfor-
ward, it can be tedious, often requiring the construction of entire truth tables.
A different approach makes no explicit reference to truth values at all. Instead,
if « is a logical consequence of ¥, then we try to show that we can infer or
derive o from ¥ using a set of well-understood rules. Step-by-step applica-
tion of these rules results in a proof that deduces that « follows from Y. The
rules, called rules of inference, thus form a system of performing calculations
with propositions, called the propositional calculus''. Logical implication can
be mechanized by using a propositional calculus. We will first concentrate on a
particular inference rule called resolution.

1n general, a set of inference rules (potentially including so called logical axioms) is called
a calculus.
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1.3.4 Resolution

Before proceding further, some basic terminology from proof theory may be
helpful (this is not specially confined to the propositional calculus). Proof theory
considers the derivability of formulae, given a set of inference rules R. Formulae
given initially are called axioms and those derived are theorems. That formula
« is a theorem of a set of axioms ¥ using inference rules R is denoted by:

El—ROé

When R is obvious, this is simply written as ¥ - «. The axioms can be valid
(that is, all interpretations are models), or problem-specific (that is, only some
interpretations may be models). The axioms together with the inference rules
constitute what is called an inference system. The axioms together with all the
theorems that are derivable from it is called a theory. A theory is said to be
inconsistent if there is a formula « such that the theory contains both o and
-a.

We would like the theorems derived to be logical consequences of the axioms
provided. For, if this were the case then by definition, the theorems will be true
in all models of the axioms (recall that this is what logical consequence means).
They will certainly be true, therefore, in any particular ‘intended’ interpretation
of the axioms. Ensuring this property of the theorems depends entirely on the
inference rules chosen: those that have this property are called sound. That is:

if ¥ Fr a then ¥ F «

Some well-known sound inference rules are:

Modus ponens: {f,a « 8} F «
Modus tollens:  {—a,a « B} + =

Theorems derived by the use of sound inference rules can be added to the original
set of axioms. That is, given a set of axioms ¥ and a theorem « derived using
a sound inference rule, ¥ = X U {a}.

We would also like to derive all logical consequences of a set of axioms and
rules with this property at said to be complete:

if ¥ = « then ¥ Fg «

Axioms and inference rules are not enough: we also need a strategy to select and
apply the rules. An inference system (that is, axioms and inference rules) along
with a strategy is called a proof procedure. We are especially interested here in a
special inference rule called resolution and a strategy called SLD (the meaning
of this is not important at this point: we will come to it later). The result is a
proof procedure called SLD-resolution. Here we will simply illustrate the rule
of resolution for manipulating propositional formulae, and use an unconstrained
proof strategy. A description of SLD will be left for a later section.

Suppose we are given as axioms the conditional formulee (using the informal
notation that replaces A with commas):
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(1 : Fred is an ape < Fred is human

B2 : Fred is human « Fred walks upright, Fred has a large brain
Then the following is a theorem resulting from the use of resolution:
« : Fred is an ape <« Fred walks upright, Fred has a large brain

That « is indeed a logical consequence of 1 A B2 can be checked by constructing
truth tables for the formulee: you will find that every interpretation that makes
81 A B2 true will also make « true. More generally, here is the rule of resolution
when applied to a pair of conditional statements:

{(PHQla"'aQia"'Qn% (Q’LHR17RTH)} F
P(_le'"7Qi—1aR17~"Rm7Qi+17"'aQn

The equivalence from page 24 (a < § = aV—() allows resolution to be presented
in a different manner (we have taken the liberty of dropping some brackets here):

{(PV=QiV...mQiV...V=Q), (QiV—-RiV...V-R,)} F
PV=QiV...V=Qi 1 V-RV...V=RpV=Qis1V...V-Qy,

On page 25, we introduced the terms clauses and literals. Thus, resolution
applies to a pair of ‘parent’ clauses that contain complementary literals —L and
L. The result (the ‘resolvent’) is a clause containing all literals from each clause,
except the complementary pair. Or, more abstractly, let C; and Cs be a pair of
clauses, and let L € Cy and =L € Cy. Then, the resolvent of C7 and Cs is the
clause:

R=(C1—{L}) U(Cy —{~L})

Resolution of a pair of unit clauses—those that contain just single literals L
and —L—results in the the empty clause'?, or O, which means that the parent
clauses were inconsistent.

We can show that resolution is a sound inference rule.

Theorem 7 Suppose R is the resolvent of clauses Cy and Cy. That is, {C1,Ca} F
R. The resolution is sound, that is, {C1,C2} = R.

Proof:: We want to show that if C; and Cs are true and R is a resolvent of
C1 and Cy then R is true. Let us assume Cq and Cs are true, and that R was
obtained by resolving on some literal L in C7 and C5. Further, let C; =CV L

12Note the difference between an empty clause O and empty set of clauses {}. An interpre-
tation I logically entails C' iff there exists an | € C such that I |=1. I logically entails ¥ if for
all C € 3, I E C. Thus, by definition, for all interpretations I, I = O and I = {O}, whereas

1E{).
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and Cy = DV =L, giving R = C'V D. Now, L is either true or false. Suppose
L is true. Then clearly C; is true, but since —L is false and Cs is true (by
assumption), it must be that D, and hence R must be true. It is easy to see
that we similarly arrive to the same conclusion about R even if L was false. O

So, the theorems obtained by applying resolution to a set of axioms are all
logical consequences of the axioms. In general, we will denote a clause C' derived
from a set of clauses ¥ using resolution by ¥ Fr C. This means that there is
a finite sequences of clauses Ry,..., R, = C such that each C; (where C; is
a clause being resolved upon in the i** resolution step) is either in X or is a
resolvent of a pair of clauses already derived (that is, from {Ry,...,R;—1}) .
Now, although it is the case that if ¥ kg « then ¥ | «, the reverse does not
hold. For example, a moment’s thought should convince you that:

{Fred is an ape, Fred is human } |= Fred is an ape « Fred is human

However, using resolution, there is no way of deriving Fred is an ape <« Fred is
human from Fred is an ape and Fred is human. As an inference rule, resolution is
thus incomplete'3. However, it does have an extremely useful property known
as refutation completeness. This is that if a formula ¥ is inconsistent, then the
empty clause O will be eventually derivable by resolution. We will distinguish
between the two completeness by referring to general completeness as affirmation
completeness.

Thus, since Fred is an ape « Fred is human is a logical consequence of Fred
is an ape and Fred is human, then the formula:

Y : {Fred is an ape, Fred is human, —(Fred is an ape < Fred is human)}

must be inconsistent. This can be verified using resolution. First, the clausal
form of (Fred is an ape < Fred is human) is (Fred is an ape V = Fred is human).
Using De Morgan’s Law on this clausal form, we can see that —(Fred is an ape
«— Fred is human) is equivalent to — Fred is an ape A Fred is human. We can now
rewrite X :

Y : {Fred is an ape, Fred is human, —Fred is an ape}

Resolution of the pair Fred is an ape, —Fred is an ape would immediately result
in the empty clause 0. The general steps in a refutation proof procedure using
resolution are therefore:

e Let S be a set of clauses and a be a propositional formula. Let C =
S U{-a}.

e Repeatedly do the following:

1. Select a pair of clauses C; and Cy from C' that can be resolved on
some proposition P.

13Tt can be however proved that resolution is affirmation complete with respect to atomic
conclusions.
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2. Resolve Cp and Cs to give R.

3. If R = O then stop. Otherwise, if R contains both a proposition @
and its negation =@ then discard R. Otherwise add R to C.

In general, we know that any formula F' can be converted to a conjunction
of clauses. We can distinguish between the following sets. ResU(F ), which
is simply the set of clauses in F. Res"(F), for n > 0, which is the clauses
containing all clauses in Res"_l(F) and all clauses obtained by resolving a pair
of clauses from Res™ *(F). Since there are only a finite number of propositional
symbols in F' and a finite number of clauses in its CNF, we can see that there
will only be a finite number of clauses that can be obtained using resolution.
That is, there is some m such that Res™(F) = Res™ '(F). Let us call this
final set consisting of all the original clauses and all possible resolvents Res™ (F).
Then, the property of refutation-completeness for resolution can be stated more
formally as follows:

Theorem 8 For some formula F, O € Res*(F) if and only if F is unsatisfiable.

Though the resolution rule by itself is not (affirmation) complete for clauses
in general, this property states that it is complete with respect to unsatisfiable
sets of clauses. The complete proof of this will be provided on page 33. To get
you started however, we show that if O € Res"(F) then F is unsatisfiable. We
can assume that O ¢ Res(F), since O is not a disjunction of literals. Therefore
there must be some k for which O ¢ Res"(F) and O € Res""!(F). This can
only mean that both L and —L are in Res®(F). That is L and =L are obtained
from F' by resolution. By the property of soundness of resolution, this means
that F' |= (L A —L). That is, F' is unsatisfiable.

There are also other proof processes that are refutation-complete. Examples
of such processes are the Davis-Putnam Procedure'4, Tableaux Procedure, etc.
In the worst case, the resolution search procedure can take exponential time.
This, however, very probably holds for all other proof procedures. For CNF
formulae in propositional logic, a type of resolution process called the Davis-
Putnam Procedure (backtracking over all truth values) is probably (in practice)
the fastest refutation-complete process.

The Subsumption Theorem

A property related to logical implication is that of subsumption. A propositional
clause C' subsumes a propositional clause D if C C D. What does this mean?
It just means that every literal in C' appears in D. Here are a pair of clauses C'
and D such that C subsumes D:

C : Fred is an ape

D : Fred is an ape < Fred is human

141t can be proved that the Davis-Putnam procedure is sound as well as complete.
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In general, it should be easy to see that if C' and D are clauses such that C' C D,
then C' = D. In fact, for propositional logic, it is also the case that if C' = D
then C' subsumes D (we see why this is so shortly).

The notion of subsumption acts as the basis for an important result linking
resolution and logical implication, called the subsumption theorem:

Theorem 9 If ¥ is a set of clauses and D is a clause. Then ¥ = D if and
only if D is a tautology or there is a clause C such that there is a derivation of
C from 3 using resolution (X g C) and C subsumes D.

By “derivation of a clause C” here, we mean the same as on page 30, that is,
there is a sequence of clauses Ry, ..., Ry = C such that each R; is either in ¥ or
is a resolvent of a pair of clauses in {Ry,...,R;—1}. In effect, the Subsumption
Theorem tells us that logical implication can be decomposed into a sequence of
resolution steps, followed by a subsumption step:

Proof of Subsumption Theorem:
We will show that “only if” part of the theorem holds using the method of
induction on the size of X:

1. Let |¥] = 1. That is ¥ = {a1}. Let ¥ = D. Since the only result of
applying resolution to ¥ is a3, we need to show that a; C D. Suppose
a1 € D. Let L be aliteral in o that isnot in D. Let I be an interpretation
that assigns L to true and all literals in D to false. Clearly I is a model for
a1 but not a model for D, which is not possible since X = D. Therefore,
a1 Q D.

2. Let the theorem hold for |X| = n. We will see that it follows that it
holds for |¥] = n+ 1. Let ¥ = {a1,...,an41} and ¥ E D. By the
Deduction Theorem, we know that this means ¥ —{a,+1} E (D «— @nt1),
or ¥ — {any1} E (DV —aui1). Let us set ¥ = X — {a,41}, and let
Lq,..., L be the literals in a,,+1 that do not appear in D. That is a1 =
LyVv---VLyVvD' where D' C D. ¥ = (DV —ap41), you should be able
to see that ¥/ = (D V —L;) for 1 < ¢ < k. Since |¥'| = n and we
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believe, by the induction hypothesis, that the subsumption theorem holds
for |¥'| = n, there must be some j; for each L;, such that ¥’ Fr 3; and
B; € (DV ~L;). Suppose ~L; ¢ (B;. Then §; C D, which means that
B; subsumes D. Since ¥’ | §; and ¥ E X', the result follows. Now
suppose =L; € B;. That is, §; = —L; V (., where 5/ C D. Clearly,
we can resolve this with a1 = L1V -+ V Ly V-V L V D' to give
LiVv---VLi_1VBV---V L VD' Progressively resolving against each of
the f;, we will be left with the clause C' = i V35V --V 3, VD'. Since C is
the result of resolutions using a clause from ¥ (that is a,11) and clauses
derivable from ¥’ C 3, it is evident that ¥ kg C. Also, since 5, C D and
D' C D, C C D and the result follows.

You should be able to see that the proof in the other direction (the “if” part)
follows easily enough from the soundness of resolution. O

An immediate consequence of the Subsumption Theorem is that refutation-
completeness of resolution follows.
Proof of Theorem 8

Recall what refutation completeness of resolution means: if ¥ is a set of
clauses that is unsatisfiable, then the empty clause O is derivable using reso-
lution. If ¥ is unsatisfiable, then ¥ = O. From the Subsumption Theorem,
we know that if ¥ = O, there must be a clause C such that ¥ Fr C and C
subsumes 0. But the only clause subsuming O is O itself. Hence C' = O, which
means that if ¥ = O then ¥ g O.

Proofs Using Resolution

So far, we have no strategy for directing the clauses obtained using resolution.
Clauses are derived using any pair of clauses with complementary literals, and
the process simply continues until we find the clause we want (for example,
O if we are interested in a proof of unsatisfiability). This procedure is clearly
quite inefficient, since there is almost nothing constraining a proof, other than
the presence of complementary literals. A “proof” for a clause C' then ends up
looking something like this:

c

Being creatures of limited patience and resources, we would like more directed
approach. We can formalise this by changing our notion of a derivation. Recall
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what we have been using so far: the derivation of a clause C from a set of
clauses ¥ means there is a sequence of clauses Ry, ..., Ry = C such that each
C; is either in ¥ or is a resolvent of a pair of clauses in {Ry,...,R;—1}. This
results in the unconstrained form of a proof for C. We will say that there is
a linear derivation for C from ¥ if there is a sequence Ry,...,R; = C such
that Ry € ¥ and each R; (1 < i < k) is a resolvent of R;_; and a clause
C; € XU{Ro,...,R;_2}. With a little thought, you should be able to convince
yourself that this will result in a derivation with a “linear” look:

%
%

c

Here, you can see that each new resolvent forms one of the clauses for the next
resolution step. The other clause—sometimes called the “side clause”—can be
any one of the clauses in X or a previous resolvent. For reasons evident from the
diagram above, the proof strategy is called linear resolution, and we will extend
our notation to indicate both the inference rule and the proof strategy. Thus
3 Fpr C will mean that C' is derived from X using linear resolution. We can
restrict things even further, by requiring side clauses to be only from Y. The
resulting proof strategy, called input resolution is important as it is a generalised
form of SLD resolution, first mentioned on page 28.

While the restrictions imposed by the proof strategies ensure that proofs
are more directed (and hence efficient), it is important at this point to ask: at
what cost? Of course, since we are still using resolution as an inference rule,
the individual (and overall) inference steps remain sound. But what about com-
pleteness? By this we mean refutation-completeness, since this is the only kind
of completeness we were able to show with unconstrained resolution. In fact, it
is the case that linear resolution retains the property of refutation-completeness,
but input resolution for arbitrary clauses does not. That input resolution is not
refutation complete can be proved using a simpe counter-example:

Cy : Fred is an ape « Fred is human
Cy : Fred is an ape « — Fred is human
Cy : = Fred is an ape « Fred is human
C3 : — Fred is an ape < — Fred is human
Now, a little effort should convince you that this set of clauses is unsatisfiable.

But input resolution will simply yield a sequence of resolvents: Fred is human,
Fred is an ape, Fred is human, ....
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Figure 1.4: Part of case 1 of the proof for theorem 10.

Theorem 10 If¥ is an unsatisfiable set of clauses, and C' € X such that X\{C'}
1s satisfiable, then there is a linear refutation of ¥ with C as top clause.

Proof:
We can assume ¥ is finite. Let n be the number of distinct atoms occurring
in literals in literals in 3. We prove the lemma by induction on n

1. If n =0, then ¥ = {O}. Since ¥\ {C} is satisfiable, C' = O.

2. Suppose the lemma holds for n < m, and suppose m + 1 distinct atoms
appear in X. We distinguish two cases.

e (Case 1. Suppose C = L, where L is a literal. We first delete all
clauses from ¥ which contain the literal L (so we also delete C' itself
from ¥). Then we replace clauses which contain the literal =L by
clauses constructed by deleting these =L (so for example, L;V—LV Lo
will be replaced by L; V Ly). Call the finite set obtained in this way
r.

Note that neither the literal L, nor its negation, appears in clauses
in I'. If M were a Herbrand model of T, then M U {L} (i.e., the
Herbrand interpretation which makes L true, and is the same as M
for other literals) would be a Herbrand model of ¥. Thus since ¥ is
unsatisfiable, I' must be unsatisfiable.

Now let ¥’ be an unsatisfiable subset of I", such that every proper
subset of ¥’ is satisfiable. ¥’ must contain a clause D’ obtained from
a member of ¥ which contained —L, for otherwise the unsatisfiable
set 3’ would be a subset of X\ {C'}, contradicting the assumption that
Y\ {C} is satisfiable. By construction of ¥’, we have that ¥’ \ {D’}
is satisfiable. Furthermore, ¥’ contains at most m distinct atoms, so
by the induction hypothesis there exists a linear refutation of ¥’ with
top clause D’. See the Figure 1.4 for illustration.

Each side clause in this refutation that is not equal to a previous
center clause, is either a member of ¥ or is obtained from a member
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Figure 1.5: The complete picture of case 1 of the proof for theorem 10.

of ¥ by means of the deletion of =L. In the latter kind of side
clauses, put back the deleted —L literals, and add these —L to all
later center clauses. Note that afterwards, these center clauses may
contain multiple copies of —=L. In particular, the last center clause
changes from O to =LV ...V —L. Since D’ is a resolvent of C' and
D ==LV D €3, wecan add C and D as parent clauses on top
of the previous top clause D’. That way, we get a linear derivation
of =L V...V L from X, with top clause C. Finally, the literals in
=LV ...V L can be resolved away using the top clause C = L as
side clause. This yields a linear refutation of ¥ with top clause C'
(see Figure 1.5).

Case 2:

Suppose C' = LV C’, where C’ is a non-empty clause. C’ cannot
contain —L, for otherwise C' would be a tautology, contradicting the
assumption that 3 is unsatisfiable while X\ {C'} is satisfiable. Obtain
Y’ from ¥ by deleting clauses containing =L, and by removing the
literal L from the remaining clauses. Note that C' € ¥'. If M were
a Herbrand model of ¥, then M U {—L} is a Herbrand model of X.
Thus since Y is unsatisfiable, ¥’ is unsatisfiable.

Furthermore, because X\ {C} is satisfiable, there is a Herbrand model
M’ of £\ {C}. Since ¥ is unsatisfiable, M’ is not a model of C. L
is a literal in C, hence L must be false under M’. Every clause in
¥\ {C'} is obtained from a clause in ¥\ C by deleting L from it.
Since M’ is a model of every clause in ¥\ {C'} and L is false under
M, every clause in X’ \ {C'} is true under M’. Therefore M’ is a
model of X'\ {C'}, which shows that X'\ {C'} is satisfiable.

Then by the induction hypothesis, there exists a linear refutation of
Y’ with top clause C’. Now similar to case 1, put back the previously
deleted L literals to the top and side clauses, and to the appropriate
center clauses. This gives a linear derivation of L V...V L from X
with top clause C.



1.3. PROPOSITIONAL LOGIC 37

Note that {L} U (X \ {C}) is unsatisfiable, because L is false in any
Herbrand model of 3 \ {C}, as shown above. On the other hand,
Y\ {C} is satisfiable. Thus by case 1 of this proof, there exists a
linear refutation of {L} U (X \ {C}) with top clause L. Since L is a
factor of LV ...V L, we can put out linear derivation of LV ...V L
“on top” of this linear refutation of {L} U (X \ {C}) with top clause
L, thus obtaining a linear refutation of ¥ with top clause C.

O

The incompleteness of input also means that the Subsumption Theorem will
not hold for input resolution in general. What, then, can we say about SLD
resolution? The short answer is that it too is incomplete. But, for a restricted
form of clauses, input and SLD resolution are complete. The restriction is
to Horn clauses: recall that these are clauses that have at most 1 positive
literal. Indeed, it is this restriction that forms the basis of theorem-proving in
the PROLOG language, which is restricted (at least in its pure form) to Horn
clauses, albeit in first-order logic (but the result still holds in that case as well).

Proofs Using SLD Resolution

Before we get to SLD, we first make our description of input resolution a little
more precise: the derivation of a clause C' from a set of clauses 3 using input
resolution means there is a sequence of clauses Ry, ..., Ry = C such that Ry € &
and each R; (1 <1 < k) is a resolvent of R;_; and a clause C; € ¥. Now, we
add further restrictions. Let X be a set of Horn clauses. Further, let R; be
a resolvent of a selected negative literal in R;_; and the positive literal of a
definite clause C; € ¥. The selection rule is called the “computation rule” and
the resulting proof strategy is called SLD resolution (“Selected Linear Definite”
resolution). We illustrate this with an example. Let ¥ be the set of clauses:

Cy : — Fred is an ape

C : Fred is an ape <« Fred is human, Fred has hair
C5 : Fred is human

Cj5 : Fred has hair

A little thought should convince you that ¥ = 0. We want to see if ¥ Fgpp O.
It is evident that Cy and C resolve. The resolvent is R:

Co : = Fred is an ape

C : Fred is an ape « Fred is human, Fred has hair
Ry : < Fred is human, Fred has hair

C5 : Fred is human

C'5 : Fred has hair
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Co C,

Ry: € Fredis human, Fred has hair  C3

R,: € Fredis human C,

Figure 1.6: Example of SLD-deduction of O from X.

Since we are using SLD, one of the resolvents for the next step has to be R;.
The other resolvent has to be one of the C;’s. Suppose our selection rule selects
the “rightmost” literal first for resolution (that is, = Fred has hair in R;) This
resolves with Cj3, giving Ry : — Fred is human, which in turn resolves with Cs to
give O. The SLD (input) resolution diagram for this is presented in Figure 1.6.

It is more common, especially in the logic-programming literature, to present
instead the search process confronting a SLD-resolution theorem prover in the
form of a tree-diagram, called an SLD-tree. Such a tree effectively contains all
possible derivations that can be obtained using a particular literal selection rule.
Each node in the tree is a “goal” of the form <« L1, Lo,..., L. That is, it is
a clause of the form (—L; V =Ly V ---V =Lg). Given a set of clauses 3, the
children of a node in the SLD-tree are the result of resolving with clauses in X
(nodes representing the empty clause O have no children). The SLD-tree for
the example we just looked at is shown in Figure 1.7

We can now see what refutation-completeness for Horn clauses for SLD-
resolution means in terms of SLD-trees. In effect, this means that if a set of
clauses is unsatisfiable then there will be a leaf in the SLD-tree with the empty
clause O. Further, the computation rule will not alter this (informally, you
can see that different computation rules will simply move the location of the O
around). We will have more to say on SLD-resolution with first-order logic in a
later section. There, we will see that in addition to the computation rule, we will
also need a “search” rule that determines how the SLD-tree is searched. Search
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C,: €Fredis an ape

N

R, €Fredis human, Fred has hair

R

Ry: € Fredis human

G,

Figure 1.7: Example SLD-tree with Cj at root.

trees there can have infinite branches, and although completeness is unaffected
by the choice of the computation rule (that is, there will be a O in the tree if the
set of first-order clauses is unsatisfiable), we may not be able to reach it with a
fixed search rule.

Theorem 11 If Y is an unsatisfiable set of horn clauses, then there is an SLD
refutation of 2.

Proof:
We can assume ¥ is finite. Let n be the number of facts (clauses consisting
of a single positive literal) in . We prove the lemma by induction on n

1. If n = 0, then O € ¥ for otherwise the empty set would be a Herbrand
model of I.

2. Suppose the lemma holds for 0 < n < m, and suppose m + 1 distinct facts
appear in X. If O € ¥ the lemma is obvious, so suppose O ¢ X.

Let, A be a fact in 3. We first delete all clauses from ¥; which have A
as head (so we also delete the fact A from X). Then we replace clauses
which have A in their body by clauses constructed by deleting these atoms
A from the body (so for example, B «— A, By, ..., B will be replaced by
B «— By,...,By). Call the set obtained in this way ¥'. If M is a model of
Y’ then M U{A} is a Herbrand model of ¥. Thus since ¥ is unsatisfiable,
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Figure 1.8: Tllustration of the proof for theorem 11. The SLD refutation of ¥’
is on the left and that for X is on the right.

Y’ must be unsatisfiable. Y’ only contains m facts, so by the induction
hypothesis, there is an SLD-refutation of ¥’. If this refutation only uses
clauses from Y’ which were also in X then this is also an SLD-refutation of
Y., so then we are done. Otherwise, if C is the top clause or an input clause
in this refutation and C ¢ ¥, then C was obtained from some C’ € ¥ by
deleting all atoms A from the body of . For all such C, do the following;:
restore the previously deleted copies of A to the body of C' (which turns C
into C’ again), and add these atoms A to all later resolvents. This way, we
can turn the SLD-refutation of ¥’ into an SLD-derivation of «— A,..., A
from . See Figure 1.8 for illustration, where we add previously deleted
atoms A to the bodies of Ry and Cs. Since also A € X, we can construct
an SLD-refutation of ¥, using A a number of times as input clause to
resolve away all members of the goal — A,..., A.

O

1.3.5 Davis-Putnam Procedure

The inference problem addressed so far (particularly through the resolution
procedure) is to determine if a proposition « logically follows from a given
logical theory . As we saw, this is achieved by reducing the problem to a
coNP-complete!® unsatisfiability problem; based on the contradiction theorem,
it amounts to negating the goal formula «, add it to the theory and test the
conjunction for unsatisfiability.

However, often, one is faced with the requirement for a model M for a logical
theory ¥. This can turn out to be easier problem than the usual problem of

15A decision problem C is Co-NP-complete if it is in Co-NP and if every problem in Co-
NP is polynomial-time many-one reducible to it. The problem of determining whether a
given boolean formula is tautology is a coNP-complete problem as well. A problem C is a
member of co-NP if and only if its complement C is in complexity class NP. For example, the
satisfiability problem is an NP-complete problem. Therefore the unsatisfiability problem is a
coNP-complete problem.
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inference, since it is enough to find one model for the theory, as against trying all
possible truth assignments as in the case of solving an unsatisfiability problem.
For example, theory might describe constraints on the different parts of a car.
And you are interested in a model that satisifes all the constraints. In terms of
search, you search the space of assignment and stop when you find an assignment
that satisifies the theory.

While the resolution procedure can be modified so that it gives you a model,
the Davis-Putnam-Logemann-Loveland (DPLL) procedure is a more efficient
procedure for solving SAT problems. Given a set of clauses Y. defined over a set
of variables V, the Davis-Putnam procedure DPLL(Y) returns ‘satisfiable’ if is
satisfiable. Otherwise return ‘unsatisfiable’.

The DPLL(Y) procedure consists of the following steps. The first two steps
specify termination conditions. The last two rules actually work on the clauses
in 2.

1. If ¥ = 0, return ‘satisfiable’. This convention was introduced on pages 22
when we introduced logical entailment, as also in the footnote on page 29.

2. If O € X return ‘unsatisfiable’. This convention was discussed in the
footnote on page 29.

3. Unit-propagation Rule: If ¥ contains any unit-clause C = {c} (c.f.
page 29 for definition), assign a truth-value to the variable in literal ¢ that
satisfies ¢, ‘simplify’ ¥ to ¥’ and (recursively) return DPLL(X’). The
rationale here is that if 3 has any unit clase C' = {c}, the only way to
satisfy C' is to make ¢ true. The simplification of ¥ to ¥’ is achieved by:

(a) removing all clauses from ¥ that contain the literal ¢ (since all such
clauses will now be true)

(b) removing the negation of literal ¢ (i.e., —¢) from every clause in ¥
that contains it

4. Splitting Rule: Select from V), a variable v which has not been assigned
a truth-value. Assign one truth value ¢ to it, simplify ¥ to ¥’ and (recur-
sively) call DPLL(Y') .

(a) If the call returns ‘satisfiable’ (i.e., we made a right choice for truth
value of v), then return ‘satisfiable’.

(b) Otherwise (that is, if we made a wrong choice for truth value of v),
assign the other truth-value to v in X, simplify to ¥’ and return
DPLL(Z").

The DPLL procedure can construct a model (if there exists one) by doing
a book-keeping over all the assignments. This procedure is complete (that is,
it constructs a model if there exists one), correct (the procedure always finds
a trutn assignment that is a model) and guaranteed to terminate (since the
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space of possible assignments is finite and since DPLL explores that space sys-
tematically). In the worst case, DPLL requires exponential time, owing to the
splitting rule. This is not surprissing, given the NP-completeness of the SAT
problem. Heuristics are needed to determine (i) which variable should be in-
stantiated next and (ii) to what value the instantiated varaible should be set.
In all SAT competitions'® so far, Davis Putnam-based procedures have shown
the best performance.

As an illustration, we will use the DPLL procedure to determine a model
for ¥ = {{a,b,~c}, {-a, b}, {c}, {a,—b}}. Since ¥ is neither an empty set
nor contains the empty clause, we move on to step 3 of the procedure. X
contains a single unit clause {c}, which we will set to true and simplify the
theory to ! = {{a,b},{—a, =b},{a,—b}}. Next, we apply the splitting rule.
Let us choose a and set it to ‘false’. This yields ¥ = {{b},{-b}}. It can
be verified that 2 = {O}. We therefore backtrack and set a to ‘true’. This
yields ¥3 = {{=b}}. Thereafter, application of unit propagation yields ¥* = {},
which is satisfiable according to step 1 of the procedure. Thus, using the DPLL
procedure, we obtain a model for ¥ as M = {a, c}.

As another example, consider ¥ = {{a, —b, —¢, =d}, {b, ~d}, {c, ~d},{d}}. As
we will see, application to DPLL to this problem does not involve any backtrack-
ing, making the task relatively easier. ¥ is neither an empty set nor contains
the empty clause. Hence we apply the unit propagation rule 3 on {d} to obtain
»! = {{a, =b, ~c}, {b}, {c}}. We can again apply unit propagation to X! on {b}
to obtain ¥? = {{a, =c}, {c}}. Finally, we can apply unit propagation to X2 on
{c} and then to {a} obtain X* = {}, which is satisfiable. This yields a model
M ={d,b,c,a} of X.

The DPLL procedure is similar to the traditional constraint propagation
procedure. The splitting rule in DPLL is similar to the backtracking step in
constraint propagation, while the unit propagation rule is similar to the un-
avoidable steps of consistency checking and forward propagation in traditional
CP.

Davis Putnam on Horn Clauses

The Davis Putnam procedure is polynomial on horn clauses. Why this is so will
become apparent through the following sequence of arguments:

1. Since the DPLL steps (1 through 4) could atmost throw out a clause or
throw out a literal within a clause, it is obvious that simplifications in
DPLL on Horn clauses always generate Horn clauses.

2. A set of Horn clauses without unit clauses can be always satisfied by an
assignment of ‘false’ to all variables (since all clauses will have atleast one
negative literal).

3. The first sequence of applications of the unit propagation rule in DPLL
should either lead to the empty clause (which is satisfiable) or should lead

6http://wuw.satcompetition.org/
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to a set of Horn clauses that has no unit clause (which is also satisfiable
according to statement (2) above).

4. Thus, for Horn clauses, it suffices to apply steps 1 through 3 of the DPLL
procedure. Since no backtracking is involved and since steps 1 through 3
can apply atmost n times (n being the number of variables in the theory),
for Horn clauses, DPLL is polynomial in the number of variables.

5. Even if step 4 of DPLL were applied in the case of Horn clauses, the
time taken would still be polynomial in the number of variables. This is
because, assigning a value ‘false’ to the variable chosen in step 4 cannot
change the satisfiability, whereas, assigning a value ‘true’ can either lead
to an immediate contradiction (after unit propagation) or will not affect
satisfiability at all.

Phase Transitions

We saw that in the worst case, DPLL requires exponential time. Couldn’t we
do better in the average case? For CNF-formulz in which the probability for a
positive appearance, negative appearance and non-appearance in a clause is 1/3,
DP needs on average quadratic time [Gol79]. In retrospect, it was discovered
that the formule in [Gol79] have a very high probability of being satisfiable.
Thus, these formulee are not representative of those encountered in practice.
The idea of phase transition was conjectured by [CKT91] to identify hard to
solve problem instances:

All NP-complete problems have at least one order parameter and
the hard to solve problems are around a critical value of this order
parameter. This critical value (a phase transition) separates one
region from another, such as over-constrained and under-constrained
regions of the problem space.

This conjecture was initially confirmed for the graph coloring and Hamilton path
problems and later for other NP-complete problems, including SAT. In the case
of SAT problem, an example of the order parameter is ratio of the number of
variables to the number of clauses.

1. For higher settings of the parameter, the problem is over-constrained (the
formulee are unsatisfiable). If the probability of a solution is close to 0,
this fact can usually be determined early in the search.

2. For lower settings of the parameter, the problem is under-constrained (the
formulee are easily satisfiable). When the probability of a solution is close
to 1, there are many solutions, and the first search path of a backtracking
search is usually successful.

When this parameter is varied, the problem moves from the over-constrained
to the under-constrained region (or vice versa). At phase the transition points,



44 CHAPTER 1. SETS, RELATIONS AND LOGIC

half of the problems are satisfiable and half are not. It is typically in this
region that algorithms have difficulty in solving the problem!”. Cook and
Mitchell [CM97] empirically found that for a 3-SAT problem, the phase transi-
tion occurs at a clause:variables ratio of around 4.3 (in this experiment, clauses
were generated by choosing variables for a clause and complementing each
variable with probability 0.5). As an illustration, in the 2003 version of the
SAT competition, the largest instances solved using greedy SAT solvers con-
sisted of 100,000 variables and 1,000,000 clauses (clause:variable ratio of 10),
whereas the smallest unsolved instances comprised 200 variables and 1,000
clauses (clause:variable ratio of 5). It was also reported in [CM97] that the
runtime for the DPLL procedure peaks at the phase transition. In the phase
transition region, the DPLL algorithm often near successes. Many benchmark
problems are located in the phase transition region, though they have a special
structure in addition.

1.3.6 Local Search Methods

Local search methods are standard search procedures for optimization prob-
lems. A local search method explores the neighborhood of the current solution
and tries to enhance the solution till it cannot do any better. The hope is to
produce better configurations through local modifications. The value of a con-
figuration in a logical problem could be measured using the number of satisfied
constraints/clauses. However, for logical problems, local maxima are inappro-
priate; it is required to satisfy all clauses in the theory and not just some. But
through random restarts or by noise injection, local maxima can be escaped. In
practice, local search performs quite well for finding satisfying assignments of
CNF formulae, especially for under-constrained or over-constrained SAT prob-
lems.

GSAT and WalkSat [SKC93] are two local search algorithms to solve boolean
satisfiability problems in CNF. They start by assigning a random value to each
variable. If the assignment satisfies all clauses, the algorithm terminates, return-
ing the assignment. Otherwise, an unsatified clause is selected and the value of
exactly one variable changed. Due to the conjunctive normal form, flipping one
variable will result in that clause becoming satisfied. The above is then repeated
until all the clauses are satisfied. WalkSAT and GSAT differ in the methods used
to select the variable to flip. While GSAT makes the change which minimizes
the number of unsatisfied clauses in the new assignment, WalkSAT selects the
variable that, when flipped, results in no previously satified clauses becoming
unsatified (some sort of downward compatibility requirement). MaxWalkSat is
a variant of WalkSat designed to solve the weighted satisfiability problem, in
which each clause is associated with a weight. The goal in MaxWalkSat is to find
an assignment (which may or may not satisfy the entire formula) that maximizes
the total weight of the clauses satisfied by that assignment. These algorithms

17Note that hard instances can also exist in regions of the more easily satisfiable or unsat-
isfiable instances.
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perform very well on the randomly generated formule in the phase transition
region. Monitoring the search procedure of these greedy solvers reveals that in
the begginning, each procedure is very good at reducing the number of unsatis-
fied clauses. However, it takes a long time to satisfy the few remaining clauses
(called plateaus). The GSAT algorithm is outlined in Figure 1.9.

INPUT: A set of clauses ¥, MAX-FLIPS, and MAX-TRIES.
OUTPUT: A satisfying truth assignment of X, if found.
for i =1 to MAX-TRIES do
T = a randomly-generated truth assignment.
for j:=1 to MAX-FLIPS do
if T satisfies X then
return T
end if
v = a propositional variable such that a change in its truth assignment
gives the largest increase in the number of clauses of 3 that are satisfied
by T.
T = T with the truth assignment of v reversed.
end for
end for
return “Unsatisfiable”.

Figure 1.9: Procedure GSAT.

1.3.7 Default inference under closed world assumption

Given any set of formulae X, the closed-world assumption is the assumption
that ¥ determines all the knowledge there is to be had about the formulae in
the language. Thus, if we consider any proposition'® A then A is taken to be
true exactly when X (logically) implies A, but is otherwise taken to be false.

The closed-world assumption underlies the mode of reasoning known as de-
fault inference. There are many situations, both in ordinary daily life and in
specific technical computing matters (such as explaining the theory of finite fail-
ure and the relationship it bears to reasoning with negative information), when
default inference is a necessary supplement to deductive inference. Consider this
simple example of a single clause axiom ¥ = {A «— B} for which B(X) is just
{A, B}. Under the closed-world assumption, we may infer —A for any ground
atom A € B(X) that us not implied by ¥. This is a constrained!® application
of the rule of default inference:

181n the first order logic programming context, the propositions in which we are primarily
interested are the atoms of the Herbrand base.

9Constrained because (i) ¥ is assumed to be inconsistent, else & would necessarily imply
both A and —A (ii) only the case where A is atomic is considered, otherwise if ¥ implied, say,
neither A nor —A, then the default rule would infer both —A and —A, which would again be
inconsistent.



46 CHAPTER 1. SETS, RELATIONS AND LOGIC

Infer = A in default of ¥ implying A

Motivated by the desire to draw sound conclusions about negative infor-
mation, we will consider two constructions that provide consequence-oriented
meaning for default inference under the closed-world assumption.

1. CWA(X) : The combination of ¥ with the default conclusions inferred
from it is denoted by CWA(X) and is defined by

CWA(E)=XU{-A| A€ B(X) and not ¥ |= A}

For the above example, CWA(X) = {A «— B,—-A, -B}.

Soundness for the default inference of negative conclusions under the
closed-world assumption can be referred to the the logical construction
CWA(Y) as follows:

for all A€ B(2), CWA(Y) |= —A if £ Fewa —A

There some practical problems with CWA:

(a) One problem is that, we have no immediate way of writing down
CWA(Y), for we cannot directly discern which particular negative
facts = A to include in it; we would have to infer them all first.

(b) A more serious defect is that, whilst CWA(X) is always consistent
when ¥ is definite??, it is likely to be inconsistent otherwise. For
example, if ¥ comprises just the clause {4 V B}, then CWA(X) =
{AV B,-A,-B} which is inconsistent.

2. CWA(Y) : For default inference applied to indefinite programs, we refer
the soundness criterion to completion COMP(X). It is also known as the
completed database of ¥.. Unlike CWA(X), it can be written down more-
or-less directly and is consistent for all well-structured programs. In the
case of propositional logic, the construction is particularly simple:

(a) Initialize COMP(X) = 0.
(b) Assume that ¥ is any set of clauses of the form (A «— body).

(c¢) For each A mentioned in ¥ but not defined in 3, construct -4 and
add it to COMP ().

(d) For each A having a definition in X of the form
A «— body —1

A «— body —n

20Exercise: Prove.
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construct the clause A iff (body — 1V ...V body —n) and add it to
COMP(Y),

Comp(X) can also be viewed as the result of simplifying ¥ U only-if(%),
where only-if (X) comprises every completed definition of the form —A for
A ¢ Y as well as (¢ — «) for every completed definition (¢ iff a) €
COMP(Y).

Following are some characteristics of completions

(a) In general it is also a more economical construction in the sense
that it implies, but does not necessarily declare, various negative
propositions which CWA(X) would have to declare explicitly. As an
example, if ¥ = {A «— B}, COMP(X) = {-B, A iff B}. While &
neither implies A nor implies B, Comp(P) implies both =A and —B,
which is exactly the same outcome obtained using CWA(X) instead.
Observe, however, that CWA(X) declares —A explicitly whereas
Comp(X) does not.

(b) Generally, completion is more conservative than the closed-world as-
sumption in the negative facts that it implies. For example, with
¥ ={A « A}, CWA(X,) | —A, whereas COMP(X;) |~ —A. Simi-
larly, with 35 = {A « =B}, CWA(X3) = =A A =B (is inconsistent),
whereas COMP(X3) = —A though COMP(%2) = —B.

(¢) On the other hand, COMP can be sometimes less conservative; for
Y3 = {A « -A}, COMP(X;3) = everything, whereas CWA(X3) =
A and CWA(Z3) = -A.

(d) Completed definitions capture the programmer’s intentions more fully
than do uncompleted definitions in the original program. For compu-
tational purposes however, the program alone happens to be sufficient
for deducing all intended answers.

(e) In cases where X is indefinite, the elementary consequences of COMP(X)
may arise from the joint contributions of ¥ and only-if(X) and not
from either of them alone.

(f) There is a syntactic bias built into the process of program com-
pletion. For example, if ¥; = {4 « =B} and ¥3 = B «— -4
their respective completions are COMP (%) = {4 iff -B,-B} and
COMP(X2) = {B iff =A,—=A}. These completions are not logically
equivalent despite the fact that the original programs are. The dif-
ference between their completions deliberately reflects the difference
between the procedural intentions suggested by the programs’ syn-
taxes: the first program anticipates queries of the form 7 A whilst the
second anticipates queries of the form ?7B.

Finite Failure Extension

We look at one further extension of SLD-resolution that is of special interest to
us, namely, the idea of negation as “failure to prove”. We know that SLD
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alone is able to deal soundly and completely with all positive atomic
queries A posed to this database. But with the finite failure facility
we can now also ask directly, in our extended language, whether some
atom is not in the database.

This extension enables one to express, via a call ‘fail A’, the condition that
a call A shall finitely fail. In Prolog the fail operator is denoted by ‘not’ and is
referred to as 'negation by failure’. The operational meaning of ‘fail’ is summed
up by the finite failure rule:

A call ‘fail A’ succeeds iff its subcall A finitely fails.

This rule can be incorporated directly into the execution strategy for vir-
tually no cost in terms of implementation overheads - to evaluate a call ‘fail
A’, the interpreter merely evaluates A in the standard way and then responds
to the outcome as just prescribed. The phrase ’A finitely fails’ means that the
execution tree generated by the evaluation of A must be a finitely failed tree -
that is, it must have finite depth, finite breadth and all the computations con-
tained within it must terminate with failure. By contrast, should one or more of
those computations terminate with success then the call ‘fail A’ is itself deemed
to have finitely failed. Finally, if the evaluation of of A neither succeeds nor
finitely fails, then the same holds for the evaluation of ‘fail A’

The rule of “negation as finite failure” states that if all branches of an SLD-
tree finitely fail for ¥ U {« A} for a set of definite clauses ¥ and a ground
literal A, we can derive the ground literal —A as a result. This combination of
SLD-resolution and negation-as-failure results in the proof strategy we called
SLDNF-resolution. Once again, let us look at an example:

Co : = Fred is an ape
C1 : Fred is an ape < not Fred is human, Fred is a primate

Cs : Fred is a primate

Here, not stands for “not provable” (which is not the same as —). Cp and C}
resolve to give Ry : « not Fred is human, Fred is a primate. With a rightmost
literal computation rule as before, the next resolvent is Rs : < not Fred is
human. It is evident that Fred is human is not provable and O results.

SLDNF is sound and complete for propositional definite clauses. However,
there are some important issues in extending SLD with finite failure to first order
logic such as (i) incompleteness when applied to activated non-ground fail calls
and (ii) unsoundness in certain cases. To solve the latter, more serious problem,
a selection policy called safe computation rule is used in practice; this policy
sacrifices completeness for the sake of soundness. These and other concepts such
as floundering will be discussed in a later section.

The SLD finite failure set

Relative to a given ¥ and a given inference system R, the SLD finite failure
FF(X,R) set comprises exactly propositional atoms for which the query ?q
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finitely fails. We shall restrict our attention throughout to the case where X is
definite and R is SLD. Once we know what the finite failure set is relative to
SLD inference, we shall also be able to say something about the execution by
SLDNF of queries containing ‘fail calls’ - subject, of course, to the assumption
that the chosen computation rule is safe. The more general situation where ‘fail’
calls may occur also in clause bodies, is significantly more complicated, and will
not be addressed here. For queries of the form ?q using a definite ¥ under some
SLD computation rule R partitions B(X) into three species of atoms

1. SS(3, R), or those for which 7¢ succeeds. Since, if 7¢ succeeded in one
SLD tree, it succeeded in all SLD trees, the capacity for 7q to succeed is
independent of the computation rule. So this set can be simply denoted
by SS(X).

2. FF(X,R), or those for which ?¢ finitely fails
3. IF(3, R), or those for which ?q infinitely fails.

However, 7q may finitely fail under one computation rule yet infinitely fail
under another. A simple example is where Y. comprises just the clause ¢ < BAgq.
Under the standard leftmost call rule, the query 7q finitely fails, whereas it
infinitely fails under a rule which always selects the rightmost call. Thus the
boundary between FF (X, R) and IF(X, R) depends upon R. There is a simple
theoretical way of eliminating this dependence upon R. We invoke the idea of a
particular sort of computation rule which ensures that any call introduced into
a computation is selected after some arbitrary but finite number of execution
steps. Such a rule is called a fair computation rule. Considering the example
again, we might allow a fair computation rule to select ‘q’ calls any finite number
of times, but sooner or later the fairness requirement would demand that an ‘A’
call be selected, thus immediately forcing finite failure. With this new concept,
we can now state the following facts: 7¢q finitely fails under some computation
rule iff it finitely fails under all fair computation rules?’ We can denote by
FF(X), the set of all atoms ¢ for which ?¢ has some finitely failed fair SLD-tree,
and by I'F(X), the set of all atoms ¢ for which ?¢ has some infinitely failed fair
SLD-tree. FF(X) is called the (fair-) SLD finite failure set of ¥.. Referring again
to the example above, we shall have FF(X) = {q, A} and IF(X) = 0.

Suppose queries were also allowed to contain ‘fail’ calls besides atomic ones,
but with ¥ still restricted to be definite. The following statements then hold
true:

forall g € B(Y), g€ FF(X) iff ?fail g succeeds under SLDNF
ge SS(¥) iff 7?q succeeds under SLDNF

We can interpret finite failure (i) in terms of the position of FF(X) within
the lattice of interpretations and (ii) in terms of the classical negation (—), which

21 Although fair computation rules are not normally implemented, they certainly tidy up
our mathematical account of finite failure.; equivalently, at least one of its SLD-trees is finitely
failed iff all of its fair SLD-trees are finitely failed.
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provides a semantics for ‘fail’, and some soundness and completeness results for
SLDNF, based upon the logical consequences of COMP(X).

Completion Semantics for SLDNF

For pure Horn-clause programs and queries, we had a particularly simple con-
nection between logical meaning and operational meaning:

forallg e B(X), X Eq iff ¢ € SS(X)

The construction of a consequence-oriented semantics for the finite failure ex-
tension is more problematic. A program containing fail is not a construct of
classical logic and so is not amenable to the notion of classical logical conse-
quence. Nevertheless, a variety of analogous connections have been suggested.
The best-known of these is based upon the so-called completion semantics, which
relies upon two ideas:

1. Interpreting ‘fail’ as the classical negation connective — (this is why fail is
commonly referred to as ‘negation by failure’).

2. Relating the success or finite failure of calls to logical consequences of
COMP(X) rather than of ¥ alone.

On this basis we can then characterize, in logical terms, the soundness of
execution of atomic queries under the (safe-)SLDNF implementation of fail:

for all ¢ € B(X), COMP(X)Eq if ?7q succeeds under SLDNF
COMP(X) = —q if ? fail ¢ succeeds under SLDNF

These results hold even if ‘fai;’ calls occur in ¥. The ‘only-if’ part in the two
statements above, which characterizes the completeness for SLDNF holds only
when ¥ is definite (so ¥ will obviously not contain ‘fail’ calls).

There are two caveats in the above statement(s): (i) COMP(X) may itself
be inconsistent and (ii) the SLDNF uses some safe computation rule. Also,
the simplification of analysis of finite failure using fair computation rules is not
possible when the query contains ‘fail’ calls.

1.3.8 Lattice of Models

For any ¥ that is a set of definite clausal formula, it can be shown that the
set M(Z) of models is a complete lattice ordered by set-inclusion (that is, for
models M1, M2 € M(X), M1 < M2 if and only if M1 C M2), and with the
binary operations of N and U as the glb and lub respectively. Recall that a
complete lattice has a unique least upper bound and a unique greatest lower
bound. Since we are really talking about sets thar are ordered by set-inclusion,
this means that there is a a unique smallest one (the size being measured by
the number of elements). This is called the minimal model of the formula, and
it can be shown that this must be the intersection of all models for the formula.
We will illustrate with an example. Consider a ¥ consisting of the following
clauses:
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GC CL CB LC LL LB BC BL BB

l‘*l

BL CB

Figure 1.10: A complete lattice of models.

Cp: CC « CL
C;: CB <« = BL
Cs: CL «+ LL
C5: BL

A fail-safe way of getting a model is to choose the entire set of propositions
B(%) ={CC, CL, CB, LC, LL, LB, BC, BL, BB}, which is called the base of X.
for then every atom in ¥ is assigned true and this in turn makes all of its clauses
true. This model is the (unique) maximal model for 3. However, such a choice
is clearly excessive-many of the atoms in B(P) do not even occur in G(P) and
so their truth values are irrelevant. Stripping out those irrelevant atoms leaves
a somewhat smaller model {CC, CL, CB, BL, LL}. Which of these atoms must
appear in any model? Clearly BL must, in order to make the program’s fourth
clause true. Then, since BL must, so also must CB in order to make the second
clause true. The first and third clauses employ only the remaining three atoms
CC, CL and LL, and both those clauses can he made true by making those
atoms false. In conclusion, only BL and CB must be true — thus the (unique)
minimal model for ¥ is {BL,CB}.

Some indication of the complete lattice of models for the program is shown
in Figure 1.10 where, edges stand for the covers relationship. Moreover, only a
few of the models are shown-there are 64 models in the entire lattice. Note also
that, in general, most subsets of B(X) will be counter-models—for our example
there are 448 of these, of which the smallest is (). It can be proved that if 3 is
a set of definite clauses, it must always be satisfiable, and therefore, § ¢ M(X)

The reason why the discussion above has focused solely upon definite clauses
is that, in general, a set of indefinite clauses does not yield a complete lattice
and may therefore have multiple minimal models. The lack of a unique minimal
model makes it harder to assign an unambiguous meaning to such a set.

There is an important result relating a set of definite clausal formulae 3, its
minimal model MM (X) and the atoms that are logical consequences of X:

Theorem 12 If « is an atom then ¥ = « if and only if « € MM (X).
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The proof of theorem 12 makes use of the so-called model intersection prop-

erty:

Theorem 13 If My,..., M, are any models for a definite clause set % then

their intersection is a model of 3.

Proof: 1t is easy to show this by induction. For any k& < n, let I denote
My N...N M. Now consider any clause C' € 3:

C:A—BiAN...ANB,,

We shall prove that, for all k < n, I} satisfies C.
1. Base case (k=1): I; = My and therefore satisfies C.

2. Induction step (1 < k <n): Assume that M, satisfies C;

B; ¢ I}, for some i

B; € I, for all i, and A € I,

B; & My, for some i

B; € My for all i, and A € My,

B; & I, N My, for some i

B; € I; N My for all 4, and A € Iy, N My
I satisfies C

Thus for all k¥ < n, Ij satisfies C and-by a similar argument — every other

if Iy, satisfies C then either
or

if Mj41 satisfies C then either
or

it then follows that either
OR

And hence

clause in .
Od

We next prove theorem 12 making use of theorem 13.

Proof of theore 12: EXERCISE

We will first prove that the intersection I* of all the models of ¥ is the
minimal model M M (X)), using contradiction as follows:

Suppose " is not the minimal model

then there must exist some model M; such that M; C I*

then there must exist some atom ¢ such that ¢ ¢ M; and q € I*
but ¢ € I'** implies that ¢ € M;, for all 4, contradicting ¢ € M;

therefore the initial assumption is false.

Using this result it is now easy to prove the relationship between MM (%)

and any atomic consequence g of X:

IfX E=gq then ¢ is true in every model of X
then ¢qe€I*
then ¢e€ MM(X)

ifge MM(X) then g is true in every model of ¥
then X kg
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O

Thus, the minimal model of a definite clausal formula is identical to the set
of all ground atoms logically implied by that formula, which was defined as the
success set SS(X). Thus, the minimal model provides, in effect, the meaning
(or semantics) of the formula. We shall see later that this is just one of several
ways of giving significance to a program’s minimal model.

We can envisage a procedure for enumerating the models of a formula. Con-
sider the powerset of the base B(X). Now, we know that this powerset ordered
by C necessarily forms a complete lattice, with binary operations N and U.
Some subset of this powerset is the set of all models, which we know is also a
lattice ordered by C with the same binary operations. So, the model lattice is
a sublattice of the lattice obtained from the powerset of the base. Suppose now
we start at some point s in this sublattice, and we move to a new point that
consists only of those atoms of the formula made true by the model s. Let us
call these atoms s;. Then, a little thought should convince you that s; is also
a member of the sublattice of models. Repeating the process with ss we can
move to models s3, s3 and so on. Will this procedure converge eventually on the
minimal model? Not necessarily, since we could end up moving back-and-forth
between points of the sub-lattice. (When will this happen, and how can we
ensure that we do converge on the minimal model?).

A slightly more general process can be formalised as the application of a
function Ty, that, for a set of clauses ¥, generates an interpretation (not neces-
sarily a model) from another. That is:

I = T (1)

where
Ts(I) ={a:a+« body € ¥ and body € I}

It can be shown that T% is both monotonic and continuous on the complete
lattice obtained by ordering the powerset of the base by C. So, we know from
the Knaster-Tarski Theorem mentioned on page 11, that there must be a least
fixpoint for Ty in this lattice. We can prove that the procedure of obtaining
I 41 from application of T, to Iy, will yield that fixpoint, and further, that this
fixpoint will be the minimal model.

Theorem 14 MM (X) is the least fixpoint of T .

Proof: The definition of Tx, requires that

forall I C B(X) and for all ¢, ¢ € Tx (1) iff (Ibody)[(q < body) € ¥ and body €
1]

whereas, the definition of a model requires that

forall I C B(X), I is a model for ¥ iff for all ¢, g € I if (3body)|[(q <« body) €
¥ and body € IJ.

These two sentences jointly imply
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for all I C B(Y)

Iis amodel for X iff forall g, qeIif g€ Ts(I)
if Te(I)C 1
iff I is a pre-fixpoint of Tx,

Where, for a function f on < S, <>, an element u € S is a pre-fixpoint of f if
and only if f(u) < u. Then, we can recall from the proof of the Knaster-Tarski
theorem on page 11 that the least fix point is also the least pre-fixpoint. Hence,
since the models are exactly the pre-fixpoints, the least model M M (X)), which
is the glb of all the pre-fix points, must be the least pre-fixpoint. Finally, by
the Knaster-Tarski theorem, M M (¥) must also be the least fixpoint. O

So we now have several equivalent characterizations of the minimal model,
including the success set SS(3) and the new one posed in terms of the least
fixpoint of T%, denoted LF P(T%)

Mathematical Characterization of Finite Failure

It so happens that there is a somewhat related (to the Tx function) method
of constructing the finite failure set F'F'(X). The set of atoms which occur as
headings in ¥ is simply 75 (B(X)), as is plain from the definition of T%. The
simplest way for ?q to fail finitely is for there to be no clause in ¥ who heading
unifies with ¢. In this case the failure is said to occur within depth k£ = 1 and the
set of all such atoms ¢ € B(X) is denoted by FF(3,1) and can be characterized
very easily using the T% function as

FF(5,1) = B(S) - To(B(S))

Generalizing this principle, F'F(X) just contains each atom ¢ for which ?q
finitely fails within some depth k € .

FF(S) = Upex FF(S, k) = B() - Nex TE(B(Z))

When we start at the top element B(X) of our lattice of interpretations,
repeated application of the Ty function generates a monotonically decreasing
sequence B(X) D Tx(B(X)) 2 TE(B(X))..., whose limit is the greatest lower
bound (glb) Tx. | of {T&(B(X)) | k € N'}. Thus, the mathematical characteri-
zation of F'F(X) (independent of the execution mechanism) is

FF(S) = B(E) - Tt |

Based on this equivalence, what is the value of F'/F(X) for the last example that
we discussed?

It can be proved that 7%, 1= LFP(Tx) = MM(X) C Tx |. There is an
assymetry in the relationship between the limits and the extremal fixpoints
of Ts;. Whereas, Ty, T is always equal to the least fix point LFP(Ty), Tx |
does not always equal the greatest fix point GFP(T), though it does hold
for most ‘sensible’ ¥ (at the least for non-recursive clauses and in the case of
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first order logic, for function-free programs). The region between 7% 1 and Ty, |
corresponds to I F (X)), which comprises exactly those atoms which fail infinitely.
In practice, most sensible programs have [ F(X) = ), leading to T 1= T% | and
therefore B(X) = SS(X) U FF(X).

1.4 First-Order Logic

Suppose you wanted to express logically the statement: ‘All humans are apes.’
One of two ways can be used to formalise this in propositional logic. We can use
a single proposition that stands for the entire statement, or with a well-formed
formula consisting of a lot of conjunctions: Humanl is an ape A Human2 is an
ape .... Using a single proposition does not give any indication of the structure
inherent in the statement (that, for example, it is a statement about two sets
of objects—humans and apes—one of which is entirely contained in the other).
The conjunctive expression is clearly tedious in a world with a lot of humans.
Things can get worse. Consider the following argument:

Some animals are humans.
All humans are apes.

Therefore some animals are apes.

That the argument is valid is evident: yet it is beyond the power of proposi-
tional logic to establish it. If, for example, we elected to represent each of the
statements with single propositions then all we would end up with is:

Statement Formally
Some animals are humans. P

All humans are apes. Q
Therefore some animals are apes. R

But the formal argument is clearly invalid, as it is easy to think up arguments
where P, @ are true and R is false. What is needed is in fact something along
the following lines:

Statement Formally

Some animals are humans. Some P are )
All humans are apes. All Q are R
Therefore some animals are apes. .some P are R

Here, P,@, and R do not stand for propositions, but for terms like animals,
humans and apes. The use of terms like these related to each other by the
expressions ‘some’ and ‘all’ will allow us to form sentences like the following:
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All P are Q

No P are QQ

Some P are )
Some P are not )

The expressions ‘some’ and ‘all’ are called quantifiers, which when combined
with the logical connectives introduced in connection with proposition logic
(=, A, V, <), results in the powerful framework of first-order or predicate logic.

1.4.1 Syntax

The language of predicate logic introduces many new constructs that are not
found in the simpler, propositional case. We will first introduce these informally.

Constants. 1t is conventional in predicate logic to use lowercase letters to denote
proper names of objects. For example, in the sentence ‘Fred is human’, Fred
could be represented as fred.

Variables. Consider the statements:

All humans are apes

Some apes are not human

Using the letter « as a variable that can stand for individual objects, these can
be expressed as:

For all z, if 2 is human then x is an ape

For some z, = is an ape and z is not human

Quantifiers. The language of predicate logic introduces the symbol V, called
the universal quantifier, to denote ‘for all.” The symbol 3, called the existential
quantifier, is used to denote ‘for some’ or, more precisely, ‘for at least one.” The
sentences above can therefore be written as:

Vz (if z is human then z is an ape)

Jx (z is an ape and z is not human)

Predicates. In their simplest case, these are are symbols used to attribute prop-
erties to particular objects. It is conventional in logic (but ungrammatical in
English) to write the subject after the predicate. Thus the sentence ‘Fred is
human’ would be formalised as Human(fred) *2. More generally, predicate
symbols can be used to represent relations between two or more objects. Thus,

22Logicians are a parsimonius lot: they would represent ‘Fred is human’ as Hf. The
representation here is non-standard, but preferred for clarity.
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‘Fred likes bananas’ can be represented as: Likes(fred,bananas). The gen-
eral form is therefore a predicate symbol, followed by one or more arguments
separated by commas and enclosed by brackets. The number of arguments is
sometimes called the arity of the predicate symbol, and the predicate symbol is
often written along with its arity (for example, Likes/2). Formalising sentences
like those above would result in quantified variables being arguments:

Va (if Human(z) then Ape(x))
Jz (Ape(x) and not Human(x))

Or, using the logical connectives that we have already come across:

Va(Ape(z) «— Human(z))
Fz(Ape(x) A ~Human(x))

Functions. Consider the statement: ‘The father of Fred is human.” Although we
have not named Fred’s father, it is evident that a a unique individual is being
referred to, and it possible to denote him by using a function symbol. One way
to formalise the statement is: Human(father(fred)). Here, it is understood
that father(fred) denotes Fred’s father. A function symbol is one which, when
attached to one or more terms denoting objects produces an expression that
denotes a single object. It is important that that the result is unique: a function
symbol could not be used to represent, for example, ‘parent of Fred.” As with
predicates, the number of arguments of the function is sometimes called its arity.

The following points would not be evident from this informal presentation:

1. Variables need not designate different objects. Thus, in VaVyLikes(x,y),
x and y could refer to the same object;

2. The choice of variable names is unimportant. Thus, VaVyLikes(x,y) has
the same meaning as VyVzLikes(y, z);

3. The same variable name, if quantified differently, need not designate the
same object. Thus, in VaVyLikes(xz,y) A VaVyHates(y,z) the x,y in
Likes(--+) need not be same as the z,y in Hates(---);

4. The order of quantifiers can matter when V and 3 are mixed. Thus,
JxVyLikes(x,y) has a different meaning to Vy3zLikes(x,y). However
changing the order has no effect if the quantifiers are all of the same type.
Thus, VaVyLikes(z,y) has the same meaning as VyVaLikes(z,y);

5. “Free” variables in a formula are those that are not quantified. For ex-
ample, in the formula VxLikes(x,y), y is a free variable. In contrast,
quantified variables are called “bound” variables. It may not be immedi-
ately apparent that a variable can have both free and bound occurrences
in a formula. For example in Jz(Likes(z,y) AJyDisLikes(y,x)), the vari-
able y is free in the Likes and bound in Dislikes. x on the other hand is
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bound in both (by the outermost quantifier). It is normal to call a formula
with no free variables a sentence, and it only really makes sense to ask
about the truth of sentences;

6. Negation should be treated with caution. Thus, in ‘Some apes are not
humans’, ‘not’ plays the role of complementation, by stating that the set
of apes and the set of non-humans have at least one member in common.
This can be formalised as 3z (Ape(xz) A—Human(z)). One the other hand,
‘not’ plays the role of true negation in ‘It is not true that some apes are
humans’ formalised as —3x(Ape(z) A Human(x));

7. It can be tricky to match English sentences to ones that use V and 4.
Thus, in ‘If something has a tail then it is not an ape’, the use of ‘some-
thing’ suggests that formalisation would involve 3. The statement is, in
fact, a general one about apes not having tails, and involves universal
quantification: VY (—Ape(z) «— Tail(z));

8. By denoting ‘at least one’, the existential quantifier 3 includes ‘exactly one’
and ‘all’. This does not coincide exactly with the usual English notion of
‘some’, which denotes more than one, but less than all.

We can now examine the formal rules for constructing well-formed formulae
in predicate logic. For the language of predicate logic, we will restrict the
vocabulary to the following:

Constant symbols: A string of one or more lowercase letters

(except those denoting variables)

Variable symbols: A lowercase letter

(except those denoting constants)
Predicate symbols: Uppercase letter, followed by zero or more letters

Function symbols: Lowercase letter, followed by zero or more letters

(except those denoting constants or variables)

Quantifier symbols: v, 3
Logical connectives: AV, —
Brackets: (,)

In addition, we will sometimes employ the device of using subscripts to denote
unique symbols (for example, x1, xo, ... for a string of variables).

With this vocabulary, a term is simply a constant, variable or a functional
expression (that is, a function applied to a tuple of terms). The following are all
examples of terms: x, fred, father(fred), father(father(fred)), father(x).
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These, however, are not terms: Likes(fred, bananas), Likes(fred, father(fred)),
father(Likes(fred,bananas)). An atomic formula, sometimes simply called an
atom is a predicate symbol applied to a tuple of terms. Thus, Likes(fred, bananas)
Likes(fred, father(fred)), Likes(x, father(z)) are all examples of atoms. Fi-
nally, a ground atomic formula or a ground atom is an atom without any vari-
ables. Well-formed formulee (wffs) are then formed using the following rules:

1. Any ground atomic formula is a wif;
2. If a is a wif then —« is a wif;
3. If & and 8 are wifs then (a A 8), (aV B), and (a « () are wifs; and

4. If o is wff containing a constant ¢ and a®/* be the result of replacing one
or more occurences of ¢ with a variable z that does not appear in a. Then
Vza®/® and Jzxa®/* are wifs.

Rules 1-3 are like their propositional counterparts (page 15). Rule 4 is new,
and requires further explanation. It is the only way variables are introduced
into a formula. As an example, take the following statement: (Human(fred) A
Likes(fred,bananas)). That this a wif follows from an application of Rules 1
and 3. The following formule are all wifs, following a single application of Rule
4:

)
)
)
)

T =

A Likes(z, bananas))

A Likes(z, bananas)

)
Va(Human(fred) A\ Likes(fred, x))
)

A single application of Rule 4 therefore only introduces a single new variable.
Subsequent applications will introduce more. For example, take the first formula
above: Vz(Human(xz) A Likes(fred, bananas)). The following wifs all result
from applying Rule 4 to this statement:

VyVz(Human(x) A Likes(y, bananas))
( (x) (
VyVa(Human(x) A Likes(fred,y))

( (x) A Likes(fred,y))

IyVx(Human(x) A Likes(y, bananas))
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As with propositional logic, it is acceptable to drop outermost brackets:
(Vz(Ape(x) — Human(x)) A Jx(Ape(z) A ~Human(z)))
can be written as:

Va(Ape(r) «— Human(x)) A Jx(Ape(z) A ~Human(z))

Clausal Form

We are now in a position to expand on the notion of clauses and literals, first
introduced on page 25. Consider the conditional statement:

Va(Ape(xz) — Human(x))
Recall the following from page 24:

(@ = p) = (aVv-p)

This means:

Vr(Ape(z) « (Human(x))) = Vz(Ape(z) V ~Human(zx))

The term in brackets on right-hand side is an example of a clause in first-order
logic. In general, formulse consisting of universally-quantified clauses all look
alike:2?

VaiVag ... (a1 Aag...)

That is, they consist of a prefix that consists only of universally quantifiers, and
each «;, or clause, is a quantifier-free formula that looks like:

a; =(61VPB2V...0r)

where each §j, or literal. Thus, as in propositional logic, a clause is a disjunction
of literals. Each literal, however, is not a proposition, but is either an atomic
formula (like Ape(x), sometimes called a positive literal) or a negated atomic
formula (like ~Human(z), sometimes called a negative literal). It is sometimes
convenient to use Vx to denote VxiVzs--- and to adopt a set-based notation
to represent a clausal formula: {Vxaj,Vxas,...}. Here it is understood that
the formula stands for a conjunction of clauses. Often, the quantification is
taken to be understood and left out. Further, individual clauses are themselves
sometimes written as sets of literals:

Q; = {517ﬁ27"'75’n}

Clausal forms are of particular interest, computationally speaking. The lan-
guage of logic programs (usually written in the Prolog language). is, at least in
its ‘pure’ form, equivalent to clausal-form logic. Here is an example:

23We will take a few liberties here by not including some brackets.
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Logic Program in Prolog Clausal Form
grandfather(X,Y):- {VaVy¥z(Grandfather(xz,y) V
father(X,Z), —Father(z,z) V
parent(Z,Y). —Parent(z,y)),
father(henry,jane). Father(henry, jane),
parent(jane,john). Parent(jane, john)}

There are three clauses in this example. The first clause has three literals
and the remainder have one literal each. Further, each clause has exactly one
positive literal: such clauses are called definite clauses. More generally, clauses
that contain at most one positive literal are called Horn clauses. From now on,
we may sometimes write clauses in a lazy manner that is somewhere in between
the syntax of Prolog and the true clausal form:

Logic Program in Prolog

grandfather(X,Y):- father(X,Z), parent(Z,Y).
Clausal Form

{VaVyVz(Grandfather(z,y) V —Father(x,z) V —Parent(z,y))}

Lazy Clausal Form

Grandfather(x,y) « Father(z, z), Parent(z,y)

Skolem Functions and Constants

Skolemization refers to a process of replacing an existentially quantified variable
in a formula by a new term; it is merely the process of providing a name for
something that already exists. Whether the new term is a functional expression
or a constant depends on where the existential quantifier appears in the formula.
If it is preceded by one or more universal quantifiers, like:

Vry...Ve,dy o

then a single skolemization step replaces all occurences of y in v by the functional
expression f(zi,...,2z,). Here f(---) is a function symbol, called a Skolem
function, that does not appear anywhere in the formula. Thus, skolemization
of the formula Va3yLikes(xz,y) results in VzLikes(x,f(z)). In general, if the
existential quantifier appears in between some universal quantifiers:

Vry ... Ve,_13yVe,4q - -V, o

then all occurences of y in a can be replaced by the functional expression
f(x1,...,m;—1). A special case arises if the existential quantifier precedes zero
or more universal quantifiers:
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Jyvzry ... Vo, a

In this case, a single skolemization step replaces all occurences of y in « by a
Skolem function of arity 0 (that is, a constant) c¢. Here c is a constant symbol,
called a Skolem constant, that does not appear anywhere in the formula. Thus,
skolemization of the formula JyVxLikes(x,y) results in VxLikes(x,c). You can
see that in both cases, a single step of Skolemization reduces the number of
existential quantifiers in a formula ¢ by 1. Let us denote this single step by
s(¢). It should be easy to see that repeatedly performing Skolemization steps
(that is, s(s(---s(¢)))) will result in a formula with just universal quantifiers.

Normal Forms

Universally-quantified clausal forms are a special case of specific kind of normal
form for first-order formula, which we are now able to present, having described
the process of Skolemization. A formula is said to be in prenex normal form or
PNF if all its quantifiers are in front. That is, the formula looks something like
Q171 . .. Qprapo, where the Q); is either a V or 3. Further, if ¢ is a conjunction of
disjunction of literals, then the formula is said to be in conjunctive prenex normal
form. It can be shown that every first-order formula ¢ can be expressed by an
equivalent one ¢’ in conjunctive PNF. Here is an example: suppose we want to
find the conjunctive PNF for ¢ : (JzVyDisLikes(x,y) A VxIyLikes(x,y)). We
first rename variables to give ¢ : (JxVyDisLikes(x,y) A VuTJvLikes(u,v)). We
can then move the quantifiers to the left giving: ¢ : JxVyVuIv(DisLikes(xz,y)A
Likes(u,v)), which is in conjunctive PNF.

For reasons that will become apparent, we are further interested here only
in formulae in conjunctive PNF's in which all the quantifiers are universal ones
(that is, ¥). Such formulseare said to be in Skolem normal form, or SNF. A
SNF can be obtained from the conjunctive PNF by applying the Skolemization
process to eliminate 3 quantifiers. For example, suppose we want to “Skolemize”
the formula ¢ above. We first find the conjunctive PNF (¢” above). Using the
Skolemization procedure described earlier, we replace x by a Skolem constant
and v by a Skolem function. The SNF of ¢ is ¢° : VyVYu(Dislikes(c,y) A
Likes(u, f(u))).

We can now return to clausal forms. Here are the steps for converting a
formula into a set of clauses in clausal form:

1. Rename variables to ensure there are no variables with the same names in
different quantifiers;

2. Eliminate «’s and iff’s;

o apiff ag = (a1 — ag) A (a2 — aq)

® (v «— (g = a1 V

3. Move —’s inwards;
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7.
8.

o ~(AX)a = (VX)-a
o ~(VX)a = (IX)—a
o ~(a1 Vag) = nag A s
o (a1 Aaw) = —ag V ag

o ¥ = (&

. Distribute V’s over A’s;

e aV(a Aag) = (aVar)A(aVasz)
e Assuming X does not occur in a1: ag V (Vag) = (VX) (a1 V ag)
e Assuming X does not occur in ay: a1 V (Jaz) = (3IX) (a1 V az)

. Distribute V’s;

° (VX)(Oél A\ 042) = (VX)Ozl A\ (VX)O&Q

At this stage, the PNF form is generated.

. Skolemise existentially quantified variables;

o (VX1)(VX2) ... (VX)) 3V )a(Y) = (VX1)(VX2) ... (VX,)a(f(X1, Xo, . ..

If further applications of step 6 are possible, then they should be carried
out.

Rewrite as clauses by dropping universal quantifiers; and

Standardise variables apart.

Here are some statements from a book by Lewis Carroll, written in first-order

logic:
Syt
Syt
St
Syt

Vz(Scented(x) < Coloured(x)) A
Va(DisLike(x) < —GrownOpen(x)) A
—(3z(GrownOpen(z) A =Coloured(zx))) N
=V ((DisLike(x) < ~Scented(x)))

You should find that these sentences, when converted by the steps above,
give the following set of clauses:

C:
Csy :
Cs -
Cy:

{=Coloured(x), Scented(x)}
{GrownOpen(y), DisLike(y)}
{=GrownOpen(z), Coloured(z)}
{—Scented(c)}
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C5 : {-DisLike(c)}

Recall that representing a clause by a set {Li, Lo, ..., L}, is just short-form
for the disjunction L; V L2V --- Lj; and the actual clausal form for the formula
F:S1ANS3AS3AS4NA S5 1s C : VaVyVz(C1 ACa AC3s ACy ACs). Is F equivalent
to C? To answer this, we need to understand how meanings are assigned to
first-order formulee.?*

1.4.2 Semantics

As with propositional logic, the semantics of predicate logic is primarily con-
cerned with interpretations, models, and logical consequence. Of these, it is
only the notion of interpretation that requires a re-examination.

Interpretations

Recall that interpretations in propositional logic were simply assignments of
true or false to propositional symbols. Matters are not as simple in predicate
logic for two reasons. First, we have to deal with the additional complexity of
expressions arising from a richer vocabulary. Thus, the truth-value (meaning)
of Likes(fred,bananas) will depend on the meanings of each of the symbols
Likes, fred and bananas. Second, we have to interpret sentences that contain
quantifiers.

Informally, let us see what is required in constructing an interpretation that
allows us to understand Likes(fred,bananas). Before we begin, remove any
pre-conceptions of what the words in the statement mean in English: for us they
are simply a predicate symbol (Likes) and two constant symbols ( fred, bananas)
in some ‘formal-world’. The first step then is to identify a domain of objects in
the ‘real-world’.

Next, we associate constant symbols in our formal-world to objects in the
real-world (just to avoid any pre-conceptions, we have scrambled things a little
bit):

24But the answer is “no”: the problem, as you might have guessed, comes about because of
the Skolemization step.
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and associate the predicate symbols to a relation in the real-world:
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We can now see that Likes(fred, bananas) is false as the objects correspond-

ing to the ordered pair < fred,bananas > are not in the real-world relation
represented by Likes.

Formally, an interpretation in predicate logic is a specification of:

1. A domain D;
2. A mapping of constants to elements in D;

3. A mapping of each n-argument predicate symbol to a relation on D™,

where D" = {< dy,...,d, > | d; € D} is the n-fold Cartesian product;
and

4. A mapping of each n-argument function symbol to a function from D™ —
D

You will also see sometimes that the term “structure” is used to describe what
we have called an interpretation. In such cases, a distinction is made between
the vocabulary, which consists of the constants, functions and predicate symbols;
the and the structure, which consists of the domain D and the three mappings.

We will continue to use “interpretation” to retain a similarity to propositional
logic.



66 CHAPTER 1. SETS, RELATIONS AND LOGIC

Given an interpretation, every atom—a predicate symbol with a tuple of
terms as arguments—is assigned a truth-value according to whether the objects
designated by the arguments are in the relation designated by the predicate
symbol.

Well-formed formulee in predicate logic consist of more than atoms. We
also need rules for assigning truth-values to formule that contain logical con-
nectives (-, A,V, ) and quantifiers (V,3). The semantics of the logical con-
nectives in predicate logic are the same as those in propositional logic. Thus,
as before, assigning meanings to formulae with these connectives requires the
use of the truth tables on page 17. For example, the formula Human(fred) A
Likes(fred, bananas) is true only if the interpretation results in both the atoms
Human(fred) and Likes(fred, bananas) being true. What though, of formulae
that contain quantified variables? The rules for these are:

1. Any wif Vza is true if and only if for every domain element that we can
associate with x, « is true;

2. Any wif dza is true if and only if for some domain element that we can
associate with x, « is true.

Models and Logical Consequence

The meanings of these, and related concepts, are unchanged from propositional
logic. Thus:

Models. Any interpretation that makes a wif true is called a model for that
formula;

Validity and Unsatisfiability. A formula for which all interpretations are models
is said to be valid. A formula for which none of the interpretations are a
model is said to be unsatisfiable. A formula that has at least one model
is said to be satisfiable;

Consequence. Given a conjunction of wifs ¥ represented as the set {51,...,0,}
and a wif a if ¥ |= « then every model for ¥ is a model for «;

Deduction Theorem. Given a conjunction of wifs ¥ = {#1,...,0,} and a wif
Y = aif and only if ¥ — {8;} = (o < Bi). The proof is the same as was

for that in the propositional case (c.f. theorem 6);

Equivalence. Given a pair of wifs o and 3, if « = 8 and 8 = « then « and
are equivalent (o = 3).

The following relations hold in the predicate logic (as usual, «, 3 are wifs):
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—(aVp) = -—aA-f De Morgan’s law

—(aApB) = -—aV-pg De Morgan’s law

(=8 = (av-p)

(a < B) = (=8« -a) Conditional = Contrapositive

Ve = dra

—Jrxa = Ve«

Vra = Vya®/y Renaming of = by y

Jza = Jya®lv Renaming of x by y

VaVya = VyVza

JdrIya = dydzra

Va(a A fB) =  (Vza AVzf) Distributivity of V

Jz(a Vv B) =  (GzaVvIzp) Distributivity of 3

Voo E  dza

VzavVzpf) E Vz(aVp)

Jz(a A B) E  (Jz Adxp)

Vray/f(®) E  Vedya Non-equivalence of Skolemized form
Vaav/e E  Jyvza Non-equivalence of of Skolemized form

More on Normal Forms

We stated earlier that any first-order formula could be converted to a conjunctive
prenex normal form, or conjunctive PNF. We further saw how a formula ¢ =
Q171 ... Qurndo(z1,...,2,) could be “Skolemized” to give a formula ¢° in
Skolem Normal Form, or SNF. The interest in SNFs lies in the following fact:

Theorem 15 ¢ is satisfiable if and only if ¢° is satisfiable (you should be able
to convince yourself that checking for satisfiability is equivalent to checking for
logical consequence).

Proof sketch: Recall that ¢° = s(s(---s(¢))) where s(-) denotes a single step of
Skolemization. Now, it is sufficient to show that ¢ is satisfiable if and only if
s(¢) is satisfiable (the full proof will follow by induction). We can also assume
that ¢ is in conjunctive PNF. Now s(¢) results in either replacing a variable by
a Skolem constant or by a Skolem function. Since the former is just a special
case of the latter, we will just consider the case when s(¢) results in replacing
a variable by a Skolem function. Let @); be the existential quantifier removed
by the Skolemization step, and let ¥(x1,...,2;) = Qix1...Qndo(x1,...,xy).
Suppose V1 ... Vx;—13x;9 (21, . .., x;) has some model M. Let My extend M by
interpreting f in such a way that My is a model for ¢ (cy, ..., ¢;—1,f(c1, ..., ¢i-1))
for all possible values ci,...,c;—1 € M for the variables x1,...,x;—1. Then,
clearly, M is a model for Vay...Va,_19(xy,...,2;-1,f(x1,...,2i-1)). Now
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consider the converse. Suppose Vz1 ...Vz;_19¥(x1,...,2;-1,f(z1,...,2;-1)) has
some model M then, it follows from the meaning of 3 that M is also a model
for Vay ... Va;_13x4p(x1, ..., x;). It follows therefore that ¢ is satisfiable if and
only if s(¢) is satisfiable. O

We end this section on a note of caution: ¢ and s(¢) are not equivalent.
That is, Skolemization does not preserve logical equivalence. A simple example
should convince you of this. Let ¢ = JxFirst(x) and s(¢) = First(c). Clearly,
we can find models for IFirst(x) that are not models of First(c).

Herbrand Interpretations

The 4-step specification above makes an interpretation in predicate logic much
more elaborate than its counterpart in propositional logic (which was simply
an assignment of true or false to propositions). The reference to ‘real-world’
objects, relations, and functions adds a further degree of complexity: how is all
this to be conveyed to an automated procedure? In fact, many of these problems
can be side-stepped by confining attention only to a domain that consists solely
of formal symbols. Called the Herbrand universe (Up), this is simply all the
ground (or variable-free) terms that can be constructed using the constants and
function symbols available in a first order language L. Consider as example a
language that consists of:

Constant symbol: zero
Predicate symbol: Nat/1
Function symbols: pred, succ

The Herbrand universe Uy, in this instance consists of terms like zero, pred(zero),
succ(zero), pred(succ(zero)), succ(pred(zero)) and so on. The Herbrand base
By, is the set of all ground atoms that can be constructed using the predicate
symbols and terms from the Herbrand universe Uy,. Here, the Herbrand base By,
consists of atoms like Nat(zero), Nat(pred(zero)), Nat(succ(zero)), Nat(pred(succ(zero)))
and so on. A Herbrand interpretation I; is—quite like the propositional case—
simply an assignment of true to some subset of By, and false to the rest. In fact,
it is common practice to associate ‘Herbrand interpretation’ only with the sub-
set assigned true: it being understood that all other atoms in the Herbrand base
are assigned false. Thus, {Nat(zero)} is an Iy, that assigns true to Nat(zero)
and false to all other atoms in By,.

Herbrand Models

Since a model is an interpretation that makes a well-formed formula true, a
Herbrand model My, is simply a Herbrand interpretation I, that makes a well-
formed formula true. Let us return to the example presented earlier:

Constant symbol: zero

Predicate symbol: Nat/1

Function symbols: pred, succ
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Recall from page 68, that:

Herbrand universe (Ur): {zero, pred(zero), succ(zero), pred(succ(zero)), . ..
Herbrand base (By): {Nat(zero), Nat(pred(zero)), Nat(succ(zero)),. ..

Further, a Herbrand interpretation is simply a subset of the Herbrand base
containing all atoms that are true. Thus, I; = {Nat(zero)} is a Herbrand
interpretation in which Nat(zero) is true and all other atoms in the Herbrand
base are are false. We can now examine whether I; is a Herbrand model for the
formula:

Y1 : Nat(zero) A Vz(Nat(suce(z)) «— Nat(x))

Being a conjunctive expression, we require I; to be a Herbrand model for both
Nat(zero) and Vo (Nat(succ(z)) <« Nat(x)). I is clearly a model for Nat(zero)
as this atom is assigned true in the interpretation. But what about the condi-
tional? The rule for the universal quantifier (page 66) dictates that the condi-
tional statement is true if it is true for every element that the variable x can be
associated with. In other words, the interpretation is a model for every element
that x can be associated with. In the Herbrand world, x can be associated with
any element of the Herbrand universe (zero, succ(zero), pred(zero) and so on).
Suppose = was associated with zero. Then we would require /7 to be a model for
Nat(succ(zero)) « Nat(zero). Since I assigns Nat(succ(zero)) to false and
Nat(zero) to true, I; is not a model for Nat(succ(zero)) « Nat(zero) (line 2
in the truth-table for the conditional on page 17). Thus, I; is not a Herbrand
model for Va(Nat(suce(x)) < Nat(z)) and in turn for £;. Consider, on the
other hand, the formula:

Yo : Nat(zero) A Vx(Nat(z) <« Nat(pred(z)))

As before, suppose & was associated with zero. The conditional then becomes
Nat(zero) «— Nat(pred(zero)). With interpretation I, Nat(zero) is true and
Nat(pred(zero)) is false. I is therefore a model for this formula (line 3 in the
truth table for the conditional). All other associations for z result in both sides
of the conditional being false and I; being a model for each such formula (line 1
in the truth table). Thus, I; makes Vo (Nat(x) «— Nat(pred(x))) true for every
element that x can be associated with, and is a model for it and in turn for Xs.

Herbrand models are particularly relevant to the study of clausal forms
(page 60). Recall that these are conjunctions of clauses, each of which contains
only universally quantified variables and consists of a disjunction of literals.
Both ¥; and Y3 above can be written in clausal form:

Y1 : Nat(zero) A Va(Nat(suce(z))V ~Nat(z))

o't Nat(zero) A Vaz(Nat(x)V —Nat(pred(z)))
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The ground instantiation of a clausal formula is the conjunction of ground
(variable-free) clauses that result by replacing variables with terms from the
Herbrand universe. For example, the ground instantiation of Xy’ is:

G(32'):  Nat(zero)
(Nat(zero) V =Nat(pred(zero)))
(Nat(pred(zero)) V ~Nat(pred(pred(zero))))
(Nat(succ(zero)) V ~Nat(pred(succ(zero))))

> > > >

You can therefore think of the ground instantantiation as making explicit the
meaning of the universal quantifier V. Now, it should be clear that a Herbrand
interpretation will determine the truth-value for all clauses in the ground in-

stantiation of a clausal formula, ) )
e present another example illustrating Herbrand models. Consider the

following program P:
likes(john, X) « likes(X, apples)

likes(mary, apples) «—

Suppose the language £ contained no symbols other than those in P. Then,
B(P) is the set {likes(john, john), likes(john, apples), likes(apples, john), likes(john, mary),
likes(mary, john), likes(mary, apples), likes(apples, mary), likes(mary, mary),
likes(apples, apples)}. Now, {likes(mary, apples),likes(john, mary)} is a sub-
set of B(P), and is a Herbrand interpretation. Moreover, it is also a Herbrand
model for P. Similarly, {likes(mary, apples), likes(john, mary), likes(mary, john)}
is also a model for P. The ground instantiation G(P) for this program is:

likes(john, john) <« likes(john, apples)
likes(john, mary) «— likes(mary, apples)
likes(john, apples) « likes(apples, apples)

likes(mary, apples) «—

It can be verified?® that the interpretation {likes(mary, apples), likes(john, mary)}
is a model for the G(P) above.

The importance of Herbrand models for clausal formulse stems from the
following property:

Theorem 16 A clausal formula X2 has a model if and only if its ground instan-
tiation G(X) has a Herbrand model.

Proof: =: Suppose ¥ has a model M. Then we define the following Herbrand
interpretation I as follows. Let P be an n-ary predicate symbol occurring in 3.
Then we define the function Ip from U} to {T, F'} as follows: Ip(t;,...,t,) =T
if P(ty,...,tp) is true under M, and Ip(t1,...,t,) = F otherwise. It can easily
be shown that I = UpexIp is a Herbrand model of X.

<: This is obvious (a Herbrand model is a model). O

25EXERCISE.
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In other words, there must be some assignment of truth-values to atoms
in the Herbrand base that makes all clauses in ¥ true. In the example above,
the Herbrand interpretation Iy = {Nat(zero)} that assigns Nat(zero) to true
and everything else to false, is clearly a model for G(X5"). Therefore, from the
property stated here, we can say that X5’ has a model.

If we are dealing only with a definite clausal formula— a clausal formula in
which all clauses have exactly one positive literal (¥, and X5’ are both of this
type)—then more is known about the Herbrand models of the formula. Recall
that a Herbrand model is nothing more than a set of ground atoms, which when
assigned true, make the formula true.

1.4.3 From Datalog to Prolog

The statement “Any animal that has hair is a mammal” can be written as a
clause using monadic predicates (i.e. predicates with arity 1):

VX issmammal(X) «— has_hair(X)

Usually clauses are written without explicit mention of the quantifiers:
is-mammal(X) — has_hair(X)
isemammal(X) «— has-milk(X)

is_bird(X) < has_feathers(X)

Datalog

Datalog is a subset of the language of first order language; it has all the compo-
nents of first order logic (variables, constants and recursion), except functions.
A Datalog “expert” system will encode these rules using monadic predicates as:

is_mammal(X) :- has_hair(X).

is_mammal(X) :- has_milk(X).

is_bird(X) :- has_feathers(X).

is_bird(X) :- can_fly(X), has_eggs(X).

is_carnivore(X) :- is.mammal(X), eats_meat(X).

is_carnivore(X) :- has_pointed_teeth(X), has_claws(X), has_pointy_eyes(X).
cheetah(X) :- is_carnivore(X), has_tawny_colour(X), has_dark-spots(X).
tiger(X) :- is_carnivore, has_tawny_colour(X), has_black.-stripes(X).
penguin(X) :- is_bird(X), cannot_fly(X), can_swim(X).

Now here are some statements?® particular to animals:

has_hair(peter). fat(peter).
has_green_eyes(peter). has_tawny_colour(peter).
eats_meat(peter). has_black_stripes(peter).
has_milk(bob). eats_meat(bob)
has_tawny_colour(bob). has_dark_spots(bob).
can_fly (bob).

26EXERCISE: What are the logical consequences of all the clauses?
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Figure 1.11: Graph representing ‘parent of’ relation.

However, monadic predicates: not expressive enough. While monadic predicates
lets us make statements like “Fvery son has a parent”:

VX3Y parent(Y) «— son(X)

for more complex relationships, we will need predicates of arity > 1. Usually,
relationships can be described pictorially by a directed acyclic graph (DAG)
as in Figure 1.11 The parent-child relation could also be specified as a set of
ordered pairs < X,Y >, or, as a set of definite clauses

parent(tom, jo) «—
parent(pam, jo) «—
parent(tom,liz) «—
parent(pam,liz) «—

Consider the predecessor relation, namel¥} all ordered tuples < X,Y > s.t.
X is an ancestor of Y. This set will include Y’s parents, Y’s grandparents, Y’s
grandparents’ parents, etc.

pred(X,Y) « parent(X,Y)
pred(X, Z) «— parent(X,Y),parent(Y, Z)
pred(X, Z) «— parent(X,Y1),parent(Y1,Y?2), parent(Y2,Z)

As can be seen through this example, variables and constants are not enough:
we need recursion:

VX,Z X is a predecessor of Z if
1. X is a parent of Z; or
2. X is a parent of some Y, and Y is a predecessor of Z

The predecessor relation is thus

pred(X,Y) «— parent(X,Y)
pred(X,Z) «— parent(X,Y),pred(Y,Z)

and can be pictorially depicted as in 1.12
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parent of

predecessor of *

Figure 1.12: The predecessor relation.

Prolog = Predicates + Variables + Constants + Functions

Datalog (first order logic without functions) is however not expressive enough.
To express arithmetic operations, lists of objects, etc. it is not enough to simply
allow variables and constants as terms. We will also need function symbols as
supported in Prolog.

Consider Peano’s postulates for the set of natural numbers N.

1. The constant 0 is in N
2. if X is in AV then s(X) is in N/
There are no other elements in N

There is no X in N s.t. s(X) =0

oo W

There are no X,Y in NV s.t. s(X) =s(Y) and X #Y

We can write a definite clause definition using 1 constant symbol and 1 unary
function symbol for enumerating the elements of N:

natural(0) «
natural(s(X)) < natural(X)

The elements of N can be now generated by asking:
natural(N)?

Prolog also supports lists. Lists are simply collections of objects. For e.g.
1,2,3...0r 1,a,dog, . ... Lists are defined as follows:

1. The constant n:l is a list
2. If X is a term, and Y is a list then .(X,Y) is a list

So the list 1,2, 3 is represented as:
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(1,.(2,.(3, nil)))

Usually logic programming systems use a “[” “|” notation, in which the constant
nil is represented as [| and the list 1,2,3 is [1, 2, 3]. In this notation, the symbol
| is used to separate a list into a “head” (the elements to the left of the |) and
a “tail” (the list to the right of the |). Thus:

List Represented as Values of variables
[1,2,3] [X|Y] X=1Y =[2,3]
[[1,2],3] (X1Y] X =[12,Y =3

1] (X1Y] X=1Y=]

[1)2] [(XY] X=1Y=2

1] X, Y]
[1,2,3] [X,Y]|Z] X=1Y=227=]3]

1.4.4 Lattice of Herbrand Models

The discussion in this section is more or less similar to the discussion in Sec-
tion 1.3.8 and the reader is referred to the proofs in that Section for proofs of
most statements that will be made in this section. The only difference is that
while Section 1.3.8, in this section, we will talk about Herbrand models.

For a definite clausal formula, it can be shown that the set H of Herbrand
models is a complete lattice ordered by set-inclusion (that is, for Herbrand
models M1, M2 € H, M1 < M2 if and only if M1 C M2), and with the binary
operations of N and U as the glb and lub respectively. Recall that a complete
lattice has a unique least upper bound and a unique greatest lower bound. Since
we are really talking about sets that are ordered by set-inclusion, this means
that there is a a unique smallest one (the size being measured by the number of
elements). This is called the minimal model of the formula, and it can be shown
that this must be the intersection of all Herbrand models for the formula.

In the example above, ¥5" has several Herband models ({Nat(zero)} and
{Nat(zero), Nat(pred(zero))} are two examples). Of these { Nat(zero)} is the
smallest, and is the minimal model. There is an important result relating a
definite clausal formula ¥, its minimal model MM (X) and the ground atoms
that are logical consequences of X:

Theorem 17 If « is a ground atom then ¥ = « if and only if « € MM(X).

Here M M (-) denotes the minimal model. Thus, the minimal model of a definite
clausal formula is identical to the set of all ground atoms logically implied by
that formula. Thus, the minimal model provides, in effect, denotes the meaning
(or semantics) of the formula. The proof of this theorem follows nearly from
theorem 12 that was proved earlier.

We can envisage a procedure for enumerating the Herbrand models of a
formula. Consider the powerset of the Herbrand base of the formula. Now,
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we know that this powerset ordered by C necessarily forms a complete lattice,
with binary operations N and U. Some subset of this powerset is the set of all
Herbrand models, which we know is also a lattice ordered by C with the same
binary operations. So, the model lattice is a sublattice of the lattice obtained
from the powerset of the Herbrand base. Suppose now we start at some point
s in this sublattice, and we move to a new point that consists only of those
ground atoms of the formula made true by the model s. Let us call these atoms
s1. Then, a little thought should convince you that s; is also a member of the
sublattice of Herbrand models. Repeating the process with sy we can move to
models s3, s3 and so on. Will this procedure converge eventually on the minimal
model? Not necessarily, since we could end up moving back-and-forth between
points of the sub-lattice. (When will this happen, and how can we ensure that
we do converge on the minimal model?).

A slightly more general process can be formalised as the application of a
function Tp that, for a clausal formula P, generates an interpretation (not
necessarily a model) from another. That is:

Iy = Tp(Ix)

where

Tp(I) ={a:a« body € G(P) and body € I}

where G(P) is the ground instantiation of P as before. It can be shown that Tp
is both monotonic and continuous on the complete lattice obtained by ordering
the powerset of the Herbrand base by C. So, we know from the Knaster-Tarski
Theorem mentioned on page 11, that there must be a least fixpoint for Tp in
this lattice. We can prove that the procedure of obtaining I} from application
of Tp to I, will yield that fixpoint, and further, that this fixpoint will be the
minimal model. As an inference procedure though, it is not really very practical:
especially if all we needed to do is check if a particular atom was a logical
consequence. It gets worse if the minimal model is not finite, in which case the
procedure may not terminate in a finite number of steps. For all these reasons,
we will need to do better.

1.4.5 Inference
Consider the following set of clauses S:

likes(john, flowers) «—
likes(mary, food) «—
likes(mary, wine) «—
likes(john, wine) «—
likes(john, mary) «—
likes(paul, mary) «—

If you entered these clauses into a program capable of executing logic pro-
grams (some implementation of Prolog), and asked:

likes(john, X)?
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you will get a number of answers:

X = flowers
X = wine
X = mary

On the other hand, if the query were
likes(john, X), likes(mary, X)?
the answer should be:

X = wine

How this works will be examined in shortly. For now, consider likes(john,X)?.
An intuitive procedure will be:

1. Start search from 1°¢ clause

2. Search for any clause whose head has predicate likes/2, and 15¢ argument
is john

3. If no clause is found return otherwise goto 4

4. X is associated (“instantiated”) with the 2"¢ argument of the head literal,
the clause position marked, and the value associated with X is output

5. Start search from clause marked, and goto 2

As in the propositional case, we will only be concerned here with the rule of
resolution. In a broad sense, this remains similar to its propositional counterpart
(page 29: it applies to clauses with a pair of complementary literals, and the
result (or resolvent) is a clause with the complementary pair removed. However
the intricacies of predicate logic require a bit more care. Take the following pair
of conditionals (and their clausal forms):

Conditional Clausal Form

Va(Ape(x) «— Human(z)) Va(Ape(x) V ~Human(z))

Human(fred) — Human(fred) Vv -~Human(father(fred))
Human(father(fred))

For resolution to apply, we require the clausal forms to contain a pair of com-
plementary literals. We nearly do have such a pair: =Human(z) in the first
clause and Human(fred) in the second. It is apparent that if variable x in the
first clause were to be restricted to the term fred, then we would indeed have
a complementary pair, and the resolvent is:

Resolvent Clausal Form
Ape(fred) — Ape(fred) V ~Human(father(fred))
Human(father(fred))



1.4. FIRST-ORDER LOGIC 7

A single resolution step in predicate logic thus involves ‘substituting’ terms for
variables so that a complementary pair of literals results. Here, such a pair would
result if we could somehow ‘match’ the literals Human(z) and Human(fred).
The resulting mapping of variables to terms is called the unifier of the two
literals. Thus, mapping = to fred is a unifier for the literals Human(z) and
Human(fred).

Substitution

More generally, a substitution is a mapping from variables to terms that is
usually denoted as 0 = {vy/t1,v2/ta,...,v,/tn}. Applying a substition 0 to a
well-formed formula « results in a substitution instance, usually denoted by af.
Thus, applying the substitution § = {x/fred} to a : Vo(Ape(x) V ~Human(x))
results in the substitution instance af : (Ape(fred) V —Human(fred)). We
usually require substitutions to have the following properties:

1. They should be functions. That is, each variable to the left of the / should
be distinct. Thus, {z/fred,z/bill} is not a legal substitution; and

2. They should be idempotent. That is, each term to the right of the /
should not contain a variable that appears to the left of the /. Thus,
{xz/father(x)} is not a legal substitution. This test is sometimes called
the “occurs-check”. The occur-check disallows self-referential bindings
such as X/f(X). However, the temptation to omit the occur-check in
unification algorithms is very strong, owing to the high processing cost
of including it; it is the only test in the comparison cycle which has to
scrutinize the inner contents of terms, whereas all other tests examine only
the terms’ principal (outermost) symbols.

A pair of substitutions can be composed (‘joined together’). For example, com-

posing {z/father(y)} with {y/fred} results in {x/father(fred)}. In general,
the result of composing substitutions

01 = {ul/sl,...,um/sm}

92 = {1)1/t1,...,1}n/tn}

is (this may not be a legal substituition):

(91 092 = {u1/3192,...,um/8m92} U {vi/ti|vi ¢ {ul,...,um}}

Theorem 18 If « is a universally quantified expression that is not a term (i.e.,
a literal or a conjunction or disjunction of literals), and 6 is a substitution, then
the following holds: o = af. For example, P(x)V—-Q(y) = P(a)V—-Q(y), where
we have used the substitution {z/a}.
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Proof sketch: The proof for this example is easy: suppose I is a model, with
domain D, of P(x)V—Q(y). Then for alld; € D, and for alldy € D, Ip(d;) =T
or Ig(ds) = F. Suppose a is mapped to domain element d by I, then for all
d € D, Ip(d) =T or Ig(d) = F. Hence I is a model of P(a) V -Q(y). It is
clear that for different « or 6, a similar proof can always be given. Hence always
alEaf O

Unifiers

We are now in a position to state more formally the notion of unifiers. To
say that a substitution € is a unifier for formulse o; and a; means ;0 =
asf. However, there can be many unifiers. For example, the formule oy :
VaVzParent(father(x),z) and ag : VyParent(y, fred) have as unifiers 6, =
{z/fred,y/father(fred), z/ fred} and 0 = {y/ father(x), z/ fred}. In the first
case a1 = asty = Parent(father(fred), fred); and in the second case o162 =
by =V Parent(father(z), x). Notice that 05 is, in some sense, more ‘general’
than 6, as it imposes less severe constraints on the variables. There is, in fact,
a most general unifier (or mgu) for a pair of formulse. The substitution 6 is a
most general unifier for oy and s if and only if:

1. @10 = a0 (that is, 6 is a unifier for a; and as); and

2. For any other unifier o for a; and as, there is a substitution g such that
o =0op (that is, a0 is a substitution instance of «;8).

In the example just shown, 05 is the most general unifier.
Returning now to resolution, we can state the main steps involved for a pair
of clauses C; and Cs:

1. Rename all variables in clause Cs so that they cannot be confused with
those in Cy (for the variables in Cy are independent of those in C; and
the renamed clause is equivalent to Co). This is sometimes called “stan-
dardising the clauses apart”;

2. Identify complementary literals and see if an mgu exists;

3. Apply mgu and form the resolvent C'.

Here is an example:

Formula Clausal Form
Cy : Vz(Ape(x) «— Human(z)) Vz(Ape(x) V ~Human(x))
Cy : Ve(Human(x) «— Human(father(zx))) Vo (Human(x) V ~Human(father(x)))

The 3 steps above are:

1. Standardise apart. The two clauses are now:
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Cy : Va(Ape(z) V ~Human(zx))
Cy : Vy(Human(y) V ~Human(father(y)))

2. Identify complementary literals and mgu. It is evident that —Human(x)
in C7 and Human(y) in C are complementary. Their mgu is 6 = {z/y};

3. Apply mgu and form resolvent. The resolvent C' is as shown below:
C :Vz(Ape(x) V ~Human(father(x)))

As with propositional logic, the set-based notation used for clauses (page 60)
allows us to present resolution in a compact (algebraic) form:

R=(Ci ={L}oU(Cy — {M})f

The difference to propositional logic is, of course, the appearance of 6, the
mgu of literals L and =M. In fact, there is another problem that we have
avoided. Suppose our clauses C; and Cy are C : VaVy(Human(z)V Human(y))
and Cy : YuVv(—~Human(u) V ~Human(v)). Now it is clear that {C1,Cs} is
unsatisfiable. But, unfortunately, we will not be able to get to the empty clause
O using resolution as we have just described it. Here is one possible resolvent:
R : VyYv(Human(y) vV ~Human(v)). In fact, every possible resolvent of the two
clauses will contain two literals, as will resolvents using those resolvents, and so
on. What we really want to do is to eliminate redundant literals in any clause.
For example, C; should really just be Va Human(x) and Cy should really just be
YuHuman(u). The procedure that removes redundant literals in this manner is
called factoring.

Factoring

Formally, if C' is a clause, Ly,...,Ly(n > 1) some unifiable literals from C,
and 6 an mgu for the set {L1,...,L,}, then the clause obtained by deleting
Lo0,...,Ly0 from C0 is called a factor of C. For example, Q(a) V P(f(a))
is a factor of the clause =Q(a) V P(f(a)) V P(y) using {y/f(a)} as an mgu for
{P(f(a)), P(y)}. Also, Q(z)V P(z,a) is a factor of Q(z) VQ(y) VQ(z)V P(z,a).
Operationally, it finds a substitution that unifies one or more literals in
a clause, and retains only a single copy of the unified literals. Semantically
speaking, a literal L is redundant in a clause C, if it is equivalent to a clause
without that literal. That is C —{L} = C. Note that every non-empty clause C
is a factor of C itself, using the empty substitution () as mgu for one literal in C.
Tt can easily be shown if C’ is a factor of C, then C |= C’. We leave this to the
reader to prove?” From now on, we will assume that this elimination procedure
has been executed on clauses, and we are only dealing with their “factors”.

2TExercise.
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Resolution

The rule of resolution remains sound for clauses in the predicate logic. That is,
if Oy and Cy are clauses and R is a resolvent, then {C},Cs} = R. The presence
of variables and substitutions makes the proof of this a little more involved.

Theorem 19 Suppose R is the result of resolving on literal L in C7; and M
in Co. Let 0 be the most general unifier of L and =M that is used to obtain
R. Then, the soundness of a single step of resolution means {C1,Cs} = (Cy —
{L}H)o U (C2 — {M})6.

Proof: Let M be a model for C; and Cy. Now, we know that either (a) L6 is
true and M@ is false in M; or (b) L@ is false and M is true in M. Suppose the
former. Since M is a model for Cs, it is a model for C20 (based on theorem 18).
Therefore, at least one other literal (Co — {M})0 must be true in M. In other
words, M is a model for (C; — {L})0U (Cy — {M})d. Case (b) similarly results
in M being a model for (C; — {L})@ and hence for R. So, a single resolution
step is sound - the soundness of a proof consisting of several resolutions steps
can be shown quite easily using the technique of induction. O

Recall the second property of resolution from propositional logic, namely
that of refutation-completeness. In other words, if a formula (or a set of for-
mulae) is inconsistent, then the empty clause O is derivable by the use of reso-
lution. This property continues to hold for resolution in first-order logic. But
before we look at that, we revisit an important result.

1.4.6 Subsumption Revisited

Recall that in propositional logic, a clause C' subsumed a clause D if C C D.
In first-order logic, this generalises as follows. A clause C' subsumes a clause D
if there is some substitution € such that C8 C D. What does this mean? It
means that after applying the substitution 6 to C, every literal in C appears in
D. Here are a pair of clauses C' and D such that C' subsumes D:

C': Primate(x) «— Ape(x)
D : Primate(Henry) «— Ape(Henry), Human(Henry)
Here, a substitution of § = {x/Henry} applied to C' makes C§ C D. In general:

Theorem 20 If C' and D are clauses such that C0 C D for some substitution
6, then C |= D.

Proof: Since C' is a universally quantified formula, by theorem 18, we must have
C | €. Also, since clauses are disjunctions of literals and C9 C D, clearly,
CO = D and the result follows. O

However, unlike propositional logic, the reverse does not hold. That is,
C E D does not necessarily mean that C' subsumes D. Here is an example of
this:
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C : Human(z) < Human(father(x))
D : Human(y) < Human(father(father(y)))

With a little thought (let us not get too entangled in the species problem here),
you should be able to convince yourself that C = D. But you will find it
impossible to find a substitution # that will make C8 C D. What makes the
difference to the propositional case? The difference between implication and
subsumption in first-order logic arises because of self-recursive clauses of the
kind shown: a short, but influential paper by Georg Gottlob shows that it is
indeed only the self-recursive case that results in the difference.

1.4.7 Subsumption Lattice over Atoms

The subsumption relation is an example of a quasi-order. Let us take the simple
case of definite clauses with a single literal (that is, atoms). Consider the set .4
of all atoms in some language, and AT = AU {T, L}. Let the binary relation
> be such that:

e T =1foralllec A"
el>1foralllec AT

e 1> m iff there is a substitution € such that 10 = m, for , m € A

We will represent a list of elements es,...,e, as the(as the language Prolog
does) by [e1,...,ey], and let 1 = Mem(z, [z,y]) and m = Mem(1,[1,2]) then
1 = m with § = {z/1,y/2}. It is easy to see that = is a quasi-order over A™:
clearly 1 = 1, with the empty substitution § = (} (that is, = is reflexive). Now,
let 1 > m and m > 1. That is, there are some substitutions #; and 6 such that
101 = m and mf,; = 1. That is, (101) o 03 = n. With 8 = 6 o 05 it follows that
1>-1

Since = is a quasi-order, we know a partial ordering must result from the
partition of A™ into a set of equivalence classes AE. In fact, the partitions are
{[T1}, {[L]}, X1, ... where [I] denotes all atoms that are alphabetic variants?® of
1. That is, if , m € X; then there are substitutions p and o s.t. Iy = m and
mo = 1. That is, > is a partial ordering over the set of equivalence classes of
atoms (AL). (Mem(z1, [x1,1]), Mem(xa, [22,y2]) . .. are examples of members
of an equivalence class.)

Recall that the difference between subsumption and implication in first-
order logic arose with the appearance of self-recursive clauses. Since there is no
possibility of this with atoms in first-order logic, subsumption and implication
are equivalent, and we can see that logical implication (models) over atoms is
also a quasi-order over atoms.

28Two atoms are subsume-equivalent iff they are variants. This is not true for clauses in
general.
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As soon as we have a quasi-order, we can effectively construct a partial-order
over equivalence classes. So, the quasi-order of subsumption over atoms results
in a partial order over equivalence classes of atoms. In fact, AE is a lattice with
the binary operations M and U defined on elements of A}, as follows (here, we
have used [-] to represent an equivalence class):

o [LJMT[] = [L], and [T] M [1] = [1]

e If 11,1, € A have a most general unifier (see page 78) 6 then [1;] M [lo] =
[16] = [126].
This can be proved as follows. Let [u] € A} such that [I;] = [u] and
[I] > [u], then we need to show that [110] > [u]. If [u] = [Ll], this is
obvious. If [u] is conventional, then there are substitutions o7 and o9
such that [lyo1] = [u] = [l202]. Here we can assume o; only acts on
variables in 11, and o5 only acts on variables in l5. Let 0 = 01 Uos. Notice
that o is a unifier for {[l4], [lz]}. Since 6 is an mgu for {[l;01], [l202]}, there
is a v such that 0y = 0. Now [116~] = [l10] = [lio1] = [u], so [116] = [u].

e If 15,15 € A do not have a most general unifier 6 then [1;] M [l2] = [L].

Since 1; and 15 are not unifiable, there is no conventional atom u such that
[I1] > [u] and [I3] > [u]. Hence [1;] M [l] = [L].

o [LJU =, and [T]U[I] = [T]

e If 1; and 1, have an “anti-unifier” m then [l;] U [lo] = [m]; otherwise
(L] U {lg] = [T]

Henceforth, we will drop the square backets [-] to denote equivalence classes
and will instead implicitly assume their presence. The “anti-unifier” in the
join operation is not something we have come across before, and needs some
explanation. To get started, let us look at the atom Mem(1,[1,2]). The list [1, 2]
written out in long-hand is really a term composed of the constants 1, 2 and the
empty list, which we will denote by the constant nil. That is, [1,2] is really the
term list(1,1ist(2,list(nil))), where list is a function, and Mem(1,[1,2]) is really
Mem(1,list(1,list(2,nil))). Now, we can devise a “term-place” notation to
identify the occurrence of each term in any atom. In Mem(1,list(1,list(2,nil))),
the 1 is a term that occurs in two places: in the first argument (or “place”) of
Mem, and as the first argument of the second place of Mem. We can denote
these two occurrences as (1,(1)) and (1,(2,1)). Similarly, we can encode the
occurrences of other terms: (2,(2,2,1)) and (nil, (2,2,2)).

You should convince yourself that the occurrence of every term ¢ in an atom
can indeed be represented by the pair (¢, p), where p is a sequence of places. We
now have all we need to be able to describe the anti-unification algorithm for a
pair of literals with the same predicate symbol (adapted from Plotkin, 1970):

Input: A pair of atoms 1; and 15 with the same predicate symbol

Output: 1, U1y
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6.
7.

Letl=liandm=1,,0=0,0=10

If 1 = m return 1 and stop.

83

Try to find terms ¢; and to that have the same (leftmost) place in 1
and m respectively, such that ¢; # t5 and either ¢; and t5 begin with
different function symbols, or at least one of them is a variable.

If there is no such t¢1,to, return 1 and stop.

Choose a variable x that does not occur in either 1 or m and wherever
t1 and to occur in the same place in 1 and m, replace each of them

by x

Set 6 to U {z/t1} and o to o U {x/t2}
Go to Step 3

The Table 1.1 shows the progressive construction of lubs starting with terms
and culminating in literals.

l Lub [ Definition Examples
lub of terms
lub(ty, ta)
1. lub(t, t) = t, o lub([a,b,c],[a,ec,d]) = [a, X, Y]
2. lub(f(sl, ..., sn), f(t1,---,tn)) = o lub(f(a,a), f(b,b)) = f(lub(a,b), lub(a, b)) =
Flub(sy, t1), ..., lub(sn, tn)), F(V, V) where V stands for lub(a, b).
3. lub(f(s1s---ssm)sg(t1s--.,tn)) = V, where e When computing lggs one must be careful to
f # g, and V is a variable which represents use the same variable for multiple occurrences
Tub(f(s1, -y 8m)s 91y -y tn)), of the lubs of subterms, i.e., lub(a,b) in this
example. This holds for lubs of terms, atoms
4. lub(s,t) = V, where s # ¢ and at least one of s and clauses alike.
and t is a variable; in this case, V is a variable
which represents lub(s, t).
lub of atoms
lub(ay, az)
1. lub(P(s1,.-.,8n), P(ty, ..., tn)) =
P(lub(s1,t1), -, lub(sn, tn)), if atoms
have the same predicate symbol P,
2. Lub(P(s1,. .-, 5m), Q(t1, ., tn)) is unde-
fined if P # Q.
lub  of literals
lub(1y, 12)
1. if 1; and ly are atoms, then lub(ly,ly) is com- e lub(Parent(ann, mary), Parent(ann, tom)) =
puted as defined above, Parent(ann, X).
2. if both 1; and ly are negative literals, 1] = af, e lub(Parent(ann, mary), Parent(ann, tom)) =
Iy = aj, then lub(ly,lz) = lub(@y,a3) = unde fined.
lub(ay, az),
e lub(Parent(ann, X), Daughter(mary, ann)) =
3. if 1 is a positive and 1y is a negative literal, or undefined.
vice versa, lub(ly, lg) is undefined.

Table 1.1: Table showing progressive definitions of lubs, starting with terms and
culminating in literalss.

Let us look at an example of constructing the anti-unifier of Mem(1,[1,2])
and Mem(2,[2,4]. That is, 1; = Mem(1,list(1,list(1,list(2,nil)))) and 1y =

Mem/(2,list(2,list(2, list(4,nil)))).

You should be able to work through the
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Figure 1.13: Illustration of the proof of theorem 22.

steps of the algorithm to find that it terminates with 1 = m = Mem(x, list(x,
list(y,nil))) with 8 = {x/1,y/2} and o = {x/2,y/4}.

But is the procedure correct? That is, does it really return a lub of a
pair of atoms 1; and 1,7 Suppose the procedure returned an atom 1, and let
0={x1/s1,...,x/sx} and o = {x1/t1,...,x1/tx}. Thatis1ld =1; and lo = L,.
Now suppose there is some other atom 1’ such that 1’ = 1; and 1’ > 15. Then,
we have to show that 1’ > 1 for any such 1'.

The proof of this is a bit laborious and will dealt with subsequently. The
truth of the next lemma is easy to see:

Theorem 21 After each iteration of the Anti-Unification Algorithm, there are
terms s1,...,8; and ty,...,t; such that:

1. 0=A{z1/s1,...,2i/s;} and o = {z1/t1,...,2i/ti}.
2.10 =1; and mo = 15.
3. For every 1 < j <1, s; and t; differ in their first symbol.

4. There are no 1 < 5,k <1 such that j #k, s; = s, and t; = ;.

Theorem 22 Let1; and 1y be two atoms with the same predicate symbol. Then
the Anti- Unification Algorithm with 11 and 1y as inputs returns 1, U ls.

Proof: 1t is easy to see that the algorithm terminates after a finite number of
steps, for any 1;, lo. Let u be the atom that the algorithm returns, and let
0 ={z1/s1,...,2:/8:} and 0 = {z1/t1,...,2;/t;} be the final values of § and o
in the computation of u (so u equals the final values of 1 and m in the execution
of the algorithm). Then uf = 1; and uo =l by Theorem 21, part 2. Suppose
v is an atom such that v = 1; and v > l5. In order to show that u =1; L1, we
have to prove v >~ u.

Let w = u v, which exists by the proof on page 82. Then u = w and
v >w. Sincew =ullv,u>1l; and v > 11, we must have w = 1. Similarly
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w > ly. Thus there are substitutions ~, , v, such that uy =w, l; = wu = uyu
and 1y = wrv = uwyv. Then uf =1; = uyu and uo = 1y = uyv (see Figure 1.13
for illustration). Hence, if x is a variable occurring in u, then 20 = zyu and
TO = xYV.

We will now show that u and w = uy are variants, by showing that ~ is a
renaming substitution for u. Suppose it is not. Then v maps some variable =
in u to a term that is not a variable, or v unifies two distinct variables x, y in
u.

Suppose x is a variable in u, such that xy = ¢, where ¢ is a term that is not
a variable. If x is not one of the z;’s, then zyu = x0 = =z, contradicting the
assumption that xy = ¢ is not a variable. But on the other hand, if x equals
some z;, then ty = zyu = 260 = s; and tv = zyv = o = t;. Then s; and ¢;
would both start with the first symbol of ¢, contradicting theorem 21, part 3.
So this case leads to a contradiction.

Suppose z and y are distinct variables in u such that v unifies z and y.
Then,

1. If neither x nor y is one of the z;’s, then zyu = 20 = x # y = yo = yyu,
contradicting zy = yy

2. If x equals some z; and y does not, then zyy = 20 = s; and zyv = o =
tj, so xypu # xyv by theorem 21, part 3. But yyu = yd =y = yo = yyv,
contradicting zvy = y~y.

3. Similarly for the case where y equals some z; and = does not.

4. If x = z; and y = 2, then j # k, since  # y. Furthermore, s; = z0 =
Typ = yyp = Y0 = s, and t; = xo = YV = yyv = yo = t,. But this
contradicts theorem 21, part 4.

Thus, the assumption that + unifies two variables in u also leads to a con-
tradiction. Thus v is a renaming substitution for u, and hence u and w are
variants. Finally, since v > w, we have v = u. O

It is however a more straightforward matter to see the following:

Theorem 23 If AE is a set of equivalance classes of atoms A augmented by
the two elements T and L, then for any pair of elements 11,15 € AL, 13 U1y
always exists.

Proof: The possibilities for each of 1; and 15 are that they are either: (1) some
variant of T; (2) some variant of L; or (3) an atom from S. It can be verified
that 1y M 15 is defined in all 9 cases.

1. Ifll :TOI‘IQ :T, thenlll_IIQ =T. If11 :J_, then 11L|12 :12. If
Iy =1,then 1 Ul, =1;.

2. If 1; and I, are conventional atoms with the same predicate symbol, 13 U1y
is given by the Anti-Unification Algorithm.
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[T1

[memm(A B)]
[mem(3 [B.C]]
[mem(A [A.B])]

[mem(1.[1A])] I I [memi A [A 3]])

[memm(1[1.3]] ) [mem(2[23)]
[ L[L ]])_] -

[L]

Figure 1.14: An example subsumption lattice over atoms.

3. If 1; and 1y are conventional atoms with different predicate symbols, then
Lul,="T.

O
Now that we have established the existence of an lub and glb of any 1,1, €
AJEE, we have shown that the set of atoms ordered by subsumption, is a lattice.

Theorem 24 Let A be the set of atoms. Then < AE, >=> 15 a lattice.

Figure 1.14 shows an example subsumption lattice over atoms in ST = {
T, L, mem(1,[1,3]), mem(1,[1,2]), mem(2,[2,3]), mem(1,[1,A]), mem(A,[A, B]),
mem(A,[A,3]), mem(A, B, C]), mem(A, [B|C]) mem(A, B) } Note that

e | = mem(A,[A, B]) = mem(1,[1,2]) = m since with § = {A/1, B/2},
0=m

o mem(Al, [Al, B1]), mem(A2,[A2, B2])... are all members of the same
equivalence class

Recall that, for atoms [, m € S, subsumption is equivalent to implication. That
is, if [ = m then ! = m. Least-general-generalisation of atoms will be enountered
in Lab Nos. 5, 6.

What about subsumption over clauses with more than just one literal? Is this
still a quasi-order, with a lattice structure over equivalence classes of clauses?
The short answer is “yes”, but more on this in Chapter 2.

1.4.8 Covers of Atoms

What about the covers relation in the subsumption lattice of atoms? Recall
that covers are the smallest non-trivial steps between individual atoms that we
can take in the lattice. Since 1y is a downward cover of 1; iff 1; is an upward
cover of 15, we will first restrict attention to downward covers.



1.4. FIRST-ORDER LOGIC 87

Downward Covers

Theorem 25 Letly be a conventional atom, f an n-ary function symbol (recall
that f can be of zero arity and therefore a constant), z a variable in 1y, and
T1,...,Tn, distinct variables not appearing in 1y. Let

1. 0={z/f(x1,...,2,)} and
2. 0 ={z;/x;}, i#]

Then 1o = 110 and 13 = ly0 are both downward covers of 1. In fact, every
downward cover of 11 must of one of these two forms (note that a special instance
of the first case is when the function f has arity 0 and is therefore a constant).
The substitutions 0 and o are termed elementary substitutions. In ILP, these 3
operations define a “downward refinement operator”

Proof:

Proof for (1): It is clear that 1; and 1y are not variants, so 1; > 1. Suppose
there is a m such that 1; > mls. Then there are v, i, such that 1y = m and
my = 1y, hence liyu =15 = 1;6. Here «y only acts on variables in 1;, and p only
acts on variables in m.

Let (x,p) be a term occurrence in 1y, where x is a variable. Suppose x # z,
then 26 = x, so (z,p) must also be a term occurrence in lo. Hence 7y must be
a variable, for otherwise (zyu,p) in lo would contain a constant or a function.
Thus v must map all variables other than z to variables. Furthermore, v cannot
unify two distinct variables in 1y, for then 1 would also have to unify these two
variables, which is not the case.

If zv is also a variable, then v would map all variables to variables, and
since v cannot unify distinct variables, it would map all distinct variables in
1; to distinct variables. But then v would be a renaming substitution for 1y,
contradicting 1; > m. Hence 7 must map z to some term containing a function
symbol.

Now the only way we can have liyu = 1o, is if 2y = f(y1, ..., y,) for distinct
y; not appearing in l;, and no variable in 1; is mapped to some y; by v. But
then 13y and l; would be variants, contradicting 13y = m > 1. Therefore such
a m does not exist, and 1y is a downward cover of 1;.

Proof for (2): Tt is clear that 1; > l3. Suppose there is a m such that
l; > m > l3. Then there are v, u, such that ;7 = m and mu = 13, hence
lLiyu =13 = lyo. Here  only acts on variables in 1, and p only on variables
in m. Note that v and g can only map variables to variables, since otherwise
Liyu = 13 would contain more occurrences of functions or constants than 1;,
contradicting ;0 = 13, since ¢ does not add any occurrences of function symbols
to 11.

If v does not unify any variables in 1y, then 1; and m would be variants,
contradicting l; > m. If v unifies any other variables than z and z, then we could
not have l;yu = 13. Hence v must unify z and z, and cannot unify any other
variables. But then 1;v and 13 would be variants, contradicting 1,7 = m > 15.
Therefore such a m does not exist, and 13 is a downward cover of 1; O
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Application of the elementary substitutions on T results in its downward
covers called most general atoms, that consist of all n-ary predicate symbols,
each with n-distinct variables as arguments. Dually, 15 is an upward cover of 1;
iff 1; is a downward cover of l5. Thus the upward covers of some conventional
atom 1; are also of two types, which can be constructed by inverting the two el-
ementary substitutions discussed in theorem 25. Trivially, every ground atom?®
is an upward cover of 1.

Further, it can be proved that given two atoms 1; and 1 such that 1; > 15
(I = 1y), there is a finite sequence of downward (upward) covers from 1; (ly) to
a variant of I (1;). This means that if we want to get from 1; to (a variant of) Lo,
we only need to consider downward (upward) covers of 15, downward (upward)
covers of downward (upward) covers of 1y, ete. In fact, there is a finite downward
cover chain algorithm for this purpose, which is outlined in Figure 1.15.

INPUT: Conventional atoms 1, m, such that 1 > m.

OUTPUT: A finite chain 1 =1y = 1; = ... = 1,1 = 1, = m, where each
;11 is a downward cover of 1;.

Set 1o =1 and i = 0, let 6y be such that 16p = m; (1)

if No term in 6; contains a function or a constant; (2) then

Goto 3.
else if z/f(t1,...,t,) is a binding in 6; (n > 0) then
Choose new distinct variables zj, ..., z,;

Set 1i+1 = lz{x/f<2:1, ey Zn)},
Set 91‘4_1 = (91 \ {J?/f(tl, ST ,tn)}) U {Zl/tl, ey Zn/tn};
Set ¢ to 7 + 1 and goto 2;
end if
if There are distinct variables z,y in 1;, such that z6; = y6; (3) then
Set 1i+1 = li{a:/y};
Set 91'4_1 = 9, \ {.13/1)91},
Set i to ¢ + 1 and goto 3;
else if Such x, y do not exist then
Set n =4 and stop;
end if

Figure 1.15: Finite Downward Cover Chain Algorithm.

The subsumption ordering on atoms can be summarized through the follow-
ing example:

o [ =mem(A,[A,B]) = mem(1,[1,2]) = m since with § = {A/1, B/2},
0=m

o mem(Al, [Al, B1]), mem(A2,[A2, B2])... are all members of the same
equivalence class

29Number of ground atoms can be infinite if the language consists of a function symbol of
arity > 1.
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Upward Covers

To construct a finite chain of upward covers to 1y, starting from ls, where 1; > 15,
the algorithm 1.15 needs to be reversed. While algorithm 1.15 first instantiates
variables to functions and constants, and then unifies some variables, the reverse
algorithm "undoes” unifications and instantiations using inverse substitution
(which is, strictly speaking, not a function).

One asymmetry of the downward and upward cases concerns the upward
covers of L. In case of a language without constants but with at least one
function symbol of arity > 1, the bottom element | has no upward covers at
all, let alone a finite complete set of upward covers. In case of a language with
at least one constant and at least one function symbol of arity > 1, there are an
infinite number of conventional ground atoms, each of which is an upward cover
of 1. Together these ground atoms comprise a complete set of upward covers of
L, but again | has no finite complete set of upward covers in this case. However,
each conventional atom does have a finite complete set of upward covers. The
top element T does not have any upward covers at all, but it has the empty set
as a finite complete set of upward covers, since no element lies "above” T.

1.4.9 The Subsumption Theorem Again

The Subsumption Theorem holds for first-order logic, just as it did for proposi-
tional logic:

If X is a set of first-order clauses and D is a first-order clause. Then
Y | D if and only if D is a tautology or there is a clause C' such
that there is a derivation of C' from ¥ using resolution (X kg C)
and C' subsumes D.

By “derivation of a clause C” here, we mean the same as in propositional logic
(page 30), that is, there is a sequence of clauses Ry, ..., R = C such that each
R; is either in ¥ or is a resolvent of a pair of clauses in {Ry,..., R;—1}. While
extending the proof of theorem 9, the proof of this is a bit involved and we do
not present it here: we refer you to [NCAdW97] for a complete proof that shows
that the result does indeed hold.

An immediate consequence is that the refutation-completeness of resolution
follows for first-order logic as well. It is not possible, therefore, to decide, using
resolution, whether a set ¥ of Horn clauses is, in fact, unsatisfiable (that is,
Y = O: in fact, we will see later that the roots of this undecidability is more
fundamental than just to do with Horn clauses or resolution).3® All that we are
saying with refutation-completeness is that if ¥ = O then there is a resolution

30This gives us another difference between implication and subsumption. Unlike implication,
subsumption between a pair of clauses is decidable, although not necessarily efficiently in all
cases. We can informally show that it is decidable whether a clause C' subsumes a clause D.
If C = D, then there is a substitution # which maps each 1; € C' to some 1; € D. If C contains
n literals, and D contains m literals, then there are m"™ ways in which the literals in C can
be paired up with literals in D. Then we can decide C' = D by checking whether for at least
one of those m"™ ways of pairing the n literals in C' to some of the m literals in D, there is a
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proof that ends in O. We cannot, however use an algorithm with a resolution-
based theorem prover to determine if some set X is, in fact, unsatisfiable. What
can go wrong? Well, if a O is found, then the algorithm can terminate with
“success”. But, it may end up with cases where it will be impossible to tell if
the resolution process will terminate. We will see an example of this shortly.

1.4.10 Proof Strategies Once Again

Recall what we have been using so far: the derivation of a clause C' from a set
of clauses ¥ means there is a sequence of clauses Rq,...,R; = C such that
each Cj is either in X or is a resolvent of a pair of clauses in {Ry,...,R;_1}.
This remains unchanged for first-order logic, and results in the unconstrained
form of a proof for C. So, just as in the propositional case, we will say that
there is a linear derivation for C' from X if there is a sequence Ry, ..., Ry = C
such that Ry € ¥ and each R; (1 < i < k) is a resolvent of R;_; and a clause
C; € YU{Ro,...,R;—2}. By requiring side clauses to be only from ¥, we
obtain (as before) the strategy called input resolution. Also, as in propositional
logic, linear resolution is refutation-complete but input (and SLD) resolution
for arbitrary clauses is not, except when restricted to Horn clauses.
To recap refutation, consider P = ¢. Based on the deduction theorem:

PlEqg = PE(¢+«)ifft:
P = (FALSE «—~ q) iff:
PU{~q} = FALSE

That is P |= ¢ iff PU {~ ¢} is unsatisfiable. Thus, logical consequence can be
checked by refutation.

We will illustrate general resolution in first order logic with an example.
First of all, resolving a pair of clauses requires a substitution that unifies a pair
of complementary literals.

Let D = {logical(A), —~android(A)} and 6§ = {A/Y}
Do =
The resolvent of C, D is E = {likes(X,Y"), ~wulcan(X), ~android(Y)}

E=(C-{l})06U(D—-{m})0=(Co—{1}0) U (DO — {m}0) where 10 = ~-m#b
The typical resolution steps are:
Step 0. Given a pair of clauses:

Cqp : likes(steve, X) « buys(X,ilp-book)

Cy i buys(X,ilp-book) « sensible(X),rich(X)

Step 1. Rename all variables apart.

6 such that 1,60 = mj, for each (1;,m;) in the pairing. If so, there is a 6 such that C§ C D,
and hence C' > D. If not, then there is no such 6, and C ¥ D.
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Cq : likes(steve, A) «— buys(A,ilp-book)
Co : buys(B,ilp-book) « sensible(B), rich(B)
Step 2. Identify complementary literals and see if mgu exists.
buys(B, ilp-book)d = buys(A, ilp_book)6
0 ={A/B}
Step 3. Apply 6 and form resolvent C.
1. Let C160 = hiV ~ 11V ~lg ...V ~ 1
2. Let Co0 =11V ~m1V ~mg...V ~mp

3. Then C = hqV ~my V...V ~mpV iy Vol

Two questions arise with SLD-resolution: how is the negative literal to be
selected from the R;_1; and if more than one clause in ¥ can resolve with
the selected literal, which one should be selected? We illustrate this with an
example. Let X be the set of clauses:

Cy : Vr1Vas~Grandparent(xy, xa)

Cy : VaVyVz(Grandparent(z,y) V
—Parent(x,z) V —Parent(z,y))

Cy : Parent(henry, jane)

C3 : Parent(jane, john)

A little thought should convince you that ¥ = 0. We want to see if ¥ Fgpp O.
It is evident that Cy and Cy resolve with mgu {z1/z,z2/y}. The resolvent is
Rll

Co : V1 Vro~Grandparent(xzy, x2)

Cy : VaVyVz(Grandparent(z,y) V
—Parent(x,z) V —Parent(z,y))

Ry : YVuVoVw(—=Parent(u,w) V —Parent(w,v))

Cy : Parent(henry, jane)

C3 : Parent(jane, john)

Since we are using SLD, one of the resolvents for the next step has to be
Ry. The other resolvent has to be one of the C;’s. Clearly, R; can resolve
with either Cy or C3. Which one should be selected? Having selected one of
Cy or Cs, it is clear that either of the negative literals in Ry (—Parent(u,w)
or = Parent(w,v)) could act as the complementary literal. Which one should
be selected? These two issues—which clause and which literal—are decided by
a search rule and a computation rule respectively. A simple search rule is to
select clauses in the order they have been shown. A simple computation rule is
to select the “leftmost” literal first. In fact, these are the rules used by most
PRrOLOG systems. With this search and computation rule, you should be able
to derive the empty clause O. Here is the input resolution diagram for this
(Exercise - fill this in):
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Figure 1.16: An example SLD-tree.

You should be able to draw the diagram for a different choice of search and
computation rule: for example a search rule that select clauses in reverse order
of appearance, and a “rightmost” literal first computation rule. It is more
common, especially in the logic-programming literature, to present instead the
search process confronting a SLD-resolution theorem prover in the form of a
tree-diagram, called an SLD-tree. Such a tree effectively contains all possible
derivations that can be obtained using a particular computation rule. Each
node in the tree is a “goal” of the form « L1, Lo, ..., L. That is, it is a clause
of the form Va1Vag--- (L1 V -La V.-V ~Lg). Given a set of clauses X, the
children of a node in the SLD-tree are the result of resolving with clauses in
Y (nodes representing the empty clause O have no children). SLD-trees have
three kinds of branches: those that end in O (“success” branches); those that
end in goals (clauses) that cannot be resolved any further (“failure” branches);
and those that continue indefinitely (infinite branches).3! An example SLD tree
is produced in Figure 1.16

‘We can now visualise the effect of the proof strategy, search and computation
rules. The SLD proof strategy effectively determines the nodes that can appear
in the SLD-tree. Assuming some convention for drawing the tree, the effect of

31'We do not like these.
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changing the computation rules is then to alter the ordering of nodes in an SLD-
tree. The search rule represents the procedural aspect of actually conducting
the search (for example, in forcing a depth-first search of the tree). We can
also clarify how completeness is affected by these choices. First, the refutation-
completeness for Horn (and definite) clauses for SLD-resolution can be restated
as meaning that if a set of clauses is unsatisfiable then there will be a leaf
in the SLD-tree with the empty clause O. It can be shown that the choice
of computation rule will not alter this (informally, you can see that different
computation rules will simply move the location of the O around). If there
is a O in the tree, will a specific search rule always find it? The answer is

“ 9

no”: an example is shown below, in which a search rule that does a depth-
first search (enumerating clauses in the conventional leftmost first manner), will
never recover from the infinite branch. This was illustrated on page 97.

1.4.11 Execution of Logic Programs

Executing definite-clause definitions can sometimes lead to non-termination
(“infinite loops”) or even unsound behaviour (recall the idiosyncratic behaviour
of not/1 in the propositional case). How are logic programs executed?

1. Execution of propositional logic programs
2. Execution of programs without recursion or negation
3. Execution of programs with recursion but no negation

4. Execution of programs with recursion and negation

Searching for answers: Proplog
Consider the following program:
1. is-mammal «— has-hair
2. is-mammal <« has-milk
3. is_carnivore <« is.mammal, eats_meat
4. is_carnivore «— has_pointed_teeth, has_claws, has_forward_eyes
5. is-cheetah <« is_carnivore, has-tawny-colour, has-dark-spots
6. is_tiger <«— is_carnivore, has-tawny-colour, has_-dark_stripes
7. has-hair <«
8. eats_meat <«
9. has_tawny_colour «—
10. has-dark-spots «—
11. is_dangerous <« is_cheetah

12. is-dangerous <« is_tiger
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Figure 1.17: The search space for query is_dangerous?.

Recall, based on the discussion of SLD resolution starting on page 37 that
the search space for the query is_dangerous? will be as shown in Figure 1.17

Even with this simple Proplog program, a number of choices have to be when
searching this space to see if is_dangerous is a logical consequence of clauses
1 —12. As discussed ealier, research into proof procedures in logic programming
has been concerned with searching such spaces efficiently keeping in mind the
properties of soundness or completeness:

e Anything that is derived should be a logical consequence
e Any logical consequence should be derivable

Typically, executing a logic program involves solvingqueries of the form: 1y,15,...,1,7
where the 1; are literals. Two problems confront us when solving this query:

1. Which literal of the 1; should be solved first?
e the rule governing this is called the computation rule

2. Which clause should be selected first, when more than one can be used to
solve the literal selected?

e the rule governing this is called the search rule

For a given program and query, the computation rule determines a tree of
choices. The search rule determines the order in which this tree is searched
(i.e. depth-first, breadth-first etc.). Computation proceeds as follows. Given a
program P and a query: 1j,1p,...,Li_q,1;,... 1,7

1. Use the computation rule to select 1;

2. Use the search rule to select a clause: 1; < by, bo,... by in P that can
solve ;. If none found, STOP

3. Solve the query: 13,1p,...,1;_1,by,ba,... by ... 1,7
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Figure 1.18: Search space for query isqangerous? using the leftmost literal first
computation rule in Figure 1.17.

e As will be seen shortly, the head of the clause selected does not have to
match exactly the literal selected. It will be enough if the two can unify,
i.e. there is some substitution of variables for terms in the two literals
that makes them the same.

e The step of replacing the literal selected with the literals comprising the
body of the clause (Step 3) is an application of the rule of inference,
resolution

In Figure 1.18 is the earlier query with a computation rule that selects the
leftmost literal first in the query: The search rule will determine how this tree is
searched for a leaf terminating in SUCCESS (for e.g. depth-first left-to-right,
depth-first, right-to-left etc.)

e Different choices will affect efficiency, and sometimes even the ability to
find the SUCCESS leaf

e Trees like this are known as SLD-trees: a reference to the trees obtained
using a particular computation rule in conjunction with the inference rule
of resolution for definite clause programs.

What about proofs for datalog programs without recursion? Consider again
the example

1. gparent(X, Z) «— parent(X,Y), parent(Y, Z)

2. parent(tom, jo) «—

3. parent(jo,bob) «—

4. parent(jo,jim)

The rightmost literal first computation rule yields the proof tree in Fig-

ure 1.19 What about Datalog programs with recursion? Consider the following
program:

1. less_than(X,Y) — succ(Y,X)

2. less-than(X,Y) «— succ(Z,Y),less-than(Z,Y)
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gparent (tom, ) 7
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parent (tom, tom) ?
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Figure 1.19: Search space for query gparent(tom, Z)? using the rightmost literal
first computation rule.

Lese_than(one,¥)7

‘ 1 {x/cns) ‘ 2 {x/one)

suce(z,cne), less_than(z,¥1?
suce (¥, one}? -

‘ 3 {¥/two} 3 {z/two}
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Figure 1.20: Search space for query less_than(one, Y)? using the leftmost literal
first computation rule.

3. succ(two, one) <«

4. succ(three, two) «—

Leftmost literal rule for the query less_than(one,Y) yield the search tree in
Figure 1.20

What about completeness with respect to the choice of computation and
search rules? One way to search the trees obtained so far is depth-first, left-to-
right. Since clauses that appear first (reading top to bottom) in the program
have been drawn on the left, this search rule selects clauses in order of ap-
pearance in the program. In fact, most logic programs are executed using the
following:

Computation rule. Leftmost literal first
Search rule. Depth first search for clauses in order of appearance

However, will a logic-programming system with an arbitrary computation rule,
and a depth-first search of clauses in some fixed order always find a leaf termi-
nating in SUCCESS (if one exists)? The answer to this is a No.
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bachelor (X)? bachelor(X)?
" B
not (married (X)), male(X)? not (married (X)), male(X)?
|
PR
' 3 {x/john} 4 {x/pill}
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Leftmost literal computation rule - h o
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Figure 1.21: Two proof trees with different computation rules for the query
bachelor(X)?.

Finite failure: programs with negation

Consider the following program:
1. bachelor(X) « not(married(X)), male(X)
2. married(john) «—
3. male(john) «—

4. male(bill) «—

Two trees for the query bachelor(X)? with different computation rules are
outlined in Figure 1.21. where, the query not(q)? succeeds iff ¢7 “finitely fails”.
A finitely failed tree is such that it has finite depth, finite depth and all com-
putations end in FFAIL As discussed for propositional logic in Section 1.22, the
query not(q)? succeeds iff ¢? “finitely fails”. A finitely failed tree is a derivation
tree of finite depth, finite depth and for which, all computations end in FFAIL.
Given a program P, a computation rule R and a search rule S, one could think
of all the ground queries that can be asked of P. For e.g. with the program
with less_than/2 and succ/2 clauses, these are of the form: less_than(one,two)?,
less_than(two,one)? ..., succ(one,two)? ... Such queries fall into 3 categories:

1. Those which are answered yes because a SUCCESS branch is found
2. Those which are answered no because the query finitely fails
3. Those that are neither in categories 1 or 2

The three categories of ground clauses are depicted in Figure 1.22.

1.4.12 Answer Substitutions

The example we have just seen is a simple form of the kind of refutation-based
theorem proving using resolution adopted by systems based on logic program-
ming. There, we are typically interested in “answer substitutions” for a query,
given some set of definite clauses ¥ (recall that these are a special kind of Horn
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Figure 1.22: Three categories of ground clauses.

clause, in which there is exactly one positive literal). That is, we want to know
if there are any substitutions for z1,...,z, such that Q(x1,...,z,) is a logical
consequence of 3?7 That is, we are seeking substitutions for z1, ..., z, such that:

Y E 3 drs. .z, Q(xr, 20 . 2)

holds. Substitutions for the x1,...,x, are then said to be correct answers.
Using 3xQ(x) to denote the formula on the right, we can apply the deduction
theorem in manner shown on page 25:

Y = IxQ(x) if and only if YU {-3IxQ(x)} =D
Since ~Jza = Vz—a (page 66):

Y | IxQ(x) if and only if ¥ U{Vx-Q(x)} =D

Now, ¥ is a set definite clauses and ¥x—Q(x) is a Horn clause. Taking as an
article of faith what we said earlier about the refutation completeness of SLD-
resolution: ¥ U {Vx—Q(x)} = O then ¥ U {Vx—=Q(x)} Fsrp O. This provides
one way of determining computed answers for x1, ..., z, such that Q(z1,...,z,)
is a logical consequence of a set of Horn clauses ¥.7 Answers are obtained by:

1. Adding Vx—Q(x) to X. The result is a set of clauses;

2. Finding all substituitions for x1,...,x, that result in a derivation of O
using SLD-resolution.

Are computed answers always correct? If some care is taken to ensure there
are no variables shared between queries and clauses in 3 before commencing an
SLD derivation, the answer to this question is “yes”. (In fact, if we are only in
checking for a proof for O, then these additional precautions are not needed.)
We know, of course, that resolution is refutation-complete. And we also know
that the minimal model of 3, or MM(X) is identical to the ground atomic
logical consequences of ¥. That is, M M (X) consists of all ground atoms ¢ such
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that ¥ = g. The set of ground atoms ¢ for which XU {—q} Fsrp O is called the
success set of 3, or SS(X). You should now be able to convince yourself that
SS(¥) = MM(Y).

The resolution procedure as described here has a limitation concerned with
term evaluation

e Consider a function sqr/1 that accepts a natural number and returns its square
e The mgu algorithm cannot unify p(sqr(2)) and p(2)

Extensions are possible to overcome this

e Resolution with “paramodulation” performs term rewrites to achieve this

e But, logic programming systems use a special predicate that forces term evalu-
ation

e Thus, p(sqr(2)) is usually written as X is 2 x 2,p(X). p(X) unifies with p(4)
after forced evaluation the value of X by the is/2 predicate

Finally, the extension of SLD to negation-as-failure requires some care.
SLDNF-resolution for first-order clauses is only sound if we are checking the
proof of a ground literal.

1.4.13 Theorem Proving for Full First-Order Logic

1.5 Adequacy

We now turn to the questions of what can, and cannot be achieved by using a
representation based on Horn clauses, and inference based on SLD-resolution.
First of all, the representation problem. Based on the work of Stephen Kleene,
we know that the class of partial recursive functions is effectively computable.
By the latter, we mean that these functions can be calculated by a Turing
machine. By the former, we mean a function (more on functions later) that
takes a fixed number of natural numbers as arguments and returns a single
natural number as a result (the “partial” part comes from the fact that the
function may not be defined for all values of its arguments). In fact, Kleene
actually proved that the class of partially recursive functions is identical to the
class of functions computable by a Turing machine, which are the only problems
solvable by a computer. Now, it has been shown that every partial recursive
function can be represented by a definite clause program, and every evaluation
of such a function can be encoded as a query in the form we have seen earlier. So,
in principle at least, the language of Horn clauses is adequate for representing
all computable problems.

But representability does not mean convenient representability. It is for the
latter reasons it may be preferable to use different logics, or even other pro-
gramming languages. We have had a glimpse earlier of how theorem-proving
for first-order logic can be accomplished by converting these statements to Horn
clauses. So we know that such conversions can be done, and attention turns to
the soundness and completeness of the inference mechanisms which we have
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already considered—specifically, SLD-based resolution—for Horn clause pro-
grams. To summarise, ignoring for the moment, the business of search and
computation rules:

o Without the “occurs”-check (page 77), SLD resolution can be unsound. In
practice logic programming systems like PROLOG omit this check, hoping
that the situations where it was needed would not come up.

e The extension of SLD resolution with negation-as-failure can be unsound
if attempting to prove atoms that are non-ground.

e SLD-resolution is refutation-complete for Horn clauses.
e SLD-resolution is not affirmation-complete for Horn clauses.

e For general clauses, resolution is refutation-complete if we perform factor-
ing.

e For general clauses, resolution is not affirmation-complete.

When we add on the constraints imposed by the search rule, we lose even
refutation-completeness with some kinds of “unfair” search rules (we saw an
example of this earlier, when a depth-first search of the SLD-tree went down
an infinite path). But, assuming we are using a fair rule, we can confirm the
validity any sentence that is valid. On the other hand, we cannot deal with
problems that are unsolvable, or reliably identify an implication that does not
hold. That is, the property of validity is only semi-decidable. This is not es-
pecially because of the use of Horn clauses or SLD-resolution, but because it
is an unavoidable aspect of first-order logic. It is known, for example, from a
result due to Schmidt-Schauss in 1988 that implication between a pair of gen-
eral clauses in first-order logic is undecidable (that is, we will never be able to
construct a procedure that will terminate in all cases with the answer). In 1992,
it was shown by Marcinkowski and Pacholski that even implication between a
pair of Horn clauses is undecidable.



Chapter 2

Exploring a Structured
Search Space

ILP is concerned with the automatic construction of “general” logical state-
ments from “specific” ones. For example, given mem(1,[1,2]) < construct
mem(A, [A|B]) <. What do the words “general” and “specific” mean in a logi-
cal setting? Can statements of increasing (decreasing) generality be enumerated
in an orderly manner? These are questions about the mathematics of “general-
ity” ILP identifies “generality” with |=. That is, C is “more general” than Cs
iff C; = Co The relation = results in a quasi-ordering over a set of clauses. ILP
systems are programs that search such quasi-ordered sets.

The result (theorem 24) that < AL, > is a lattice shows that the set of
atoms is well structured. The more structured a set is, the better it is suited to
be searched for candidates to include in a theory. This search usually procedes
by small upward steps (generalization) or downward steps (specialization) in the
lattice. In this chapter, we will first dwell upong the subsumption lattice over
clauses If we want to generalize or specialize a set of clauses to a single clause,
we can use a least generalization or greatest specialization of this set. On the
other hand, we may also want to generalize or specialize an individual clause
to another individual clause using the idea of covers - the smallest non-trivial
steps between individual clauses that we can take in the lattice.

Subsumption is the generality order that is used most often in ILP. It is
used much more than logical implication. The reasons for this are mainly prac-
tical: subsumption is more tractable and more efficiently implementable than
implication. For instance, subsumption between clauses is decidable whereas
implication is not (Section 1.4.9).

2.1 Subsumption Lattice over Clauses

Let C and D be clauses. We say C' = D iff C' subsumes D and C' > D iff
C properly subsumes D. Clearly, the = relation on clauses is reflexive and
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transitive. Thus it imposes a quasi-order on the set of clauses. Since = is a
quasi-order, we know a partial ordering must result from the partition of the
set of clauses C into a set of equivalence classes! Cg.

An example of subsumption ordering on clause-sets is produced below:

{mem(A,[A|B]) «,mem(A,[B, A|C]) <}
=
{mem(1,[1,2]) <, mem(2,[1,2]) <}

A clause is always subsume-equivalent with a clause that does not contain
literals more than once. So for example P(z)VQ(a)V P(z) is obviously subsume-
equivalent with P(x)V Q(a). Similarly, the order of literals in a clause does not
matter much. For instance, P(a)V P(b) = P(b)V P(a). This amounts to treating
a clause as a set of literals, instead of a disjunction of literals. Thus we may
use the set {P(a), Q(z)} to represent the clauses {Q(z) V P(a), P(a) V Q(x) V
P(a),Q(x) V P(a) V Q(x)}, etc.

However, the above condition does not give a sufficient condition for subsume-
equivalence. While two atoms are subsume-equivalent iff they are variants, this
is not true for clauses in general. For instance, C = {P(z,z)} = {P(z,x), P(z,y)} =
D, since C C D and D{y/z} = C, yet C and D are not variants. In fact, the
subsume-equivalence class of this C' contains an infinite number of clauses which
are not variants. For example, for each n, the clause D,, = {P(x, z), P(z,x1), P(z1,22),..., P(Tn,,Zn)}
is subsume-equivalent with C = {P(x,z)}.

While subsume-equivalent clauses need not be variants, reduced subsume-
equivalent clauses are however variants. A clause C is said to be reduced if there
is no proper subset D of C' (D C C) such that C = D. Equivalently, a clause C
is reduced if there is no substitution 6 such that C@ is a proper subset of C'. A
reduced clause D such that C = D and D C C is called a reduction of C. Thus,
C = {P(z,y), P(y,x)} is reduced whereas D = {P(z, z), P(z,y), P(y, )} is not
reduced, since D' = {P(x,x)} C D and D = D’ is a reduction of D. Note that a
subset of a reduced clause need not be reduced itself; if C = {-Q(z,a), ~Q(y,a)}
and D = {P(z,y),Q(z,a),7Q(y,a)} then D is reduced, while C C D is not
reduced, since C{x/y} is a proper subset of C. Thus, a reduced clause is a
canonical member of the subsume-equivalence class. It can be obtained using the
algorithm outlined in Figure 2.1. The algorithm itself is based on the following
theorem:

Theorem 26 Let C be a clause. If for some 8, C8 C C, then there is a reduced
clause D C CO such that C = D.

Proof: Let C; = C. Since C = C6 and CO = C, clearly C = C;. If C is

reduced, then let D = C7, and we are done. Otherwise, there is a substitution

INote that applying the same substitution 6 to two subsume-equivalent clauses may yield
two clauses which are no longer subsume-equivalent. For example, if C = {P(z,y), P(z,u)}
and D = {P(z,y)}, then C = D. Let 8 = {y/f(z),z/f(z),u/z}. Then CO =
{P(z, f(z)), P(J(z),z)} and DO = {P(x, f(x))}, which are no longer equivalent.
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0, such that Cy = C160; C Cy. So Cy is a proper subset of C; which is subsume-
equivalent to Cy. Since C7 = C, we also have Cy = C, in fact C06, = Cy C C.
If C5 is still not reduced, we can go on defining 3 = Cy05 C Cs, etc. Since C a
only contains a finite number of literals, this cannot go on indefinitely. Hence
we must arrive at a D = C), such that D is reduced and C = D. O

INPUT: A clause C.
OUTPUT: A reduction D of C.
Set D=C, 0 =;
repeat
Set D to D@,
Find a literal 1 € D and a substitution 6 such that D8 C D\ {1};
until Such a (1,0) does not exist;
return D.

Figure 2.1: Plotkin’s reduction algorithm.

2.1.1 Lattice Structure of Clauses

It can be proved that every finite set S of (general or horn) clauses has a greatest
lower bound under subsumption (also called greatest specialization under sub-
sumption or GSS in the ILP literature), as well as a least upper bound under
subsumption (also called least generalization under subsumption or LGG in the
ILP literature). This holds both for clausal languages C, and for Horn languages
H.

Greatest Specialization Under Subsumption

It, is straightforward to show that the GSS of some finite set S of clauses
in C is simply the union of all clauses in S after they are standardized apart
(EXERCISE). Proving the existence of a GSS of every finite set of Horn clauses
in H requires a little more work. We will assume that H contains an artificial
bottom element? L, such that C = L for every C € H, and L = C for every
C eH.

Theorem 27 LetH be the Horn language H, with an additional bottom element
1 € H. Then for every finite non-empty S C H, there exists a GSS (glb) of S
n H.

Proof: Suppose § = {Dq,...,D,} C H. Without loss of generality we assume
the clauses in S are standardized apart, Di,..., Dy are the definite program
clauses in S, and Dyyy, ..., D, are the definite goals in S.

1. If Kk = 0 (i.e., if S only contains goals), then it is easy to show that
DiU...UD, isaGSSof S in H.

2Note that L is not subsume-equivalent with other tautologies. Two tautologies need not
be subsume-equivalent either.
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Iny

Figure 2.2: D is a GSS of Dy and Ds.

2. If k > 1 and the set {DF,..., D} (the set of heads of clauses in S), is
not unifiable, then L is a GSS of S in H.

3. Otherwise, let o be an mgu for {Df,..., D}, and let D = DyoU...UD,0o
(note that actually D;o = D; for k+ 1 < i < n, since the clauses in S
are standardized apart). Since D has exactly one literal in its head, it
is a definite program clause. Furthermore, we have D; = D for every
1 <14 < n,since D;og C D.

To show that D is a GSS of S in H, suppose C' € H is some clause such that
D; = Cforevery 1 <i <n. Forevery 1 < i <mn,let6; besuch that D;0; C
C, and 6; only acts on variables in D;. Let § = 6, U...U#6,. For every
1 <i<k Df0=Df0; =CF, so theta is a unifier for {D},...,D/}.
But ¢ is an mgu for this set, so there is a v such that § = o7. Now
Dy =DioyU...UDpoy=D10U...UD,0 = D16, U...UD,0, CC.
Hence D = C, so D is a GSS of S in H. See Figure 2.2 for illustration of
the case where n = 2.

For example, D = P(a) < P(f(a)),Q(y) isa GSS of Dy : P(z) «— P(f(x))
and Dy : P(a) — Q(y). Note that D can be obtained by applying o =
{z/a} (the mgu for the heads of D; and Ds) to D; U Dy, the GSS of D,
and D5 in C.

O

Least Generalization Under Subsumption

Proving the existence of the least generalization LGG (lub) is a little harder. Let
C and D be clauses. A selection of C and D is a pair of compatible literals (1, m),
such that 1 € C', m € D. Two literals are said to be compatible if they have the
same sign and predicate symbol. For example, C = {P(x), P(y),...,P(a)} and
D = {Q(b), P(a),...,P(b)} have three selections: (P(z),P(a)), (P(y), P(a)),
and (=P(a),~P(b)). Given two clauses C' and D, there is only a finite number
of selections. Suppose C and D have a total of n selections. Then we can
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order these in a sequence S = (1, m;4), (12, ms),. .., (1,,m,), and construct two
compatible ordered clauses Cs =1, V...V]l, and Dg = m; V...Vm,. Treating
Cs=V(y,...,1,) and Dg = V(my,...,m,) as atoms, it can be shown that the
lub of Cg and Dg constructed using the anti-unification algorithm on page 84
is also an LGS of C and D. As an example, if

o G={ly,lp,13}, for Iy = P(f(a), f(2)), 12 = P(f(x),9(a)), s = Q(a)
e d={mi,my}, for m; = P(f(b),x), mx = P(y,g(b)).
then, the set of all selections of C' and D can be ordered in the following sequence:
S =(l;,my), (1}, ms), (o, my), (12, my)
leading to the constructing of the following clauses:
Cs = V(11,1 15,15)
Dg = V(mp, m;, my, my)

Note that the order and duplication of literals is not ignored in the atomic order.
The clauses C's and Dg are compatible, and have the following lub:

Es = P(f(21),22) V P(23,24) V P(f(25), 26) V P(27,9(21))

This lub of Cs and Dg can be shown to be also an LGS of C' and D and can be
reduced to the LGS E = {P(f(#1),22), P(27,9(#1))}. Note that the predicate
@ does not appear in the lub or LGS.

Theorem 28 Let C be a clausal language. Let C, D € C be clauses, and S be
a sequence of all selections of C and D. Then an lub(Cg,Dg) is an LGS of
{C,D}.

Proof: First of all if C and D are clauses, and S a sequence of (not necessarily
all) selections of C' and D. Then {ub(Cs, Dg) = C and lub(Cg, Dg) > D. This
is easy to see. If Eg = lub(Cs, Dg), then E = Cg. Also, Cg = C, since the
literals in Cg form a subset of C. Hence E > C, by the transitivity of ».
Similarly £ = D.

Let FF = {l;,...,1,,} be a clause such that F = C and F > D. In
order to establish that E is an LGS of {C, D}, we need to prove F > E.
Since F' = C and F > D, there are #; and 63, and 1y,...,1,, € C and
my,...,m,, € D, such that 1,6; = 1;, and 1,03 = m,, for every 1 < i < m.
Then S = (13,my),..., (1, m,,) is a sequence of selections of C' and D.
Let Cs = V(Ly,...,1y), Dgr = V(my,...,my,), let G = V(ky,...,k,,) be
lub(Cgr, Dg), and o1 and oy be such that Go; = Cs and Goy = Dg/. Since
V(ly,..., )0 = Css and V(1y,...,1,)02 = CS’, there must be a 7 such that
V(li, ..., L)y = V(ky,..., k). Thus we have the situation given in Figure 2.3.

V(1i,...,1,)y = G, so we have F = G. Since every selection in S’ also
occurs in S, we can prove® that G = E. Hence F = E. O

Thus the LGS of any two clauses exists, and can be computed by the method
made explicit in the algorithm in Figure 2.4

3We leave this an EXERCISE. You will need to iron out duplications from S and S’ and
permute them so that S’ is a prefix of S.
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Mv. . . vNg

~ fi1 {resp. #3)

l—-—--u--n--

G=Kyv...vK, & (resp og) Cer=Lywv. .. WLy
(cesp. Do = My v .V M)

Figure 2.3: Illustration of the proof of theorem 2.3.

INPUT: Two clauses C' and D;

OUTPUT: An LGS of {C, D};

Let (1;,m;),...,(l,,m,) be a sequence of all selections of C' and D;
Obtain lub(V(li,...,1,),V(my,...,my,)) = V(l1,...,1,) from the Anti-
Unification Algorithm;

return {l;,...,1,};

Figure 2.4: The LGS Algorithm.

The LGS of any finite set of clauses can be computed by repeatedly applying
this algorithm. Notice that if two clauses C' and D have no selections for in-
stance, when they have no predicates in common - then their LGS is the empty
clause 0. Thus O can play the role of top element here, which means that we
do not need to add an artificial top element T to the language C.

Note that if all literals in C' and D have the same sign and predicate symbol,
then C' and D have |C|.|D| selections. Accordingly, the LGS of C and D that
can be obtained from these selections may also contain |C|.|D| distinct literals.
Thus the number of literals in an LGS may increase quite rapidly.

Since we have now proved the existence of a GSS and LGS of every two
clauses, it follows that a clausal language ordered by subsumption has a lattice-
structure (we do not need an artificial bottom element L for this).

Theorem 29 Let C be a clausal language. Then < Cg,=> is a lattice. Fur-
ther, if H be the horn clause language, including an addition symbol L, then
< Hg,=> is also a lattice.

Proof: The proof for (Cg, *) being a lattice follows naturally from the fact that
lub (LGS) and glb (GSS) exist for every pair of clauses from C.

As for Hg, since there is at most one selection possible from the heads of a
set of Horn clauses H, the LGS of H has at most one positive literal, and hence
is itself also a Horn clause. Therefore (Hg,>) is a lattice. Here we need the
bottom element L to guarantee the existence of a GSS of two definite program
clauses with different predicate symbols in their head.
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Thus, the p.o. set of equivalence classes of atoms Cg (Hg) is a lattice with
the binary operations M and U defined on elements of Cg (Hg) as follows (note
that L € C is the empty set ()):

o [LJM[C] = [1], and [T]M[C] = [C]

o If C1,C05 € C (C1,C5 € H) have a GSS (glb) D then [C1] M [Cs] = [D] =
[C26] otherwise [C1] M [Cy] = [1]

e [L]U[C]=][C], and [T]UC] =[T]

e If Cy and Cs have LGS (lub) M then [C4] U [Cs] = [M] otherwise [C1] U
[Cs] = [T]

For C,

e the GSS is simply the union Cy U C (union translates to ‘or’ing the two
clauses)

e the LGS of Cy and Cj is obtained using the LGS algorithm outlined in
Figure 2.4

whereas, for H,

e the GSS (or meet operation) is given as follows: If the set of positive
literals (heads) in C; UCy have an mgu 0, then GSS(C, Cy) = (C1UC3)8.
Otherwise GSS(Cy,Cy) = L

e the LGS of Cy and (s is obtained using the LGS algorithm outlined in
Figure 2.4.

O
As an example, if
H = {0, 1,
is_tiger(tom) «— has_stripes(tom), is_tawny(tom) ,
is_tiger(bob) «— has_stripes(bob), is_white(bob) ,
is_tiger(tom) «— has_stripes(tom) ,
is_tiger(tom) «— is_tawny(tom) ,
is-tiger(bob) «— has_stripes(bob) ,
is-tiger(bob) «— is_white(tom) ,
is_tiger(X) — has_stripes(X) ,
is_tiger(X) «— is_tawny(X) ,
is_tiger(X) «— is_white(X) ,
is-tiger(X) «— }

then the diagram of p.o. set Hg is as outlined in Figure 2.5
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[is_fizitom) < has_str(fom), is_aw(tom)] " [i_tigfbob) = bas_sa(bob), is_whibob)]

Figure 2.5: The lattice of Hg for the is_tiger relation.

2.1.2 Covers in the Subsume Order

The least generalization and the greatest specialization respectively concern gen-
eralizing or specializing a set of clauses to a single clause. What about general-
izing and specializing single clauses? We will address this issue by investigating
covers of clauses in the subsumption order.

It can be shown that there exist clauses which have no complete set of upward
covers in the subsumption order. In fact, there are clauses which have no upward
covers at all. For example, the clause C = {P(x1,21)} has no upward cover in
< C,>=>. This can be proved by defining

Cn ={P(zi,zj) |i#jand 1 <i,j <n}, n>2

and noting that each C,, properly subsumes C,; and C. That is Cy > C5 >~
...C, = ...C. From this result, we know that C has no complete set of upward
covers.

Dually, for the downward cover there exists a clause C' which has no finite
complete set of downward covers?. So if this particular C' does have a complete
set of downward covers, this set must he infinite. This result is sufficient to later
prove the negative result that an ideal downward refinement operator does not
exist for the subsumption order. One such C' is

C = {P(zx1,22), P(x2,21)}
If we define®

Eﬂ = {P(ylay2)7p(y27y3)""’P(yn—hyn)ap(ynayl)}a n = 2

and
C,=CUE,, n>3

4Whether all clauses have a (sometimes infinite) complete set of downward covers remains
an open question.
5The clauses E,, have a special structure called a cycle.



2.2. THE IMPLICATION ORDER 109

then it can be shown that for any n = 3* (k > 1), C = C,. Further, by
contradiction, one can show that there is no downward cover D of C, such that
D > Csk for every k > 1 and subsequently, that, C' has no finite complete set
of downward covers in < C, =>.

2.2 The Implication Order

It is easy to see that implication is reflexive and transitive, and hence a quasi
order. Implication between (Horn) clauses is undecidable, but using implica-
tion as a generality order is more desirable than using subsumption, for some
important reasons:

1. It is better able to deal with recursive clauses. A clause C' which implies
another clause D, need not subsume this D. For instance, take

C= P(f) — Pla)
D= P(f)z)) — P(x)

Then C' = D, but C # D. Subsumption is too weak in this case. A
further sign of this weakness is the fact that two tautologies need not be
subsume equivalent, even though they are logically equivalent.

2. For the construction of least generalizations, subsumption is again not
fully satisfactory and can over-generalize. For example,

o If S consists of the clauses D; = P(f%(a)) « P(a) and Dy =
P(f(b)) « P(b), then the LGS of S is P(f(y)) <« P(x). the other
hand, the clause P(f(z)) <« P(z) seems more appropriate as a least
generalization of S, since it implies D1 and Ds, and is implied by the
LGS. However, it does not subsume D;.

e Even for clauses without function symbols, the subsumption order
may still be unsatisfactory. Consider Dy = P(x,y,2) < P(y, z,)
and Dy = P(z,y,2) < P(z,z,y). The clause D; is a resolvent of
Dy with Do, and D5 is a resolvent of Dy with Dq; so D; and D,
are logically equivalent. This means that D; is a least generaliza-
tion under implication (LGI) of the set {D1, D2}. Yet the LGS of
these two clauses is P(x,y, z) < P(u,v,w), which is clearly an over-
generalization.

As these examples also show, the subsumption order is particularly unsat-
isfactory if we consider recursive clauses: clauses where the same predicate
symbol occurs both in a positive and a negative literal. Thus it is desir-
able to make the step from the subsumption order to the more powerful
implication order.
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Figure 2.6: Least generalization and greatest specialization in first-order logic.
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3. A further advantage of the implication order is that one can easily compare
a set of clauses (a theory) with another theory or clause. For example, if
Y={(P—Q),(Q < R)} and C = P «— R, then we have ¥ = C. On the
other hand, subsumption cannot be used here to compare the generality
of ¥ and C, because neither member of 3 subsumes C'.

The main results on the implication order can be summed up as follows:

1. If a; and as are two arbitrary first-order formulas, then it can be easily
shown that their least generalization under implication (LGI) is just a; A
ap, and their greatest specialization under implication (GSI) is just a1 Vas.
See Figure 2.6. However, if a; and «ay are clauses, oy A g is not a clause.
Instead of using a; A ag, we have to find some least clause as LGI, which
implies both clauses «; and as. Such a clause appears quite hard to find
sometimes, as we will see subsequently. However, a; V as remains a clause
and remains the GSI under the subsumption order on clauses.

2. Every finite set of clauses ¥ which contains at least one function-free
nontautologous clause, has a computable least generalization (LGI) under
implication in C. A related observation is that the problem whether ¥ =
C, where ¥ is a finite set of ground clauses and C' is a ground clause, is
decidable. This can be proved as follows: Let C = L1 V...V L, and A be
the finite set of all ground atoms occurring in ¥ and C. Now:

YE=C it YU{-Ly,...,—L,} is unsatisfiable
ifft ¥U{-L4,...,L,} has no Herbrand model
iff  no subset of A is a Herbrand model of X U {-L4,...,L,}

Since A is finite, the last statement is decidable. What follows from this
is that the problem whether ¥ |= C, where X is a finite set of function-free
clauses and C' is a clause, is decidable. The algorithm for computing LGI
is outlined in Figure 2.7.
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INPUT: A finite set S of clauses, containing at least one non-tautologous
function-free clause;

OUTPUT: An LGl of S in C;

Remove all tautologies from S, call the remaining set S’;

Let m be the number of distinct terms (including subterms) in &', let V =
{z1,...zm};

Let G be the (finite) set of all clauses which can be constructed from predi-
cate symbols and constants in S’ and variables in V;

Let {Uy,...,Uy,} be the set of all subsets of G;

Let H; be an LGS (computed using algorithm in Figure 2.4) of U;, for every
1<1<n;

Remove from {Hj, ..., H,} all clauses which do not imply S’ (since each H;
is function-free, this implication is decidable), and standardize the remaining
clauses {Hi, ..., Hy} apart. ;

return H =H,U...UH;

Figure 2.7: The LGI Algorithm.

3. Every finite set of clauses has a greatest specialization (GSI) under impli-
cation in C. A GSI of a finite set S is the same as the GSS of S (refer
Section 2.1.1), namely the union of the clauses in S after these are stan-
dardized apart.

Finding least generalizations (under implication) of sets of clauses is com-
mon practice in ILP. On the other hand, the greatest specialization, which
is the dual of the least generalization, is used hardly ever. Nevertheless,
the GSI of two clauses D; and D2 might be useful. For example, suppose
we have one positive example e', and two negative examples e; ande; ,
and suppose that D; implies e™ and e], while Dy implies e™ and e .
Then it might very well be that the GSI of D; and D, still implies e*,
but is consistent with respect to {ej, e5 }. Thus we could obtain a correct
specialization by taking the GSI of Dy and D-.

4. As a corollary, if C is a function-free clausal language, then < C,=> is a
lattice.

5. There exist pairs of Horn clauses which do not have an LGI in H.
6. Similarly, there exist pairs of Horn clauses which do not have a GSI in H.

7. For general clauses which all contain function symbols, the LGI-question
is still open.

8. For covers, the negative results from the subsumption order carryover to
the implication order.

e Some clauses, such as {P(z1, z2)}, have no upward covers.
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e Some clauses, such as {P(x1,z2), P(x2, 1)}, have no finite complete
set of downward covers.

2.3 Inverse Reduction

Plotkin’s reduction algorithm (Figure 2.1) finds a reduction D of C. In this

section we present an algorithm which does the inverse: given a reduced clause

D, the algorithm constructs (possibly non-reduced) members C of the subsume-

equivalence class of D. This will be useful in our treatment of refinement oper-

ators. Since the subsume-equivalence class of D is infinite, we have to limit the

scope of the algorithm. This is done by restricting the number of literals is C.
We will next state a lemma, which will find use subsequently.

Theorem 30 Let C and D be clauses. If D is a reduction of C, then there is
a substitution 6 such that C6 = D and LO = L for every LOD.

Proof: Suppose D is a reduction of C, then there is a ¢ such that Co C D.
Then also Do C Co C D, since D C C. If Do # D, then D would not be
reduced, hence Do = Co = D.

Since o is injective, for all Ly, Ly € D, if Llo # Lyo then Lio # Lso, for
otherwise |Do| < |D|. Hence if Lo = Loo, then Ly = Ly. For each L € D,
consider the following infinite sequence:

L,Lo,Lo?, Lo®, . ..

Since Do = D, each literal in this sequence is a member of D. D contains
only a finite number of literals, so for some i < j we must have Lo’ = Lo7.
Then from the injectivity, also L = Lo7~!. For this L, define n(L) = j — i.
Notice that L = Lo™ if m is a multiple of n(L). Let k be the least common
multiple of all n(L). Then Lo* = L for every L € D.

Define § = ¢*. Then since Co = D and Do = D, we have Cf = D. O

From theorem 30, we know that for every non-reduced C such that D C C
and D = C, we can find a 6 such that C8 = D and 6 only acts on variables not
appearing in D. Thus C can be reduced by mapping F = C'\ D to literals in
D. In the inverse direction, we can find C' by adding a set F to D,
such that £ C D, where 6 does not act on variables in D. This is the
idea used in the algorithm in Figure 2.8. If D is a reduced clause and m is some
positive integer, then the algorithm finds a variant of every non-reduced C' with
m or less literals in the subsume-equivalence class of D.

As an illustration of the algorithm in Figure 2.8, if D = {P(z,z)} and m = 3,
then upto variants, My € {P(z,y), P(y,y)} and Ms = {P(y, 2), P(z,2), P(y,z), P(z,2)}.

2.4 Generality order and ILP

The subsumption and implication orders discussed thus far are important for
learning for the following reasons:
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INPUT: A reduced clause D and an integer m;
OUTPUT: Variants of every C such that D = C and |C| < m;
Set k = 0;
If |D| < m, then output D;
while | < (m — |D|) do
Set I to I+ 1;
for Every sequence Lq,...,L; such that each L; € D, but the L;’s are
not necessarily distinct do
Find every (up to variants) set E = {My, ..., M;} such that

1. Every M, contains at least one new variable not in D, and

2. If x1,...,x, are all those new variables, then there is a 6 =
x1/t1, ..., Tn/tn, such that M;0 = L;, for i =1,...,t.

return DU E;
end for
end while

Figure 2.8: The Inverse Reduction Algorithm: It finds a variant of every non-
reduced equivalent clause (equivalent to D) with m or less literals.

e They provide a generality ordering for hypotheses, thus structuring the
hypothesis space.

e They can be used to prune large parts of the search space.

1. When generalizing C to C’, ¢’ = C, all the examples covered by
C will also be covered by C’ (since if BU {C} = e (e being an
example) holds then also BU{C’} k= e holds). This property is used
to prune the search of more general clauses when e is a negative
example: if e is inconsistent (covers a negative example)
then all its generalizations will also be inconsistent. Hence,
the generalizations of C' do not need to be considered.

2. When specializing C to C’, C = C’, an example not covered by C will
not be covered by any of its specializations either (since if BU{C'} [~ e
holds then also BU {C"} }~ e holds). This property is used to prune
the search of more specific clauses when e is an uncovered positive
example: if C does not cover a positive example none of its
specializations will. Hence, the specializations of C' do not need
to be considered.

e The generality orderings provide the basis for two important ILP tech-
niques:

1. bottom-up building of least general generalizations from training ex-
amples, relative to background knowledge, and
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2. top-down searching of refinement graphs.

The principal generality orderings of interest are subsumption (>=4) and im-
plication (= ). For clauses C, D, subsumption is not equivalent to implication

if C =y DthenCt‘: D
but
not vice — versa
For example, the above holds for:
C': natural(s(X)) < natural(X)
D : natural(s(s(X))) < natural(X)

Recall the subsumption theorem; it is a key theorem linking subsumption
and implication:

If ¥ is a set of clauses and D is a clause, then ¥ = D iff D is a
tautology, or there exists a clause D’ =y D which can be derived
from ¥ using some form of resolution.

When ¥ contains a single clause C' then the only clauses that can be derived
are the result of self-resolutions of C. Thus, the difference between C' = D
and C >y D arises when C' is self-recursive or D is tautological

Is there a principled approach for comparing generality orderings? Fortu-
nately, the answer is yes.

Given a set of clauses S, clauses C, D € S and quasi-orders >=; and
=9 on S, then > is stronger than >, if C' =5 D implies C' =1 D.
If also for some C, D € S C %5 D and C' »=1 D then =7 is strictly
stronger than >o

It can be seen that as per above definition, the implication ordering is strictly
stronger than the subsumption ordering. Quasi-orders that are increasinhgly
weaker can be devised from stronger ones. Here are some other generality
orderings, listed in decreasing order of strength.

- Cr-Dif CED

— C =y iff there is a substitution 8 s.t. C' C D

— C =y D iff every literal in D is compatible to a literal in C and C =y D.
— C =¢» Diff |C| > |D] and C =¢o D

What generality ordering should we choose for the ILP search procedure?
We would like the strongest ordering that is practical In terms of tractability,
logical implication between clauses is undecidable (even for Horn clauses). Sub-
sumption is decidable but NP-complete (even for Horn clauses). Restrictions
to the form of clauses can make subsumption efficient. Here are two example
restrictions that make subsumption efficient.
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e Determinate Horn clauses. There exists an ordering of literals in C and
exactly one substitution 6 s.t. C6 C D.

e k —local Horn clauses. Partition a Horn clause into k “disjoint” sub-parts
and perform k independent subsumption tests.

The strongest quasi-order that is practical appears to be subsumption. Even
that often requires restrictions (such as the two listed above) on the clauses
being compared.

In summary, the subsumption order on clausal languages is used most often
in ILP as the generality order (in contrast to the implication order), owing to
its following properties:

1. Further, subsumption is more tractable and efficiently implementable.
Subsumption between clauses is a decidable relation, whereas implication
is not. The flip side is that subsumption is a weaker relation.

2. Equivalence classes under subsumption can be represented by a single
reduced clause. Reduction can be undone by inverse reduction (c.f. Sec-
tion 2.3).

3. Every finite set of clauses (function free or not )has a least generalization
(LGS) and greatest specialization (GSS) under subsumption in C. Hence
< C,=> is a lattice. The same is not true for the implication quasi-
ordering = (for restricted languages lubs for = may well exist).

Order | lub glb
o |V VY

a8 X y/

4. Every finite set of Horn clauses has a least generalization (LGS) and great-
est specialization (GSS) under subsumption in H. Hence < H,>=> is a
lattice. The same does not hold for the implication order.

5. The negative results for covers hold for subsumption as well as implication.

2.5 Incorporating Background Knowledge

Why does background knowledge matter? The answer is that combining the
examples With what we already know often allows for the construction of a
more satisfactory theory than can be glanced from the examples by themselves.
To illustrate this, we consider [Bun88] the following two clauses as positive
examples (not just ground atoms as examples):

Dy = CuddlyPet(xz) «— Small(z), Fluf fy(x), Dog(x)
D, CuddlyPet(x) — Fluf fy(x), Cat(z)
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Given only these clauses, the most obvious way to generalize them is to take
their LGS or LGI, which is the rather general clause C = CuddlyPet(x) «—
Fluf fy(x).

However, suppose we have the following definite program B which expresses
our background knowledge.

B; Pet(z) « Cat(z)
By Pet(zx) < Dog(x)
Bs;  Small(z) « Cat(z)

Given B, we may also use the following clause as generalization:
D = CuddlyPet(z) «— Small(z), Fluf fy(z), Pet(x).

since D together with B implies both examples. Note that without the back-
ground knowledge B, our clause D neither subsumes nor implies the examples.
If we interpret this example in human terms, the generalization D is much more
satisfactory than C. After all, not every fluffy object (such as a teddy bear) is
a cuddly pet. Thus the use of background knowledge allows us to find a better
theory. Given the usefulness of background knowledge, it is important to outline
a formalized way to reckon with it in our generality order.

There are three generality orders which are able to take background knowl-
edge into account: (i) Plotkin’s relative subsumption (>p), (ii) Relative impli-
cation (=g) and Buntine’s (iii) Generalized subsumption (>5). Relative sub-
sumption and relative implication apply to arbitrary clauses and the background
knowledge B may be an arbitary finite set of clauses. Generalized subsumption
only applies to definite program clauses and the background knowledge should
be a definite program. We will state the existence of least generalizations in
each of these orders, both in case we are dealing with a Horn language H, and
for a general clausal language C. Further, each of the three orders can be re-
lated to some kind of deduction. Since empty background knowledge reduces
relative and generalized subsumption to ordinary subsumption, and relative im-
plication to ordinary implication, the negative results on covers for subsumption
and implication carry over to the three orders: some clauses do not have finite
complete sets of upward or downward covers in these orders. As to the existence
and non-existence of least generalizations or greatest specializations in the three
orders, we will only pay attention to least generalizations, since these are used
much more often than their dual. In general, for all three, least generaliza-
tions do not always exist in the presence of background knowledge. However,
certain restrictions on the background knowledge guarantee the existence of a
least generalization for each of the three.

2.5.1 Plotkin’s relative subsumption (>5)

Definition 1 Let C and D be clauses, and B be a set of clauses. We say
C =g D, if there is a substitution 0 such that B | VY(CO — D) (note that
C — D need not be a clause).
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With respect to the last example, we can verify that Bz =, gy F', where
E = CuddlyPet(z) «— Small(z), Fluf fy(z), Pet(z) and F = CuddlyPet(x) «—
Fluf fy(z), Cat(x). Informally, this can be seen as follows: suppose for every
2 it holds that if x is a cat, then x is small (i.e., C is true). Using B;, we also
have that if = is a cat, then x is a pet. Thus if x is a fluffy cat, then x is small,
fluffy, and a pet, and by E, x is a cuddly pet (i.e., D is true). Following are
some properties of relative subsumption:

1. Reflexivity and transitivity are easily proved, so relative subsumption is
a quasi-order on clauses. Note that each set of clauses B induces its
own quasi-order: the quasi-orders induced by B = {P(a)} and B =
{P(a), P(b)} are different. Note also that if D is a tautology, then C' =g D
for any C' and B. Furthermore, it is also easy to see that if C' =5 D and
B C B/, then C' =5 D.

2. Relative subsumption is strictly stronger than subsumption.

(a) Firstly, it is easy to see that subsumption implies relative subsump-
tion. If C' = D, then C > D, for some B. But then V(C8 = D) is
a tautology, and B = V(C0 — D) for any B. Hence if C = D, then
C =5 D.

(b) Now consider propositional atoms P, @, and R. Let C = P, D = @,
and B={Q < P}. Then B |= (C — D), so C =g D. Since C' ¥ D,
we see that relative subsumption does not imply subsumption. This

even holds for the case where B is empty and D is a tautology: if
B=0,C=Q,and D =P « P, then C =5 D, but C # D.

3. If C and D are non-tautologous clauses, and B a finite set of ground literals
such that BN D =0, then® C =5 D iff C = (D V B).

4. Relative subsumption coincides with ordinary subsumption for non-tautologous
clauses and empty background knowledge”. That is, if C' and D are non-
tautologous clauses, then C' = D iff C > D.

5. C =g D iff there exists a deduction of D from{C} U B in which C' occurs
at most once as a leaf. The proof of this long and windy and will not be
dealt with here.

6. Least generalizations under relative subsumption (abbreviated to LGRSS)
need not exist in the general case. The following counter example, adapted
from [NIb88] shows the non-existence of LGRSs both for the case of a
clausal language C, and for a Horn language H.

Let

Dy = Q(a) Dy = Q(b)
B= {P(aay)vp(b7y)}

6Prove: EXERCISE
"Prove: EXERCISE
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It can be shown there is no LGRS of {D;, D2} relative to B. Consider the
following infinite sequence of clauses:

C1 = Q(z) < P(a, f(z))
C2 = Q(x) — Pz, f()), P(z, f*(x))
C3 = Q(z) « P(x, f(2)), P(z, f*(2)), P(x, f*(x))

It is easy to see that C; >=p C;y1 for every ¢« > 1. We also have C; =5 D;
and C; =g Dy, for every i > 1. Suppose some clause D is an LGRS of
{D1, Dy} relative to B, then we should have C' »>p5 D, for every i > 1.
Then by point 5 above, for every i > 1, there exists a deduction of D
from {C;} U B in which C; occurs at most once as a leaf. C; cannot occur
zero times as a leaf, because then a clause from B would simply subsume
D, which is impossible. Thus for every ¢ > 1, there exists a deduction of
D from {C;} U B, in which C, occurs once as a leaf. It cannot be that
every C; subsumes D, for then D would contain an instance of the term
fi(x), for every i > 1. Thus for some j the deduction of D from {C;} UB
involves at least one resolution step. Since the members of B are atoms
and C; only occurs once as a leaf, the parent clauses in the first resolution
step must be C; and a member of B. Suppose this member of B is P(a,y).
Then P(a,y) must be unified with an atom of the form P(xz, f”(z)) in the
body of C;. Then the head of the clause C; is instantiated to Q(a). This
head will not be changed anymore in later resolution steps, so D would
have Q(a) as head - but then there is no deduction of Dy = Q(b) from
{D}UB.

Similarly, if the member of B in the resolution step had been P(b,y)
instead of P(a,y), D would have had Q(b) as head, and there would be
no deduction of D; = Q(a) from {D} U B. Either way, the assumption
that D is an LGRS of {Dy, D2} relative to B leads to a contradiction.

We however can identify a restriction on the background knowledge which
guarantees existence (and computability) of an LGRS of any finite set of
(horn) clauses. If C (H) is a (horn) clausal language and B C C (B C 'H)
is a finite set of ground literals, then every finite non-empty set S C C
(S8 CH) of clauses has an LGRS in C (H). This can proved as follows: If
a clause D is a tautology or BN D # (), then B = D, hence for any clause
C we have C =g D. Remove from S all tautologies and all D for which
BN D # 0, call the remaining set S’. If S’ is empty, any tautology is an
LGRS of §. If 8’ = {Dy, ..., D,,} is non-empty, then it follows easily from
point 3) above that an LGS of {(D; V B),..., (D, V B)} (or equivalently
of {(Dy < B),...,(D,, < B)}) in C is an LGRS of &’ in C, and hence also
of §. The existence of such an LGS follows from Theorem 28. Thus if
the background knowledge B is a finite set of ground literals, then we can
construct an LGRS of a set S = {Dy,...,D,} simply by constructing an
LGS of T = {(D1VB),...,(D, Vv B)}. Additionally, if all clauses in S are
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horn clauses and each literal in B is a ground atom, then each D; V B is
also a horn clause and so will the LGS of T'. So the result follows for H.
This result has been exploited in the GOLEM system.

8. The non-existence of finite chains of covers, in lattices of (Horn) clauses
ordered by subsumption carries over to the lattice of clauses ordered by
relative subsumption.

Relative Subsumption and ILP

We will develop further on point (7) discussed above. When presented with
an example e, candidate hypothesis in the form of a clause C' and background
knowledge B, what does it mean for clause C' to “relatively subsume” example
e. Recall normal subsumption: C' > e means 30 s.t. C'0 C e. This also means
Cl=eor = (e C0).
e: gfather(henry, john) «—
B: father(henry, jane) «—
father(henry, joe) —
parent(jane, john) «—
parent(joe, robert) «—
C: gfather(X,Y) « father(X, Z),parent(Z,Y)

For this B,C, e with 0 = {X/henry,Y/john, Z/jane}, BU{CO} |= e That
is: C' =p e or equivalently, B |= (e < C0) (by subsumption theorem). However,
note that C % e. Clearly if B = ) normal subsumption between clauses results.
Using the Deduction Theorem

B (e — CO) BU{CH} = e
= BuekECo
{Co} =BUe

= E(Bue« C9)

That is, C =5 e means C > BUe or C E BUe. Recall that if C; > Cs then
C4 = Cy. In fact, if C4 5 are not self-recursive, then Cq = Cy = Cy = Co

Let a1 Aasg ... be the ground literals true in all models of B U €, that is these
are all the members of the minimal model MM (G(B U®)) (c.f. theorem 12 as
well as theorem 17). Then

BUekEa ANas...
al/\(lg/\...':BU€Ee<—B

Let L(B,e) =a; Aaz A.... Note that L(B,e) (the ‘most specific clause’ given
B,e) may not always be finite. If B and e are both ground, it follows that
1(B,e) = (e — B).
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Now, if D = L(B,e) then D = L(B,e) and therefore D = BUe. Now, by
transitivity of |, if D = L(B, e) then because L(B,e) | e « B, it should follow
that D |= e < B. It can be further shown that if D, e are not self-recursive and
D = 1(B,e) then D = BUe (that is, D = (e «+ B) or D >pg e). In fact, if C,e
are non self-recursive then

C = 1(B,e) =
CEBUE =
C>BUe =
C-e—B

An example of finding L is:

B:
gfather(X,Y) « father(X,Z), parent(Z,Y)
father(henry,jane) «—
mother(jane,john) «—
mother(jane,alice) «—
€.

gfather(henry,john) «

Conjunction of ground atoms provable from B U €;:
—parent(jane,john) A
father(henry,jane) A
mother(jane,john) A
mother(jane,alice) A
—gfather(henry,john)

L(B,e;):
gfather (henry,john) V parent(jane,john) «
father(henry,jane),
mother(jane,john),
mother(jane,alice)

Di:
parent(X,Y) <« mother(X,Y)

Mode declarations

Finding a clause D; that subsumes L (B, ¢;) is hampered by the fact that L (B, e;)
may be infinite! One workaround is to use a constrained subset of definite
clauses to construct finite most-specific clauses. This can be enabled using
mode declarations. An example set of mode declarations for the problem
just considered is:

modeh(*,gfather(+person,-person))

modeh(* parent(+person,-person))

modeb (¥, father(+person,-person))
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modeb(*,parent(+person,-person))
modeb(*,mother(+person,-person))
A definite mode language is defined as follows.

Definition 2 Let C : h < by,...,b, be a definite clause with an ordering over
literals. Let M be a set of mode declarations. C' is in the definite mode language

L(M) iff

1. h is the atom of a modeh declaration in M with every place-marker of
+type and —type replaced with variables, and every place marker of #type
replaced by a ground term.

2. Every atom b; in body of C' is an atom in a modeb declaration in M with
+, —, # places being replaced as above.

3. Every variable of +type in b; is either of +type in h or or —type in a b;
1<j<i)

Given a set of mode declarations M it is always possible to decide if a clause C
is in £(M). Next, we define depth of variables.

Definition 3 Let C be a definite clause, v be a variable in an atom in C, and
U, all other variables in body atoms of C' that contain v

(maxyep,d(u)) +1  otherwise

{ 0 if v in head of C

For example, if C: gfather(X,Y) « father(X, Z), parent(Z,Y)
Then d(X) =d(Y) =0, d(Z) = 1. Putting together the definitions of mode
language and depth, we next define depth bounded definite mode language.

Definition 4 Let C be a definite clause with an ordering over literals. Let M
be a set of mode declarations. C is in the depth-bounded definite mode language
Lq(M) iff all variables in C have depth at most d

As an example, the clause for gfather/2 earlier is in Lo(M).
We will state some properties of 1(B,e;) without their proofs. For every
1(B,e;) it is the case that:

There is a Lg(B,e;) in Lg(M) s.t. La(B,e;) = L(B,e;)
La(B,e;) is finite

If C = 14(B,e;) then C = L(B,e;)

1(B,e;) may not be Horn

L(B, e;) may not be finite
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Least upper bound of Horn clauses eq, e is:
lggB(eh 62) = lgg(J-(B7 61)7 J—(By 62))

Greatest lower bound of Horn clauses eq, s is:

glby(er,ea) = glb(L(B,e1), L(B,e2))

Let us take an example of finding L;:

J_(B, 61')2

gfather(henry,john) V parent(jane,john) «—
father(henry,jane),
mother(jane,john),
mother(jane,alice)

modes:

modeh(*,parent(+person,-person))

modeb(*,mother(+person,-person))

modeb(*,father(+person,-person))
1o(B,e;):

parent(X,Y) «

J—1 (B7 ei):
parent(X,Y) «—
mother(X,Y),
mother(X,Z)

2.5.2 Relative implication (=g)

Definition 5 Let C and D be clauses, and B be a set of clauses. C (logically)
implies D relative to B, denoted C =g D, if {C} UB =g D.

For example, if B = {P(a)}, C = P(f(x)) « P(z) and D = P(f?(a)), then
C g D, because there is a deduction of D from {C} U B. However, we have
C %5 D because C has to be used more than once in the deduction of D.
Following are some properties of relative subsumption:

1. Relative implication is perhaps the most obvious way to take background
knowledge into account.

2. Obviously relative implication is reflexive and transitive so it can serve as
a quasi-order on a set of clauses.
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3. It is also obvious that if C' = D then C' = D. The converse need not
hold though. Consider C' = P(a) « P(b), D = P(a), and B = {P(b)}:
then C =3 D, but C = D.’

4. Relative subsumption implies relative implication but not conversely. If
C =5 D, then B = VY(C8 — D) (for some 0). If C' =5 D then {C} UB |=
D, which is equivalent to B = V(C') — V(D) by the deduction theorem.

5. C =g D iff there exists a deduction of D from {C} U B (contrast this
with that for relative subsumption). This is another testimony to the fact
that relative implication is a strictly stronger quasi-order than relative
subsumption.

6. The negative results for existence of least generalizations under implication
carry over to relative implication (LGRI), since ordinary logical implica-
tion is just a special case of relative implication. Further, the only positive
result for LGI that was stated on page 110 in point (2) is also negative for
LGRI. As an example, consider

Dy = P(a) Dy = P(b)
B={(P(a)V-Q(z)),(P(b) V-Q(z))}

It can be shown that the set S = {D;, D2} has no LGRI relative to B in C.
Suppose indeed D is an LGRI of S relative to B. Note that if D contains
the literal P(a), then the Herbrand interpretation which makes P(a) true,
and which makes all other ground atoms false, would be a model of BU{D}
but not of Ds, so then we would have D [~p Ds. Similarly, if D contains
P(b) then D [~ D;. Hence D cannot contain P(a) or P(b). Now let d be a
constant not appearing in D. Let C = P(x)V Q(d), then C =5 S. By the
definition of an LGRI, we should have C' =g D. Then by the Subsumption
Theorem, there must be a derivation from B U {C} of a clause E, which
subsumes D. The set of all clauses which can be derived (in 0 or more
resolution steps) from BU{C'} is BU{C}U{(P(a)V P(z)), (P(b)V P(z)}.
But none of these clauses subsumes D, because D does not contain the
constant d, nor the literals P(a) or P(b). Hence C g D, contradicting
the assumption that D is an LGRI of S relative to B in C'. Thus, in
general an LGRI of S relative to B need not exist.

7. We can identify a special case in which the existence of an LGRI is guaran-
teed. Let C' and D be clauses, and B be a finite set of fundion-free ground
literals. Then C =5 D iff C' = (D UB). Further, if S C C is a finite set
of clauses, containing at least one D for which D U B is non-tautologous
and function-free, then S has an LGRI in C. As a special case of this, if
C is itself function free clausal language, then for any finite S C C, S has
an LGRI in C.

This can be proved as follows: Suppose C g D i.e., {C}UB |E D. Let
M be a model of C. Then we need to show that M is also a model of
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D UB. If M is not a model of B, then it is a model of at least one literal
in B, and hence of the clause D U B. If on the other hand, M is a model
of B then M is also a model of D, because {C} UB = D. Then M is also
a model of D U B. This prove the ‘only if’ part.

Now suppose C' |= (D UB). Let M be a model of {C} UB. Then we need
to show that M is also a model of D. Now, M is a model of C' and hence
of the clause D U B. But M is also a model of B, and hence not a model
of B. Therefore, M must be a model of D. This proves the ‘if’ part.

Now if § = {D1, Da, ..., Dy}, it follows that an LGI in C of T' = {(D1 U
B),...,(D, UB)} is also an LGRI of S in C (which exists according to
point 2 on page 110).

2.5.3 Buntine’s generalized subsumption (>3)

Definition 6 Let C and D be definite program clauses and B be a definite
program, comprising the background knowledge. We say that C > D (g-
subsumes), if for every Herbrand model M of B and every ground atom A such
that D covers A under M, we have that C covers A under M. Definite clause
C is said to ‘cover’ atom A under M if there exists a ground substitution 6 for
C (that is, CO is ground), such that M is a model for C~6 and CT0 = A.

Generalized subsumption applies only to definite program clauses. Loosely
speaking, generalized subsumption says that for definite clauses C' and D, C
is more general that D, in any situation consistent with what we already know
(through B), C can be used to prove at least as many results as D. For example,
if B consists of the background knowledge on page 116 and C and D are defined
somewhat similar to D7 and Do as

C = CuddlyPet(x) «— Small(x), Pet(x)
D = CuddlyPet(x) < Cat(z)

then, we can show that C' >g D. For suppose M is a Herbrand model of B and
D covers some grond atom A = CuddlyPet(t) under M, then for 0 = {z/t},
D=0 = Cat(t) is true under M. Since M is a model of B, in particular of
B and Bs, Pet(t) and Small(t) must be true under M as well. Then C~6 =
Small(t) A Pet(t) is true under M, and CT0 = A, so C also covers A under M.
Hence C' >3 D. In natural language, this can be rephrased as

If small pets are cuddly pets, then cats are cuddly pets,
since we already know that cats are small pets.

Some of the properties of >p are:

1. Just as subsumption implies relative subsumption, subsumption also im-
plies g-subsumption. Suppose C = D. Then C0 C D, so CT0 = DT and
C~6 C D~ for some 6. If D covers some A under some I, there is a v such
that D™, is true under I and Dt~ = A. But then Ct0y = DTy = A,
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and C~~ C D™, is true under I, so C' covers A under I as well. Hence,
if C' = D, then C >3 D.

The converse need not hold: if B = {P(a)}, C = Q(a) — P(a) and
D = Q(a), then C >3 D but C # D.

2. Generalized subsumption is reflexive and transitive with respect to some
definite program B, so it can serve as a quasi-order on a set of definite
clauses.

3. C' >p D iff there exists an SLD-deduction of D, with C' as top clause and
members of B as input clauses. It follows from this that g-subsumption
reduces to ordinary subsumption in the presence of empty background
knowledge, as was the case for relative subsumption. That is, if C' and D
are definite program clauses, then C' >y D iff C = D.

4. From the previous point, it follows that if C' and D are definite program
clauses, and B is a definite program, then if C' >g D, it follows that
C =g D. That is, g-subsumption implies relative subsumption. But the
converse does not hold. This is sufficient to prove that if an LGG (lub)
does not exist under relative subsumption (such as for the example

5. An LGGS of a finite set S (of definite program clauses which all have the
same predicate symbol in their respective heads) always exists either if

(a) All clauses in S are atoms, and the background knowledge B implies
only a finite number of ground atoms (i.e., Mp is finite)

(b) S and B are all function-free (see [Bun88]).

(¢) B is ground. This case differs from the first, because B may imply
only a finite number of ground examples, and still be non-ground
itself. For example, B = {P(a), (Q(z) «— P(x))}.

Actually, these three cases are special cases of the following theorem:

Theorem 31 Let H be a Horn language and B be a definite program.
Let S = {D1,...,Dn} CH be a finite non-empty set of definite program
clauses, such that all D;, have the same predicate symbol in their head.
Furthermore, for every 1 < i <mn, let o; be a Skolem substitution for D;,
with respect to BUS, and M, be the least Herbrand model of BU D; o;.
If every M; is finite, then there exists an LGGS of S in H.

Thus if the least Herbrand models mentioned in the theorem are indeed
finite, then we can find an LGGS of a set {Dy,..., Dy} simply by con-
structing an LGS of {({D}UM,),...,({D;}o,}UM,)}.
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2.6 Using Generalization and Specialization

The normal problem of inductive logic programming is to find a correct theory, a
set of clauses which implies all given positive examples and which is consistent
with respect to the given negative examples. Usually, it is not immediately
obvious which set of clauses we should pick as our theory. Rather, we will have to
search among the permitted clauses for a set of clauses with the right properties.
If a positive example is implied by the theory, we should search for a more general
theory. On the other hand, if the theory is not consistent with respect to the
negative examples, we should search for a more specific theory - for instance,
by replacing a clause in the theory by more specific clauses - such that the
theory becomes consistent. Thus, the two most important operations in ILP are
generalization and specialization. Repeated application of such generalization
and specialization steps may finally yield a correct theory.

To systematically facilitate this search, it would be very handy if the set of
clauses that has to be searched, is somehow structured. Fortunately, this is so
as seen in chapter 1. We had seen several alternatives for what it means for
some clause to be more general than another clause. Since generalization (or
dually, specialization) can proceed along the lines of such a generality order,
using such an order can direct the search for a correct theory. For example,
least generalizations can be used to generalize given finite sets of examples.

2.7 Using the Cover Structure: Refinement Op-
erators

One way to weaken a existing theory which is too strong is to find a false
member of the theory 3, and delete this clause from the theory. However,
deleting a clause might make the theory in turn too weak. A way to strengthen
the theory again, is to add weaker versions of previously deleted clauses. For
instance, suppose the clause P(x) is false under I, and has been deleted from
Y. It might be that P(f(x)), which is a “refinement” of P(z), is true under I.
Thus the theory might be strenghened by adding P(f(x)) to it.

The finite downward and upward cover chain algorithm provide the general
direction of search in any search over the lattice structure over theories (atomic
or otherwise). In top-down search, we want to find some unknown specialization
I of 1;. Then we should use substitutions to try and find a chain of downward
covers starting from 1; as in Algorithm 1.15. Since such finite chains always
exist for atoms, we can restrict attention to downward covers of 1;, downward
covers of downward covers of 1, etc. Recall from the algorithm in Figure 1.15
that the progress from 1; to 1;41 is achieved by applying one of the following
substitutions:

1. {X/f(Xy,...,Xk)} where X is a variable in 1;, X1, ..., X}, are distinct variables
that do not appear in 1;, and f is some k-ary function symbol in the language

2. {X/c} where X is a variable in 1;, and ¢ is some constant in the language

3. {X/Y} where X,Y are distinct variables in ;
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In ILP, these 3 operations define a “downward refinement operator”

On the other hand, in bottom-up search we want to find some unknown
generalization 1 of 1. In that case, we should use inverse substitutions to find
a chain of upward covers from 15 to 1;.

A systematic way to find refinements of clauses, is by using a refinement
operator. There are two kinds of refinement operators: upward and downward
ones. An upward refinement operator computes a set of generalizations of a
given clause, a downward refinement operator computes a set of specializations.
What constitutes a ‘specialization’ or ‘generalization’ of a clause, is determined
by a generality order > (such as subsumption, implication, relative subsumption,
relative implication, etc.) on clauses. Then we can say that C is a generalization
of D (dually: C is a specialization of D), if C' = D holds. In each of these orders,
the empty clause O is the most general clause.

Downward refinement operators compute sets of specializations of a clause,
upward ones compute sets of generalizations. Refinement operators are defined
for a set of formulae S with a quasi-ordering >. There are two refinement
operators.

- p is a downward refinement operator if VC € S : p(C) C {D|D €
S and C = D}

— 4 is an upward refinement operator it VC € S : 6(C) C{D|D € S and D
C}

For example, with an equality theory = /2, D € p(C) (downward refinement
operator) if

p(X1,X2,...,Xn,) i C=0andp/n, €L
D= and the X; are distinct
Ccu{-l} otherwise
where
V=W where V, W occur in C
V:f(X17X27...,X,,Lf) where V occurs in C

and f/ny € £ and
the X,; are distinct

(X1, X2, .., Xny) where g/ng € L
and the X; occur in C

is an example of a refinement operator.

2.7.1 Example

We assume the set of clauses Cp is ordered by such a generality order .
Shapiro’s top-down approach only employs a downward refinement operator p,
so p(C) is a set of specializations of a given clause C. We start with ¥ = {O}.
This is clearly too strong, since it implies any clause. Hence we want to find spe-
cialisatione of O, We use the set p(O) for this. If p(O) is still too strong, its false
members in turn be replaced by their refinements, and so on. Thill allows us
to search stepwisely through the generality order. This stepwise approach will
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Figure 2.9: Paths through the refinement operator p.

only work if there is a path (a number of refinement steps) from Box to every
clause in atleast one correct theory, For instance, suppose ¥ = {Da, D3, D4} is
a correct theory. Let the refinement operator p be such, that p(0) = {C1, Ca},
p(C1) = {C3,C4}, p(Co) = {Ds, Da}, p(C3) = {D1}, and p(Cy) = {D, D3}
Starting from O, we can reach X by considering p(0), p(C1), p(C2), p(C4). See
Figure 2.9

2.7.2 Ideal Refinement Operators

The sets of one-step refinements, n-step refinements, and refinements of some
C' € C, are respectively:

p'(C) = p(C)
p"(C) ={D| thereis an E € p"~'(C) such that D € p(E)}, n > 2
p*(C) = pH(C)UP*(C)Up*(O)...

A p-chain from C to D is a sequence C' = Cy,C4,...,C,, = D, such that
C—i € p(Ci—1) fprevery 1 <i < mn. A refinement operator induces a refinement
graph. This is a directed graph which has the members of C as nodes (here
variant clauses in C can be viewed as the same node), and which contains an
edge from C to D just in case D € p(C'). This refinement graph is the space that
is searched for candidates to include in the theory (we will later see refinements
over theories).
Some desirable properties of p (and dually 0) are that they be:

1. Locally Finite: VC € C: p(C) is finite and computable. Otherwise p will
be of limited use in practice.

2. Complete: YC > D: JE € p*(C) st. E ~ D. That is, every spe-
cialization should be reachable by a finite number of applications of the
operator.

3. Proper: VC € C: p(C) C {D|D € S and C = D}. That is, it is better
only to compute proper generalizations of a clause, for otherwise repeated
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application of the operator might get stuck in a sequence of equivalent
clauses (such as the application of inverse reduction in Section 2.3), with-
out ever achieving any real specialization.

A refinement operator is ideal if it is locally finite, complete, and proper. An
ideal refinement operator induces a refinement graph in which only a finite
number of edges start from each node (locally finiteness), in which there exists
a path of finite length from C' to a member of the equivalence class of D whenever
C = D (completeness), and which contains no cycles (by properness).

It can be shown that ideal downward p4 and upward J 4 refinement oper-
ators exist for the simplest of our quasi-orders: the set of atoms ordered by
subsumption.

Definition 7 Let A be the set of atoms in a language. The downward refine-
ment operator pa for A is defined as follows:

1. For every variable z in an atom A and every n-ary function symbol f in
the language, let x1,...,x, be distinct variables not appearing in A. Let
pa(A) contain A{z/f(x1,...,2n)}.

2. For every variable z in A and every constant a in the language let pa(A)
contain A{z/a}.

3. For every two distinct variables x and z in A, let pa(A) contain A{z/z}.

Note that p4(A) may still contain variants. For instance, p4(P(z,y)) con-
tains both P(z,z) and P(y,y). Clearly, in a practical application we can ignore
any redundant variants. The three different kinds of atoms in p(A) correspond
exactly to the three kinds of downward covers that we discussed in theorem 25.
It can be proved easily from the properties of sets of covers of atoms described
on page 87 that if A contains a finite number of constants function and predicate
symbols, then p4 is ideal.

An ideal upward refinement operator d 4 can be defined straightforwardly as
follows:

Definition 8 Let A be the set of atoms in a language. The upward refinement
operator 0 4 for A is defined as follows:

1. For every t = f(x1,...,x,) in A, for which x1,...,x, are distinct vari-
ables and each occurrence of some x; in A is within an occurrence of t,
d4(A) contains an atom obtained by replacing all occurrences of t in A by
some new variable z not in A.

2. For every constant a in A and every non-empty subset of the set of oc-
currences of a in A, 0 4(A) contains an atom obtained by replacing those
occurrences of a in A by some new variable z not in A.

8. For every variable x in A and every non-empty proper subset of the set
of occurrences of x in A, d4(A) contains an atom obtained by replacing
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those occurrences of x in A by some new variable z not in A. Note that in
this last item, we cannot replace all occurrences of x by a new variable z,
for then we would get a variant of A. For instance, P(z,a,z) is a variant
of A= P(z,a,z).

As in the case of p4, it easily follows that § 4 is locally finite, complete and
proper. We do not even have to presuppose a finite number of constants function
and predicate symbol for this, because when constructing JA(A) w only have
to deal With the fimte number of symbols in A-there is no need to introduce
new constants, functions or predicates.

2.7.3 Refinement Operators on Clauses for Subsumption

Unfortunately, the ideal conditions described for atoms cannot all be met at
the same time for more complex orders. Ideal refinement operators do not exist
for full clausal languages or Horn languages ordered by subsumption or by the
stronger orders. This negative result is a concequence of the fact that finite
complete sets of covers do not always exist®. We had seen (c.f. Section 2.1.2)
that the existence of finite chains in lattices of atoms ordered by subsumption
does not carry over to Horn clauses ordered by subsumption. This had followed
from the observation that there are clauses which have no finite and complete
set of downward covers. This makes it impossible to devise an ILP program that
uses a refinement operator that is both complete and non-redundant. Therefore,
there are no upward (downward) refinement operators that are locally finite as
well as complete as well as proper for sets of clauses That is, for clausal languages
ordered by subsumption >4 or stronger orders, ideal refinement operators do
not exist.

In order to define a refinement operator for full clausal languages, it will be
required to drop one of the three properties of idealness. Of the three conditions
of locally finiteness, completeness and properness, finiteness seems indispens-
able: an infinite set p(C) of refinements of a clause C' cannot be handled well,
because it would then be impossible to test all members of p(C) in finite time.
Furthermore, it is obvious that completeness is also a very valuable property, if
you want to be able to guarantee that a solution will always be found whenever
one exists. Of the three ideal properties, properness seems the least important
and can be compromised. Ideal refinement operators can be approximated by

1. Dropping the requirement of properness: Locally finiteness and complete-
ness are considered to be the two most important properties, so dropping
the 'properness’ is a common practice. We will define downward (pr) and
upward (dy) refinement operators that are locally finite and complete,
but improper. For subsumption, such refinement operators exist, both for
the downward and for the upward case. If C' subsumes D, then C6 C D
for some substitution 6. Thus specialization under subsumption can be

8In fact, it can be proved that if there exists an ideal downward (upward) refinement
operator for < C, >>, then every C € C will have a finite complete set of downward (upward)
covers
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achieved by applying (elementary) substitutions and adding literals. In
fact, when adding literals, it is sufficient to add only most general liter-
als, since these can always be instantiated by a substitution later on to
get the right literals. A literal P(zq,...,2,) or = P(21,...,2,) is most
general with respect to a clause C, if z4, ..., z, are distinct variables not
appearing in C.

Definition 9 Let C be a clausal language. The locally finite and complete
downward refinement operator pp for < C,=> is defined as follows:

(a) Apply a substitution to a clause C in one of the following ways:

i. For every variable z in a clause C' and every n-ary function sym-
bol f in the language, let x4, ..., x, be distinct variables not ap-
pearing in C. Let pe(C) contain C{z/f(x1,...,zn)}.

i1. For every variable z in C' and every constant a in the language,
let pe(C) contain C{z/a}.

iii. For every two distinct variables x and z in C, let pp(C) contain
(b) Add a literal to a clause C: For every n-ary predicate symbol P in
the language, let x1,...,x, be distinct variables not appearing in C.
Then pr contains both CU{P(x1,...,2s)} and CU{—=P(z1,...,2,)}.
Note that the literals P(x1, ..., x,) and ~P(x1,...,2,) that are added

to C by the fourth item in the definition are most general with respect
to C.

The proof of locally finiteness and completeness is straightforward. Sincce
we already know that no ideal operators exist for this case, p, cannot
be proper. For instance, if C = {P(z)} and D = {P(x),P(y)}, then
D € ps(C) and C ~ D. However, this D is needed in a p,-chain from C' to
{P(a)P(b)} as follows: {P(x)},{P(z), P(y)},{P(a), P(y)},{P(a), P(b)}.
Notice that for every O # C, we have O > C, so p*(0) contains a clause
which is subsume-equivalent to C'. In other words: If we start with the
empty clause (as Shapiro’s Model Inference Algorithm does), then for
every C € C, a clause C’ such that C ~ C’ can be reached by means of

L.

Definition 10 Let C be a clausal language. The locally finite and com-
plete upward refinement operator &, for < C,=> is defined as follows:

(a) Apply one of the following inverse substitution operations:

i. For everyt = f(x1,...,2,) in C, for which all z; are distinct
variables and each occurrence of x; in a clause C is within an
occurrence of t, 0,,(C) contains the clause obtained by replacing
all occurrences of t in C by some new variable z not previously
in C.
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ii. For every constant a in C' and every non-empty subset of the set
of occurrences of a in C = dup(C,a), if D is the ordered clause
obtained by replacing those occurrences of a in C by the new
variable z, then 6,(C) contains D, where D is the set of literals

in the ordered clause D.

dup(C,t) is defined as follows. If C = {Lq,...,L,} is a clause
and t a term occurring in C and suppose t occurs ki times in
Ly, ko times in Lo, etc. Then dup(C,t) = C is an ordered clause
consisting of 2°1 copies of Ly, 2¥* copies of Lo, . .. and 2 copies
of L,,. Note that if some L € C does not contain the term t, then
C contains L 2° = 1 times, as it should.

111. For every variable x in C and every non-empty proper subset of
the set of occurrences of x in C = dup(C,x), if D is the ordered
clause obtained by replacing those occurrences of x in C by the
new variable z, then 6,(C) contains D.

(b) Remove a literal from the body of a clause: If C = DU{L}

and L is a most general literal with respect to D, then 6,,(C) contains
D.

2. By bounding the language: If we want to retain all three ideal properties, it

seems that the only possibility is to restrict the search space. There exist
ideal refinement operators for reduced finite clausal languages, ordered
by subsumption. The fact that there always exists an ideal refinement
operator for finite sets is mainly of theoretical interest. Thus in practice,
we usually prefer more constructive-though possibly improper-refinement
operators over such very elaborate ideal operators.

Dropping the requirement of completeness: Refinement operators are used
very often in ILP systems, for instance in MIS [Sha81b], SIM [LD90,
Lin92], FOIL [Qui90, QC93], CLAUDIEN [DB93], LINUS [LD94], and
Progol [Mug95|. For reasons of efficiency, those operators are usually less
general than the ones discussed here, and often incomplete. Nevertheless,
the complete operators defined here form a good starting point for the
construction of practical refinement operators.

An approximation to the ideal downward refinement operator, as adopted
in Aleph is:
(a) Adding a literal drawn from L,
p(X,Y) « q(X) becomes p(X,Y) — ¢(X),r(Y)
(b) Equating two variables of the same type
p(X,Y) « q(X) becomes p(X, X) « q(X)
(c) Instantiate a variable with a general functional term or constant
p(X,Y) < ¢(X) becomes p(3,Y) «— ¢(3)

Optimal cover-refinement operators do not exist for clausal languages or-

dered by subsumption.
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2.7.4 Refinement Operators on Theories

Definition 11 Let C be a clausal language, containing only a finite number of
constants, function symbols, and predicate symbols. Let S be the set of finite
subsets of C. The downward refinement operator pr for < S,=> is defined as
follows:

1. (BU{R| R is a resolvent of C1,C3 € £}) € pz(2).
2. If L ={C,...,Cn}, then (XU pz(Cy)) € pz(X), for each 1 <i < n.
3. If ¥ ={Cq,...,C,}, then (X\ {C;}) € pz(X), for each 1 < i < n.

Note that every theory in pz(X) that is specified by one of the first two items in
the definition of pz is logically equivalent to ¥. This shows that pz is not proper.
The completeness of pz follows from the Subsumption Theorem, which tells us
that logical implication can be implemented by a combination of resolution and
subsumption.

2.8 Inverse Resolution

Since induction can be seen as the inverse of deduction, and resolution is our
main tool for deduction, using inverse resolution for induction seems a sensi-
ble idea. Deduction moves from the general rules to the special case, while
induction intends to find the general rules from special cases (examples). Mug-
gleton and Buntine [MB88] introduced inverse resolution as a tool for induction.
Their paper was followed by a wave of interest and research into the properties
of inverse resolution [Wir89, HS91, Mug91b, Mug92b, Mug92c, RP89, RP90,
Rou92, NF91, Ide93c, 1de92, 1de93b, Ide93a, LN92, SADB92, Tay93, SA93,
BG93]. Inverting resolution is nowadays still a prominent generalization oper-
ator for bottom-up approaches to ILP. However, the theoretical foundation of
this idea needs much more investigation. Moreover, in the application of in-
verse resolution, many indeterminacies arise: many different choices of literals,
clauses and substitutions lay open. Accordingly, inverse resolution generates a
very large search space of possibilities.

Muggleton and Buntine introduced two operators for this: the V-operator
and the W-operator.

2.8.1 V-operator

The V-operator, outlined as a non-deterministic® algorithm in Figure 2.10, gen-
eralizes two given clauses {C1, R} to {Cy,Cy}, such that R is an instance of a
resolvent of Cy and Cs. The setting for the V-operator is pictorially depicted
in Figure 2.11. The goal in inverse resolution is to construct a derivation of a
positive example A (usually a ground atom) which hitherto was not implied by

9Since, in step 1, the algorithm has to choose one among many different possible 61’s,
’
which all satisfy C; C R.
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the theory. Using the algorithm for the V-operator, we can invert one resolution
step, for given C; and R. By repeatedly applying the V-operator, we are able
to invert any SLD-derivation.

INPUT: Horn clauses C; = Ly V Ci and R, where 0191 C R for some 6.

OUTPUT: A Horn clause Cs, such that R is an instance of a resolvent of
Cl and CQ.

Choose a substitution 6; such that 0191 CR.

Choose an Lo and Cé such that L1607 = =Ly, and C’é6‘2 =R - 0101, for
some 0.

return Co = LoV C’é.

Figure 2.10: The V-operator.

The simplest situation is where C; = L1, so where C’i is empty. Then for
a given 61, any Cy and 6> with Co0; = —L160; V R will do. Since L16; V R is
an instance of any of these possible Cy’s, it is clear that Co = = L1601 V R is the
”minimal” of all possible Cy’s, for a fixed 6;.

As an example application of inverse resolution, let C; = P(x) V =Q(f(x)),
Ly =P(z),and R=Q(g(y)) vV -Q(f(g(y))). We assume C16; and C2602 do not
overlap.

1. Here only one 6 is possible, namely 61 = {z/g(y)}.

2. Ly and C; should be such that, for some 65, L16; = P(g(y)) = = L2602 and
R— (10, = Q(g(y)) = Cyb. Figure 2.12 shows all possible Cy = Ly V C,
(unique up to renaming of variables) of two literals, from top to bottom
in decreasing order of generality. Small generalization and specialization
steps are relevant for the V-operator. In this case, we are often interested
in finding a ‘minimal’ Cs, as in Figure 11.3, where Co = —L16; V (R —
C101 = =P(g9(y)) V Q(g(y)) is the minimal choice and can be obtained
using the covers relation between clauses in the implication/subsumption

O = Ly & g = Lyv

R' = ClpVv Cyu
l'\'

R =018, v T

Figure 2.11: The setting for the V-operator.



2.8. INVERSE RESOLUTION 135

=P(z) v Qly)

~Pig(z)) v Qly) "P(z) v Qlgly))

N

=F(g(z)) v Qlaiv))

—Pilgly)) v Qaly))

Figure 2.12: Cy derived using V-operator.

order studied in Section 2.1.2. The other C5’s can then be found by taking
small generalization steps starting from the minimal Cs.

Note that for some Cy, R itself is not a resolvent of C; and Cs. For instance,
if we let Co = = P(z)VQ(y), then the resolvent of Cy and Cs is =Q(f(2))VQ(v),
of which R is an instance.

We sometimes have to duplicate some literals in R before applying the V-
operator, in order to be able to find the desired parent clauses, such that 0191
and Cyf overlap.

Note that there are many indeterminacies here, which make an unrestricted
search through all possible invertible derivations very inefficient. Within the
V-operator itself, many different choices for 6y, Ly and Cé are possible. And
even before we can use the V-operator, we have to decide which clause from
the old theory or the background knowledge to use as C7, and which literals to
duplicate in R. Thus the total number of possibilities may become very large
sometimes, which can make application of inverse resolution very inefficient.

In Figures 2.13 and 2.14, we contrast linear derivation against inverse linear
derivation.

2.8.2 Predicate Invention: W-operator

One of the problems inductive learning algorithms have to face, is the fact that
it is sometimes necessary to invent new predicates. For instanCe; suppose we
want our algorithm to induce clauses from examples about family life. It would
be very unfortunate if the system did not possess a predicate for the concept of
‘'parent’. If we have not given such a predicate to the system in advance, the
system should be able to invent this predicate for itself. If we examine the V-
operator carefully, it is clear that this operator cannot invent new predicates: all
predicates appearing in any of the possible Cy that we might construct already
appear in C7 or R. However, by putting two V-settings side-by-side, we get a
W-shape. The W-operator combines two V-operators: it generalizes two given
clauses {Ry, Rz} to {C1,Cs,C5}, such that Ry is an instance of a resolvent of
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[, perent(y, X}

Figure 2.13: The linear derivation tree for es = Daughter(mary,ann)
from background knowledge B = {b1,b2} where by = Female(mary) and
by = Parent(ann,mary) and from a hypothesis H = {c} where ¢ =

Daughter(x,y) «— Female(x), Parent(y, ).

o = daughter(X,Y) = female(X),

Figure 2.14: The inverse linear derivation tree for H = {c¢} where ¢ =
Daughter(z,y) «— Female(zx), Parent(y, z) from background knowledge B =
{b1,b2} where by = Female(mary) and by = Parent(ann, mary) and from an
example es = Daughter(mary, ann).
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Ty = Parentiz, y) + Oy = Urandfather{z, y) +— Ca = panng(;.{bg {b_‘,l
Fnehsrtya, ) Father{z, z), Parent(z, v} Mothe™®

NSNS

Ry = Grandfather(z, ) R} = Grand) a:hcﬁr,b] —
Father(z, z), Father(z, y) Father|x, e}, Mother(e b)

[wal

sy = Grand atheﬁa,h] —
Father(a,e), Mothar(c, &)

Figure 2.15: Generalization of {Ry, Ro} to {C1,Cs, Cs} by the W-operator.

C and (5, and Ry is an instance of a resolvent of Cy and C5. In addition, the
We-operator is also able to invent new predicates.

We will present an example which shows the idea behiod the W-operator.
Suppose we have two Horn clauses Ry = Grandfather(z,y) «— Father(z, z), Father(z,y)
and Ry = Grandfather(a,b) «— Father(a,c), Mother(c,b), and suppose we
want to generalize these clauses. The Woperator constructs clauses Cp, Ca, Cs,
such that R is an instance of a resolvent of C7 and C5, and Rs is an instance
of a resolvent of Cy and C5. Thus, the W-operator generalizes {R;, Ra} to
{C1,C4,C5}. In Figure 2.15, we give possible Cy, Cy, C5 which can serve this
purpose. The important point to notice about the figure is that the predicate
Parent, which appears in C1, Cy and Cs, did not appear in the clauses Ry and Ry
we started with. Thus in generalizing { Ry, R2} to {C1, Ca, C3}, the W-operator
has itself introduced a new predicate. The invention of this new predicate is
quite useful, since it allows us to write out the definition of a ‘Grandfather’ in
a very succint way in Cy: x is the grandfather of y, if = is the father of some z,
and z is a parent of y. Note that any predicate name may be assigned the role
of Parent here, including ‘old’ names such as Grandfather or Mother, since this
predicate is resolved away in the two resolution steps anyway.

The general setting for the W-operator is pictured in Figure 2.16. Given R;
and Ry, the W-operator constructs Cy, Cy, C5, with the property that R; is
an instance of a resolvent of C; and Cs, and Rs is an instance of a resolvent
of Cy and C3. What we want to find, are C; = L{ V Ci, Cy=LyVvC — 2/,
03 = L3 V Cé, (91, (92, (o} and agg, such that L191 = _|L292, L20'1 = ﬂLgO‘Q,
R, = C;Gl \Y, C’é@g and Ry = C’éal \Y, C’éag. Thus Ly and Ly are resolved upon
in deriving R;, while Lo and L3 are resolved upon in deriving Ry. p is an mgu
for Ly and — Lo, and v is an mgu for =Ly and L3. Hence Ly and L3 must either
be both positive, or both negative. Note that Ly, Ls, L3 do not appear in R;
and Ry, which gives the opportunity for inventing a new predicate.

The idea behind the construction of C1, C2 and C3 using the W-operator is
sketched below:

1. Given Ry and Rs, we first try to find a C’é such that C’é@g C R; and
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Figure 2.16: The setting for the W-operator.

Cy01 C Ry, for some 0y and oy. Let Dy = Cyfy and Dy = Cyoy. Clearly,
many different Cy’s can give the same D; and Dy. These Cy’s can be
considered as generalizations of {Dy, D2}. We would like to begin with a
minimal C. This motivates the use of the notion of a ‘least generaliza-
tion’ of clauses discussed in Section 2.1.1. If we have found a minimal Cs,
the other possible C’;’s can be found by taking small generalization steps,
starting from the minimal C;. This motivates the use of ‘covers’ (mini-
mal generalizations or specializations of that clause) and consequently the
refinement operator of the clause.

If such a Cé cannot be found - which means, intuitively, that R; and Rs
have ‘nothing in common’ - we should let C, be empty.

2. If we have chosen an appropriate Cé, we can complete Cy by choosing also
L. In principle, any Lo will do.

3. Once we have decided which clause to take as Cs, then a C7 and C3 can
be found independently. C can be constructed by the V-operator from
Cs and R;p, and C5 can be constructed by the V-operator from Cy and
Rs.

Consider Figure 2.15 again. Given R; and Rs, how did we find Cy, Cy
and C3? First we note that (Grandfather(x,y) V ~Father(x,z))e C Ry, and
(Grandfather(z,y)V—Father(z, z)){z/a,y/b, z/¢} C Ry. Hence Cy = Grandfather(z,y)V
Father(z,z) is an appropriate choice. Secondly, we have to choose Ls. Let
us say we take Lo = —Parent(z,y). This gives Cy = Grandfather(z,y) «—
Father(z, z), Parent(z,y). Thirdly, the V-operator can find Cy = Parent(z,y) «—
Father(z,y) from Cy and R;. Similarly, it can construct the clause C3 =
Parent(c,b) < Mother(c,b) from Cs and Rs. Thus the W-operator generalizes
{Rl, Rg} to {Cl, Cg, 03}
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2.9 Summary

In this chapter, we discussed the following generalization operations:

1. Relative least general generalization (Igg/lub) with respect to subsumption
(LGRS) as well as implication order (LGRI). This is utilized by systems
such as GOLEM [Muggleton and Feng 92]. The progressive construction
of lubs for the subsumption order, starting with terms and culminating in
clauses is illustrated in Table 2.1.

GOLEM is a bottom-up, non-interactive, batch single-predicate learner,
which employs LRGS/

2. The upward refinement operator d,.

3. Inverse resolution in terms of the V and W operators. This is utilized in
ILP systems such as CIGOL (W-operator) [Muggleton and Buntine 88],
MARVIN (V-operator) [Sammu and Banerji 86] and ITOU (V-operator)
[Rouveirol 92].

CIGOL is a bottom-up, interactice, incremental, multiple predicate learner
that uses the W-operator for predicate invention. The user is asked
whether the induced clauses are true in the interpretation intended by
the user and how invented predicates should be named.

The following specialization techniques were also discussed:

1. Relative greatest specialization with respect to subsumption as well as
implication order. This is rarely used in practice.

2. The downward refinement operator p,. This is utilized in ILP systems
such as MIS (model inference system) [Shapiro 83], FOIL [Quinlan and
Cameron-Jone 93] and its successors mFOIL [Dzeroski 91], CLAUDIEN
[L. De Raedt and Bruynooghe 93], PROGOL [Muggleton 95], MOBAL
[Morik, Wrobel, Kietz and Emde 93], RDT [J-U Kietz and Wrobel 92],
FOCL [Brunk and Pazzani 91], MARKUS [Grobelnik 92] and MPL [De
Raedt et al 1993].

MIS is a top-down, interactive, incremental, multiple-predicate learner,
restricted to Horn clauses. FOIL is a top-down, non-interactive, batch
single-predicate learner, upgrading Quinlan’s earlier decision tree learner
ID3 [Quinlan 86] which learns function free normal programs using the
(set) ‘covering’ approach. CLAUDIEN is a top-down, non-interative batch
learner which uses Herbrand interpretations as (positive only) examples.
CLAUDIEN is one of the very few systems that induces full, rather than
definite or normal program clauses. PROGOL is a top-down, non-interactive,
batch, multi-predicate learner that learns clauses using an A*-like heuris-
tic algorithm to search top-down through a refinement graph, while re-
stricting attention to clauses that subsume some bottom-clause L4(15,e€)
(c.f. page 120). RDT is top-down, non-interactive, batch, multi-predicate
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learner that learns function-free normal programs, using a set of ground
literals as background knowledge (or reduced to that form as in GOLEM)
and where language bias is introduced into the refinement operators us-
ing a rule schema. A rule schema is a clause with predicate-variables
instead of ordinary predicate symbols Only clauses that can be obtained
by instantiating the predicate-variables in one of the given rule schemas
to ordinary predicate symbols may be used in the theory. It also uses a
predicate topology to further restrict the search for what predicate symbols
can be added to the body, given a predicate symbol in the head. MOBAL
makes use of RDT as one of its components.

3. There is another specialization technique called unfolding, which was not
discussed so far. SPECTRE [Bostrom 95|, IMPUT [Alexin, Gyimothy and
Bostrom 96] and JIGSAW [Ade and Bostron 95] use unfolding. SPECTRE
is a top-down, non-interactive, batch, single-predicate learner.

Systems such as CLINT make use of a hybrid of top-down (unfolding) and
bottom-up (abduction) approaches.
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[ Lub Definition Examples
lub of terms
Lub(ty, ta)
1. lub(t,t) =t, e lub([a,b,c],[a,c,d]) = [a, X,Y].
2. Lub(F(s1, - sn)s F(ELs s tn)) = o Lub(f(a,a), £(b,b)) = F(lub(a,b), lub(a, b)) =
FUub(s1, 1), - - > lub(sn, tn)), F(V, V) where V stands for lub(a, b).
3. lub(f(s1,---,8m),9(t1,...,tn)) =V, where e When computing lggs one must be careful to
f # g, and V is a variable which represents use the same variable for multiple occurrences
Tub(F(s1, s 8m)s (k15 - tn))s of the lubs of subterms, i.e., lub(a,b) in this
example. This holds for lubs of terms, atoms
4. lub(s,t) = V, where s # t and at least one of s and clauses alike.
and t is a variable; in this case, V is a variable
which represents lub(s, t).
lub of atoms
lub(ay, az)
1. Lub(P(s1,. -2 8n)s P(t1, .- »tn)) -
P(lub(s1,t1), ..., lub(sn,tn)), if  atoms
have the same predicate symbol P,
2. Lub(P(s1,. .., 5m),Q(t1,. .. tn)) is unde-
fined if P # Q.
lub of literals
lub(1y, 12)
1. if 13 and lg are atoms, then lub(ly, 1) is com- e lub(Parent(ann, mary), Parent(ann, tom)) =
puted as defined above, Parent(ann, X).
2. if both 1; and Iy are negative literals, 1} = ag, e lub(Parent(ann, mary), Parent(ann, tom)) =
Ig = a3, then lub(ly,ly) = lub(ay,az) = undefined.
lub(ay, ag),
o lub(Parent(ann, X), Daughter(mary, ann)) =
3. if 17 is a positive and lg is a negative literal, or unde fined.
vice versa, lub(ly, lp) is undefined.
lub of clauses
lub(Cy, Cg)
1. Let ¢; = {li,...,1,} and Cg = o If = Daughter(mary, ann) —
{ki,....,km}. Female(mary), Parent(ann, mary)
and Co = Daughter(eve, tom) -
Female(eve), Parent(tom, eve), then
2. Then lub(C1, Cp) = {l;; = lub(l;, kj) | 1; € Lub(Cy, Ca) — Daughter(X,Y) -
C1, kj € Cg and lub(l;, kj) is defined }. Female(X), Parent(Y, X), where X
stands for lub(mary,eve) and Y stands
for lub(ann, tom).
rlgg(ay, ag) lub(ay «— B,ag «— B) rlgg(Daughter(mary, ann), Daughter(eve, tom) =

Daughter(X,Y) — Female(X), Parent(Y, X)
where B denotes the conjunction of the lit-
erals Parent(ann, mary), Parent(ann, tom),

Parent(tom, eve), Parent(tom,ian), Female(ann),
Female(mary), Female(eve).

Table 2.1: Table showing progressive definitions of lubs, starting with terms and
culminating in rlgg between clauses.
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Chapter 3

Searching on Graphs

Consider the following problem:

Cab Driver Problem A cab driver needs to find his way in a city from one
point (A) to another (B). Some routes are blocked in gray (probably be-
cause they are under construction). The task is to find the path(s) from
(A) to (B). Figure 3.1 shows an instance of the problem..

Figure 3.2 shows the map of the united states. Suppose you are set to the
following task

Map coloring problem Color the map such that states that share a boundary
are colored differently..

A simple minded approach to solve this problem is to keep trying color
combinations, facing dead ends, back tracking, etc. The program could run for
a very very long time (estimated to be a lower bound of 1019 years) before it
finds a suitable coloring. On the other hand, we could try another approach
which will perform the task much faster and which we will discuss subsequently.

The second problem is actually isomorphic to the first problem and to prob-
lems of resource allocation in general. So if you want to allocate aeroplanes to
routes, people to assignments, scarce resouces to lots of tasks, the approaches
we will show in this chapter will find use. We will first address search, then
constraints and finally will bring them together.

3.1 Search

Consider the map of routes as in Figure 3.3. The numbers on the edges are
distances. Consider the problem of organizing search for finding paths from S
(start) to G (goal).

We humans can see the map geometrically and perhaps guess the answer.
But the program sees the map only as a bunch of points and their distances.
We will use the map as a template for the computer at every instance of time.

143
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Figure 3.1: Routes in a city. The problem is to find the shortest path from
point (A) to point (B).

Figure 3.2: The map of the united states of America. The task is to color the
map such that adjacent states have different colors.
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Figure 3.3: Map of routes. The numbers on the edges are distances.

At the beginning, the computer knows only about S. The search algorithm
explores the possibilities for the next step originating from s. The possible next
steps are A and B (thus excluding G). Further, from A, we could go to B or E.
From B, we could go to A or C. From A, we could also go back to S. But we
will never bother biting our own tail in this fasion; that is, we will never make
a loop. Going ahead, from B, we could only go to C'. From C, we can progress
only to D and thereafter we are stuck on that path. From A, we could make
a move to F and them from E to G. Figure 3.4 shows the exhaustive tree of
possible paths (that do not bite their own tail) through this map. The process
of finding all the paths is called the British Museum Algorithm!.

But the British Museum algorithm can be very expensive. In fact, some of
these searches can be exponential. If you had to look through a tree of chess
moves for example, in the beginning it is essentially exponential, which is a bad
news since it will imply 10'° years or so. We need a more organized approach
for searching through these graphs. There exist many such organized methods.
Some are better than others, depending on the graph. For example, a depth first
search may be good for one problem but horrible for another problem. Words
like depth first search, breadth first search, beam search, A* search, etc., form
the vocabulary of the search problem in Artificial Intelligence.

The representation we use will define the constraints (for example, the rep-
resentation of the routes in Figure 3.3 defines the notion of proximity between
nodes and also defines constraints on what sequences of vertices correspond to
valid paths.

3.1.1 Depth First Search

This algorithm? boils down to the following method: Starting at the source,
every time you get a choice for the next step, choose a next step and go ahead.
We will have the convention that when we forge ahead, we will take the first

IThe British Museums are considered some of the largest in the world.
2Fortunately, the names given to these algorithms are representative of the algorithms
actually do.
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Figure 3.4: The tree of all possible paths from S to G through the map in
Figure 3.3.

choice. Thus, a depth first search on the map in Figure 3.3 will tread along
the path in Figure 3.5. In practice, what is used is a combination of depth
first search and backup. What this means is that when a dead end is hit, the
method goes back to the last state. In practice, this method could yield very
complicated solutions.

3.1.2 Breadth First Search (BFS)

The way BFS organizes its examination of the tree is layer by layer; the algo-
rithm first explores one layer of solutions (A or B), then forges ahead to another
layer (B or E or A or C) and so on. Figure 3.6 illustrates the BFS traversal for
the map in Figure 3.3. In practice, this search could expend a lot of time in
useless parts of the graph. But it yields the shortest path in terms of number
of number of streets covered.

3.1.3 Hill Climbing

Both BFS and DFS are completely uninformed about geography; neither infor-
mation about distance nor direction is exploited. But often it helps if you have
outside information about how good a place is to be in. For instance, in the
map in Figure 3.3, between E and D, it is much better to be in F because that
gets you closer to the goal. It makes less sense in general to head off to the right
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Figure 3.5: The DFS tree from S to G through the map in Figure 3.3.

Figure 3.6: The BFS tree from S to G through the map in Figure 3.3.
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Figure 3.7: The choices based on hill climbing for the route from S to G through
the map in Figure 3.3.

if you know that the goal is on the left. It is heuristically good to be closer to
the goal, though sometimes it may turn out not to be a good idea. So we could
make use of heuristic information of this kind. And this forms the idea behind
hill climbing. It is an idea drafted on top of depth first search. When initially at
S, you could move to A or B. When you look at A and B, you that one of them
is closer to the goal G and you choose that for the next move. And B happens
to be closer to GG, which you pick for the next move; but this turns out to be
a bad idea as we will see. Nevertheless, it looks good from the point of view of
the short-sighted hill climbing algorithm. From B, the possible choices are A
and C. And A is a natural choice for hill-climbing, owing to its proximity to G.
From A onwards, the choices are straightforward - you move to E and then to
G. Figure 3.7 shows the route from S to G as chalked out by hill climbing.

Hill climbing always is greedy because it plans only for one step at a time.
The method requires a metric such as distance from the goal.

3.1.4 Beam Search

We drafted hill climbing on top of depth first search. Is there a similar thing we
could do with breadth first search? And the answer is ‘yes’. And this approach
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Figure 3.8: The choices based on beam search for the route from S to G through
the map in Figure 3.3.

is called beam search The problem with breadth first search is that it tends to
be exponential. But what we could do to work around is to throw away at
every level of BFS, all but the ‘most promising’ of the paths so far. The most
promising step is defined as that step which will get us ‘closest’ to the goal. The
only difference from the hill climbing approach is that beam search does not
pick up just one path, it picks up some fixed number of paths to carry down.
Let us try beam search on the map in Figure 3.3. For this simple example,
let us keep track of two paths at every level. We will refer to the BFS plan
in Figure 3.6. From S, we could move to A or B and we keep track of both
possibilities. Further, from A, there are two possibilities, viz., B and E, while
from B there are two possibilities in the form of A and C. Of the four paths,
which two should we retain? The two best (in terms of the heuristic measure
of how far we are from the goal) are B and E. Carrying forward from these
points, we arrive at G in a straight-forward manner as shown in Figure 3.8.

While the vanila breadth first search is exponential in the number of levels,
beam search has a fixed width and is therefore a constant in terms of number
of levels. Beam search is however not guranteed to find a solution (though the
original BFS is guaranteed to find one). This is a price we pay for saving on
time. However, the idea of backing up can be employed here; we could back up
to the last unexplored path and try from there.

3.2 Optimal Search

For optimal search, we will start with the brute force method which is exponen-
tial and then slap heuristics on top to reduce the amount of work, while still
assuring success.
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Figure 3.9: The tree of all possible paths from S to G through the map in
Figure 3.3, with cumulative path lengths marked at each node.

3.2.1 Branch and Bound

Suppose the problem is to find the best possible path (in terms of distances)
between S and G in the map as in Figure 3.3. An oracle suggests that the path
SAEG is the shortest one (its length is 13). Can we determine if SAEG is
indeed the shortest path? One method to answer this question is to verify if
every other path is at least that long.

From S, we could go to A or B. The cumulative path length to B is 5. From
B, you could either go to A or C'. The cumulative path length upto A or C' is
8. At this point, from A, you could go to E while from C' you could move to D,
with cumulative path lengths of 13 each and so on. Figure 3.9 shows the tree
of possible paths from S to G, with cumulative path length (from S) marked at
each node. It is evident from the figure that all paths to G have length greater
than or equal to 13. We can therefore conclude that the shortest path to G from
S is SAEG and has length 13.

Most often we do not have any oracle suggesting the best path. So we have
to think how to work without any oracle telling us what the best path is. One
way is to find a path to the goal by some search technique (DFS or beam search)
and use that as a reference (bound) to check if every other path is longer than
that. Of course, our first search may not yield the best path, and hence we
might have to change our mind about what the best path (bound) is as we
keep trying to verify that the best one we got so far is in fact the best one
by extending every other path to be longer than that. The intuition we work
with is to always push paths that do not reach the goal until their length is
greater than a path that does reach the goal. We might as well work only with
shortest paths so far. Eventually, one of those will lead to the goal, with which
we will almost be done, because all the other paths will be about that length
too, following which we just have to keep pushing all other paths beyond the
goal. This method is called branch and bound.
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Figure 3.10: The pruned search tree for branch and bound search.

In the example in Figure 3.9, the shortest path upto B from S was of length
5 initially, which used as a bound, could eliminate the path SAB and therefore
save the computation of the path SABCD. Similarly, the initial path to A,
SA of length 4, sets a bound of 4 for the shortest path to A and can thus
eliminate the consideration of the path SBA beyond A. Figure 3.10 illustrates
the application of branch and bound to prune the BFS search tree of Figure 3.9.
Crossed out nodes indicate search paths that are excluded because they yield
paths that are longer than bounds (for the corresponding nodes). This crossing
out using bounds is a variation on the theme of the dynamic programming
principle.

3.2.2 A* Search

The branch and bound algorithm can also be slapped on top of the hill climbing
heuristic or the beam search heuristic. In each of these cases, the bound can be
computed as the sum of the accumulated distance and the eucledian distance.

When the branch and bound technique is clubbed with shortest distance
heuristic and dynamic programming principle, you get what is traditionally
known as A* search. Understanding A* search is considered the culmination of
optimal search. It is guaranteed to find the best possible path and is generally
very fast.

3.3 Constraint Satisfaction

What we have discussed so far is mechanisms for finding the path to the goal
(which may not be optimal). Rest of the discussion in this chapter will focus
on resource allocation. Research allocation problems involve search. Too often
people associate search only with maps. But maps are merely a convenient way*
to introduce the concept of search and the search problem is not restricted to
maps. Very often, search does not involve maps at all. Let us again consider the

3Maps involve making a sequence of choices and therefore could involve search amongst
the choices.
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Figure 3.11: The sketch of a simple region for which we try to solve the map
coloring problem.

“Map coloring problem” (refer to Figure 3.2). It involves searching for sequence
of choices. Instead of the large city of USA, let us consider the simpler country
of Simplea as in Figure 3.11. Let us say we need to pick a color from the set
{R,G,B,Y}.

Let us say we number the regions arbitrarily. One approach is to try coloring
them in the order of increasing numbers, which is a horrible way! This is
particularly because the order chosen could be horrible. To color the region,
let us start by considering the possible colors that could be assigned to each
region. State number 1 could be assigned any of R, B, G or Y. Suppose we
take a depth first search approach for this coloring job. Now we need to color
the region number 2. Since we adopt depth first search, let us say we pick the
color of R for region 1. And as we go from region to region, we keep rotating
the set of colors.

The prescription for DF'S is that you keep plunging head until you hit a dead
end where you cannot do anything. But the problem is that we cannot infer
we have hit a dead end till we assign colors to all 15 regions, to realise that the
following constraint has been violated: no two adjacent regions should have the
same color. And even if we backup a step or two, we will have to explore all 15
regions to infer if we have reached a dead end. At this rate, the projected time
for successful coloring of the states in a US map is 10'° years*! That is no way
to perform search. The culprit is the particular order in which we chose to color
the regions. Figure 3.12 shows an example instance of random assignment of
colors that leads to a dead-end (with no suitable color left for region number 15).
We introduce the idea of constraint checking precisely to address this problem.
It is essentially a (DFS) tree trimming method.

First of all, we will need some terminology.

1. Variables (V): V is a set of variables. Variables names will be referred
to in upper case, whereas their specific instatiations will be referred to in
lower case.

2. Domain (D): The domain D is the bag of values that the variables can
take on. D; is the domain of the V; € V. A good example of a domain

4The United states has 48 contiguous states. If the number of colors is 4, the branching
factor of DF'S will be 4 and the height will be 48. Thus, the number of computations will be
448 or 296 which is of the order of 1027 and since the length of a year is the order of 107,
it will take in the order of 10'! years assuming that a computation is performed in a nano
second.
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Figure 3.12: A sequence of bad choices for the map coloring problem.

would be {R,B,G,Y}. In the map coloring problem, all variables have
the same domain.

3. Constraints (C): A constraint is a boolean function of two variables. Cj;
represents the constraint between variables X; and X;. Cy;(z;, x;) = true
iff, the constraint is satisfied for the configuration X; = z;,z; € D; and
X; =uj,x; € D;. Else, Cjj(x;,2;) = false. The form of the constraint
function could vary from problem to problem. An example of a constraint
is: no two adjacent regions should not have the same color. Note that
there need not be a Cj; for all ¢ and j. For instance, in the map coloring
problem, the only constraints are those involving adjacent regions, such
as region 15 with the regions 1, 2, 3 and 4.

Suppose we are trying to explore if region number ¢ = 15 is going to object
to any coloring scheme. First we define the constraint C},¢ =15, € {1,2,3,4}
as follows:

Cij(z,y),1=15,75 € {1,2,3,4} is true iff x # y.

We can state the check as in Figure 3.13.

for x € D; (i =15) do
for All constraints C;j do
Set X; = z iff Jy € D; such that Cy;(x,y) = true
end for
end for

Figure 3.13: The algorithm for constraint checking

3.3.1 Algorithms for map coloring

When assigning a color to each region, we could do different types of checks.

1. Check all: At one end of the spectrum, while assigning a color to a region,
we check constraint satisfaction with respect to all regions (no matter how
far they are from the region under consideration). This is an extreme case
and potentially, we could consider all variants of what to check and what
not to check. The check is only a speedup mechanism. It neither ensures
nor prevents a solution. We could get a solution (if there is one) using
depth first search and no search, thought it might take 10! years. If we



154 CHAPTER 3. SEARCHING ON GRAPHS

want to have minimum number of checks such that they are really helpful,
our method for deciding what to check will be checks on regions that are
in the immediate vicinity of the last region that had a color assigned.

2. Check Neighbors: Check for constraint satisfaction, only all regions in the
immediate neigborhood of the last region that had a color assigned. This
is at another end of the spectrum.

3. Check Neighbors of Neighbors: Check for constraint satisfaction, only all
regions in the immediate neigborhood of the last region that had a color
assigned as well as well as regions in the immediate neighborhood of the
neighbors.

4. Check Neighbors of ‘unique’ neighbors: Check for constraint satisfaction,
only all regions in the immediate neighborhood of the last region that had
a color assigned as well as well as regions in the immediate neighborhood
of the ‘unique’ neighbors. A neighbor is ‘unique’, if the constraint set for
the region has been reduced to a single element (which means that it has
a very tight constraint).

We will evaluate the above approaches on two fronts, viz.,

1. Number of assignments performed: An assignment corresponds to putting
a color on a region. If we are very lucky, we might be able to color the
map of the United states with just 48 assignments (that is we never had to
backup). Constraint checking will enable the algorithm realise that it will
soon hit a dead end and will have to back up. In practical situations, we
could expect a bit of backup and also expect the constraints to show you
some dead ends. So it could happen that the constraint checking reduces
the number of assignments to some number slightly above the ideal (say
52).

2. Number of checks performed: A check corresponds to determining which
color could be assigned to a region based on the color assigned so far to
another regions.

A simple experiment for coloring the Unites States reveals the statistics in
Table 3.1.

The message we can extract from Table 3.1 is that some of the constraint
checking is essential, else it takes 100 years. We can conclude that full pro-
pogation is probably not a worthy effort. Because full propogation, relative
to propogation through unique values yielded the same number of assignments
but relatively fewer checks. When we compare heuristic 2 against heuristic 4,
we find that there is a tradeoff between number of assignments and number of
checks. Checking all is simply a waste of time. The net result is that people tend
to invoke either of heuristics 2 and 4. From the point of view of programming
simplicity, one might just use heuristic number 2.



3.3. CONSTRAINT SATISFACTION 155
SrNo Constraint Sat Heuristic | Assignments | Checks
1 Check all 54 7324
2 Check neighbors 78 417
3 Check neighbors 54 2806
of neighbors
4 Check neighbors 54 894
of ‘unique’ neighbors

Table 3.1: Number of assignments and checks for each of the constraint sat-
isfaction heuristics for the problem of coloring the map of the USA using 4
colors.

The computational complexity of the discussed methods is still exponential®.
But usually, the constraints try to suppress the exponential nature.

3.3.2 Resource Scheduling Problem

Let us forget about maps for a while and talk about airplanes. An upstart
airline is trying to figure out how many airplanes they need. They have a
schedule outlining when and where they need to fly planes. And the task is to
figure out the minimum number of airplanes that need to be purchased. For
every airplane saved, let us say the reward is saving on half the cost of the
airplane.

F1, Fy, ..., F, are the flights. Table 3.2 shows the schedule for the flights.
Flight No. | From To Dept. Time | Arr. Time

I3 Boston | LGA | 10:30 11:30
F Boston | LGA | 11:30 12:30
Fs Boston | LGA | 12:30 13:30
F, Boston | LGA | 13:30 14:30
Fy Boston | LAX | 14:30 15:30
Fs

Fi5 Boston | LAX | 11:00 15:30

Table 3.2: Number of assignments and checks for each of the constraint sat-
isfaction heuristics for the problem of coloring the map of the USA using 4

colors.

To fly this schedule, we have some number m = 4 of airplanes: Pi, Py, Ps, Py.

5Note that these are NP complete problems. Any polynomial time algorithm will fetch

field medals.



156 CHAPTER 3. SEARCHING ON GRAPHS

Of course, we do not want to fly any plane empty (dead head).

The assignment P, — Fy, P» — Fy, P3 — F3 and Py — Fj will leave no
airplane for flight F5. But if we could fly P; back from New York (LGA), the
same plane could be used for flight Fy, thus sparing P, for F5. We can draw
the correspondence between this problem and the map coloring problem; the 4
airplanes correspond to 4 colors while the flights correspond to regions. The task
is to assign planes (colors) to flights (regions), at all times honoring constraints
between the flights. The constraints are slightly different from the ones we had
in the US map. The constraint is that no airplane can be on two routes at
the same time. This implies that there is a constraint between flights F; and
Fy. Similarly, there is a constraint between the pairs < Fy, F3 >, < F3, F5 >,
< Fy, Fs >, < F1,F5 >, < F5,F5 > and < F3,F5 >. We assume that the
turn around duration for Fy (which is of a one hour duration) will end by 14:30
hours, which sounds reasonable. Thus, there is no constraint < Fy, Fy >.

You schedule planes the same way you do map coloring. An assignment
is tried and constraints for all unassigned flights are checked to ensure that
there is at least one airplane that can fly each flight. There is one important
difference between the flight scheduling problem and the map coloring problem:
we know that we can color maps with 4 colors®, but we do not know how many
airplanes it is going to take to fly a schedule. Hence, we will need to try the
flight scheduling problem with different number of airplanes.

Let us say we over-resource the map coloring problem with 7 colors instead
of 4. A sample run yields 48 assignments (that is no backup was required) and
274 checks. With 6 colors, you get 48 assignments and 259 checks. If on the
extreme end, you used only 3 colors, you could never color Texas.

Frequently the problem is over-constrained and there is no solution with
available resources (like say coloring the United States with 2 or 3 colors). In
those circumstances, constraints can be turned into preferences so that some
regions will not be allowed to be adjacent to regions of the same color. Or
we might have to allow some ‘dead-hit’ flights. And on top of preferences, we
could layer beam-search or some other search that tries to minimize the penalty
cumulated or maximize the number of constraints that are satisfied.

6The 4 color theorem.



Chapter 4

Statistical Relational
Learning

One of the central open questions of artificial intelligence is concerned with
combining (i) expressive knowledge representation formalisms such as relational
and first-order logic with (ii) principled probabilistic and statistical approaches
to inference and learning. Why? Here are some reasons:

1. The fields of knowledge representation and inductive logic programming
stress the importance of relational and logical representations that provide
the flexibility and modularity to model large domains. They also high-
light the importance of making general statements, rather than making
statements for every single aspect of the world separately.

2. The fields of statistical learning and uncertainty in artificial intelligence
emphasize that agents that operate in the real world must deal with un-
certainty. An agent typically receives only noisy or limited information
about the world; actions are often non-deterministic; and an agent has
to take care of unpredictable events. Probability theory provides a sound
mathematical foundation for inference and learning under uncertainty.

3. Machine learning, in general, argues that an agent needs to be capable of
improving its performance through experience.

Thus, the combination of expressive knowledge representation with prob-
abilistic approaches to inference and learning is needed in order to face the
challenges of real-world applications, which are complex and heterogeneous.
Most traditional artificial intelligence and machine learning systems, however,
are able to handle either uncertainty or rich relational structures but not both.

Statistical learning, reinforcement learning, and data mining methods have
traditionally been developed for data in attribute-value form only; data is repre-
sented in matrix form: columns represent attributes, and rows represent exam-
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ples. Indeed, matrices are simple and efficient matrix operations can be used.
In turn, a matrix form makes it possible to devise efficient algorithms.

Many, if not most, real-world data sets, however, are not in matrix form.
Applications contain several entities and relationships among them. Inductive
logic programming and relational learning have been developed for coping with
this type of data.They do not, however, handle uncertainty in a principled way.

It is therefore not surprising that there has been a significant interest in
integrating statistical learning with first order logic and relational representa-
tions. This newly emerging research field is known under the name of statistical
relational learning and probabilistic logic learning, and may be briefly defined
as follows:

Definition 12 Statistical relational learning deals with machine learning and
data mining in relational domains where observations may be missing, partially
observed, and/or noisy.

Instead of giving a probabilistic characterization of logic programming such
as [Ng and Subrahmanian, 1992], this line of research stresses the machine
learning aspect.

4.1 Role of Logical Abstraction in SRL

Employing relational and logical abstraction within statistical learning has three
advantages:

1. Variables, i.e., placeholders for entities allow one to make abstraction of
specific entities.

2. Unification allows one to share information among entities.

3. In many applications, there is a rich background theory available, which
can efficiently and elegantly be represented as sets of general regularities.

Thus, instead of learning regularities for each single entity independently,
statistical relational learning aims at finding general regularities among groups
of entities. The learned knowledge is declarative and compact, which makes it
much easier for people to understand and to validate. Although, the learned
knowledge must be recombined at run time using some reasoning mechanism
such as backward chaining or resolution, which bears additional computational
costs, statistical relational models are more flexible, context-aware, and offer,
in principle, the full power of logical reasoning. Further, background knowl-
edge often improves the quality of learning as it focuses learning on relevant
patterns, i.e., restricts the search space. While learning, relational and logical
abstraction allow one to reuse experience: learning about one entity improves
the prediction for other entities; it might even generalize to objects, which have
never been observed before. Thus, relational and logical abstraction can make
statistical learning more robust and efficient. This has been proven beneficial in
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many fascinating real-world applications in citation analysis, web mining, web
navigation, web search, natural language processing, robotics, computer vision,
social network analysis, bio-and chemo-informatics, electronic games, and activ-
ity recognition. For instance, Liao et al. [2005] applied Taskar et al.s relational
Markov networks to a problem related to the ride sharing service, namely learn-
ing and inferring transportation routines.

Whereas most of the existing works on statistical relational learning have
started from a statistical and probabilistic learning perspective and extended
probabilistic formalisms with relational aspects, several pieces of research take
a different perspective, starting from inductive logic programming (ILP) and
studying how inductive logic programming formalisms, settings and techniques
can be extended to deal with probabilities.

4.2 Inductive Logic Programming

ILP is a research field at the intersection of machine learning and logic program-
ming [Muggleton and De Raedt, 1994]. It is often also called multi-relational
data mining (MRDM) [D.zeroski and Lavra.c, 2001]. It aims at a formal frame-
work as well as practical algorithms for inductively learning relational descrip-
tions (in the form of logic programs) from examples and background knowledge.
However, it does not explicitly deal with uncertainty such as missing or noisy
information. Dealing explicitly with uncertainty makes probabilistic ILP more
powerful than ILP and, in turn, than traditional attribute-value approaches.
Moreover, there are several benefits of an ILP approach to statistical relational
learning.

1. Classical ILP learning settings, as we will argue, naturally carry over to
the probabilistic case. The probabilistic ILP settings make abstraction
of specific probabilistic relational and first order logical representations
and inference and learning algorithms yielding general statistical relational
learning settings.

2. Many ILP concepts and techniques such as more-general-than, refinement
operators, least general generalization (lub), and greatest lower bound (glb)
can be reused. Therefore, many ILP learning algorithms such as Quinlans
FOIL and De Raedt and Dehaspes Claudien can easily be adapted.

3. The ILP perspective highlights the importance of background knowledge
within statistical relational learning. The research on ILP and on artificial
intelligence in general has shown that background knowledge is the key to
success in many applications.

4. An ILP approach should make statistical relational learning more intuitive
to those coming from an ILP background and should cross-fertilize ideas
developed in ILP and statistical learning.



160 CHAPTER 4. STATISTICAL RELATIONAL LEARNING

Formally, ILP is concerned with finding a hypothesis H (a logic program,
i.e. a definite clause program) from a set of positive and negative examples £
and £7.

Consider learning a definition for the Daughter/2 predicate, i.e., a set of
clauses with head predicates over Daughter /2, given the following facts as learn-
ing examples:

ET:  Daughter(dorothy, ann).
Daughter(dorothy, brian).
(
(

E7:  Daughter

Daughter(rex,brian).

reT,ann).

Additionally, we have some general knowledge called background knowledge
B, which describes the family relationships and sex of each person:

Mother(ann, dorothy). Female(dorothy). Female(ann).
Mother(ann, rex). Father(brian, dorothy).  Father(brian, rex).

From this information, we could induce the following H:

Daughter(C,P) :— Female(C), Mother(P,C).
Daughter(C,P) :— Female(C), Father(P,C).

which perfectly explains the examples in terms of the background knowledge,
i.e., ET are entailed by H together with B, but £~ are not entailed.

Definition 13 Given a set of positive and negative examples £T and £~ over
some language Lg, a background theory B, in the form of a set of definite
clauses, a hypothesis language Ly, which specifies the clauses that are allowed
in hypotheses, and a covers relation covers(e, H,B) € {0,1}, which basically
returns the classification of an example e with respect to H and B, find a hy-
pothesis H in H that covers (with respect to the background theory B) all positive
examples in ET (completeness) and none of the negative examples in £~ (con-
sistency).

The (i) language L chosen for representing the examples together with the
(ii) covers relation determines the inductive logic programming setting De Raedt
[1997]. There are three broad settings, viz.,

1. learning from entailment [Plotkin, 1970]

2. learning interpretations [Helft, 1989, De Raedt and D.zeroski, 1994]

3. an intermediate setting called learning from proofs [Shapiro 1983]
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4.3 Probabilistic ILP Settings

The inductive logic programming settings can be extended to the probabilistic
case. When working with probabilistic ILP representations, there are essentially
two changes:

1. Probabilistic Clauses: Clauses in H and B are annotated with probabilistic
information, and Here, we use the following probability notations. With
X, we denote a (random) variable. Furthermore, 2 denotes a state and
X (resp. x) a set of variables (resp. states). We will use Pr to denote a
probability distribution, e.g., Pr(z), and p to denote a probability value,
e.g., p(X = z) and p(X = x).

2. Probabilistic Covers: The covers relation becomes probabilistic. A prob-
abilistic covers relation softens the hard covers relation employed in tra-
ditional ILP and is defined as the probability of an example given the
hypothesis and the background theory. A probabilistic covers relation
takes as arguments an example e, a hypothesis H and possibly the back-
ground theory B, and returns the probability value Pr (e|H, B) € [0, 1] of
the example e given H and B, i.e., covers(e, H,B) = Pr (e|H, B).

Using the probabilistic covers relation above, our first attempt at a definition
of the probabilistic ILP learning problem is as follows:

Definition 14 Given a probabilistic-logical language Ly and a set € of ex-
amples over some language Lg, find the hypothesis H* in Ly that mazimizes

Pr (E|H*, B).

Under the usual i.i.d. assumption, i.e., examples are sampled independently
from identical distributions, this results in the maximization of

Pr(E|H*,B) = H P(e|H",B) = H covers(e, H*, B)
ec& ecf

Similar to the ILP learning problem, the language Lg selected for repre-
senting the examples together with the probabilistic covers relation determines
different learning setting. Guided by Definition 14, we will introduce several
probabilistic ILP settings for statistical relational learning. The main idea is
to lift traditional ILP settings by associating probabilistic information with
clauses and interpretations and by replacing ILPs deterministic covers relation
by a probabilistic one. In the discussion, we will have one trivial but important
observation:

Observation: Derivations might fail.

The probability of a failure is zero and, consequently, failures are never
observable. Only succeeding derivations are observable, i.e., the probabilities of
such derivations are greater than zero. As an extreme case, recall the negative
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examples £~ employed in the ILP learning problem on page 4.2. They are
supposed to be not covered, i.e.,

p(€7|H,B) =0

In that example, Rex is a male person; he cannot be the daughter of ann.
Thus, Daughter(rex,ann) was listed as a negative example. Negative exam-
ples conflict with the usual view on learning examples in statistical
learning. In statistical learning, we seek to find that hypothesis H*, which is
most likely given the learning examples:

oo 5 e~ PERUD

ith p(€) >0
argmax argmax p(g) we p( )

Thus, examples & are observable, i.e., p(E) > 0. Therefore, we refine the
preliminary probabilistic ILP learning problem definition 14. In contrast to the
purely logical case of ILP, we do not speak of positive and negative examples
anymore but of possible and impossible ones.

Definition 15 Given a set £ = &, U &; of possible and impossible examples
&y and & (with £, N E; = 0) over some example language Lg, a probabilistic
covers relation covers(e, H,B) = P(e|H, B), a probabilistic logical language Ly
for hypotheses, and a background theory B, find a hypothesis H* in Ly such
that H* = H score(E, H,B) and the following constraints hold:

argmax
Ve, € &, 1 covers(e,, H*,B) >0 andvVe; € E; : covers(e;, H*,B) =0

The scoring function is some objective score, usually involving the probabilistic
covers relation of the possible examples such as the observed likelihood

H covers(ep, H*, B)

ep€EY
some penalized variant thereof.

The probabilistic ILP learning problem of Definition 15 unifies ILP and
statistical learning in the following sense:

1. Using a deterministic covers relation (which is either 1 or 0) yields the
classical ILP learning problem, see Definition 13.

2. On the other hand, sticking to propositional logic and learning from pos-
sible examples, i.e., P(€) > 0, only yields traditional statistical learning.

3. Definition 15 makes abstraction of many particular kinds of problems.

e In density estimation, the joint probability distribution of some ran-
dom variables is estimated
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e Whereas, in classification and regression the dependency of a discrete
respectively continuous target variable given the value of some other
variables is estimated.

4. Furthermore, several types of learning can be distinguished.

e In supervised learning, the training examples contain information
about all variables including the target variable.

e In reinforcement learning, the training examples contain only indirect
target information such as the classifier did well or not (in the form
of some reward).

e Finally, in unsupervised learning, no values of the target variable are
observed.

5. Another important distinction is whether all the random variables vari-
ables are observed, or whether some of them are hidden, e.g., they are
specified in the background knowledge and never observed.

6. We can also formulate the learning problem as either of the following:

e As a ‘point estimation problem, i.e., the goal is to find a single best
hypothesis H*.

e As a ‘Bayesian learning problem’, where the goal is to return a pos-
terior distribution over hypotheses.

7. Finally, learning might refer to the structure, i.e., the underlying logic
program of the hypothesis, the parameters, or both. To come up with
algorithms solving probabilistic ILP learning problems, say for density
estimation, one typically distinguishes two subtasks because H = (L, \) is
essentially a logic program L annotated with probabilistic parameters A:

e Parameter estimation where it is assumed that the underlying logic
program L is fixed, and the learning task consists of estimating the
parameters A that maximize the likelihood.

e Structure learning where both L and A have to be learned from the
data.

Similar to that for traditional ILP, there are three probabilistic ILP set-
tings, which extend the purely logical ones. The three ILP settings and their
probabilistic extensions are outlined in the following sections.

4.3.1 Probabilistic setting for justification
There are two important components in SRL:

Abduction. Process of hypothesis formation. The logical setting for abduction
is what traditional ILP is mostly about.
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Justification. The degree of belief assigned to an hypothesis given a certain

amount of evidence.

Recall the Bayes’ Theorem

_ p(h).p(E]R)

p(hlE) = PR

The best hypothesis in a set H (ignoring ties)

H = argmazcy p(h|E)

We will consider the following learning framework.

Let X be a countable set of instances (encodings of all objects of interest)
and Dx be a probability measure on X

Let C C 2% be a countable set of concepts and D¢ be a probablity measure
on 2%

Let H be a countable set of hypotheses' and Dy be a probability measure
(prior) over H

Let the concept represented by h € H be ¢(h) € C

Let C and ‘H be such that

— for each C € C, there is an h € H s.t. C = c(h)
— for each C € C, D¢(C) = ¥ (pen|c=c(h)} P(P)

Target concept T is chosen using the distribution D¢

Let g(h) denote the proportion (w.r.t. the instance space) of the concept
represented by a hypothesis h € H
— That is, 9(h) = ¥ e (n) Dx (*)

— g(h) is a measure of the “generality” of h

Noise Free Data

Following is a model for noise free data.

T T

Positve Exampls Wogative Examzple

INote that H also been used earlier to denote the space of horn clauses. This time, it is
used to denote the space of hypothesis, which anyways happens to be within the space of horn
clauses.
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Given £ =ETUE™

p(h|E) o< Dy(h) ] plelh) ] plelh)

Or
Dx(e) y1 Dx(e)
P(h|E) o< Dy(h) e!;L g() eg* 1—g(h)

Assuming p positive and n negative examples

P(h|E) o Dy(h (HDX )())(1—2(’0)

eck

Maximal P(h|E) means finding the hypothesis that maximises

1
logD3¢(h) + p log—— + n log
(k) g(h)

If there are no negative examples, then this becomes

_
1—g(h)

1
logD(h) + p log——
g(h)
Let us answer some questions at this point:

1. What is the distribution Dy (h):

A common assumption is that “larger” programs are less likely (in
coding terminology, require more bits to encode)

D,

[l
As an example
Dy (h) = 271"

That is
logDy(h) = —|hl|
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2. What is generality function g(h)?

Recall that g(h) = 3_,c.n) Dx (2)

— ¢(h) may be infinite

— Dx is usually unknown (and is a mapping to the reals)
Have to be satisfied with approximate estimates of g(h)
Estimation procedure

(a) Randomly generate a finite sample of n instances using a known
distribution (for eg. uniform)

(b) Determine the number of these instances (say ¢) entailed by h
(c) g(h) = %5

3. What about noisy data? This will be addressed in the next subsection.

A Model for Noisy Data

Following is a model for justification in the presence of noisy data.

Bernoulli Trial Bernoulli Trial
e
I
Example  Positive Exemple Negative Exanple  Negative Example

For any hypothesis h the examples £ = £T U £~ can now be partitioned as
follows

1. TP ={ele € ET and e € c(h)} (true positives)

2. FN = {ele € E" and e & c(h)} (false negatives)
3. FP={elec E™ and e € c(h)} (false positives)
4. TN = {ele € E~ and e & c(h)} (true negatives)

Recall
p(h|E) < Dy (h) ] p(elh) J] plelh)
ecEt ecE—
Now

IT wtel = TT (29052 + xoxe) T] Dx(ore

ecE+ ecTP ecF'N
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IT wte = TT (9052 + (@) TT Dxten

ecE— eeTN g(h) ecFP

So, with FPN = FPUFN

p(h|E) o< Dy (h) (H DX(@)) (L(_h;)TPl (11_;(2)>|TN (/PPN

ecE

Maximal P(h|F) means finding the hypothesis that maximises

1—¢ 1—¢

logDw(h) + |TP| log + |T'N| log + |FPN|loge
() + TP log ot + [TN| log a5 + [FPN|
Another model for noisy data is outlined below:

1 1 ]

4.4 Learning from Entailment

Learning from entailment is by far the most popular ILP setting and it is ad-
dressed by a wide variety of well-known ILP systems such as FOIL [Quinlan
and Cameron-Jones, 1995], Progol [Muggleton, 1995], and Aleph [Srinivasan,
1999]. When learning from entailment, the examples are definite clauses and a
hypothesis H covers an example e with respect to the background theory B if
and only if BU H = e, i.e., each model of BU H is also a model of e.

In many well-known systems, such as FOIL, one requires that the examples
are ground facts. To illustrate the above setting, consider the following example
inspired on the well-known mutagenicity application [Srinivasan et al., 1996].

Consider the following facts in the background theory B, which describe part
of molecule 225.
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Molecule(225). Logmutag(225,0.64).
Lumo(225,—1.785). Logp(225,1.01).

Nitro(225, [f1.4, f1.8, f1.10, £1.9)). Atom(225, f1.1, ¢, 21,0.187).
Atom(225, 1.2, ¢,21, —0.143). Atom(225, f1.3,¢,21, —0.143).
Atom(225, f1.4,¢,21, —0.013). Atom(225, f1.5, 0,52, —0.043).
Bond(225, f1.1, 1.2, 7). Bond(225, 1.2, f1.3,7).
Bond(225, f1.3, f1.4,7). Bond(225, f1.4, f1.5,7).
Bond(225, 1.5, f1.1,7). Bond(225, 1.8, £1.9,2).
Bond(225, 1.8, £1.10,2). Bond(225, f1.1, f1.11,1).
Ring_size5(225, [f1.5, 1.1, f1.2, f1.3, f1.4)). Bond(225, f1.11, f1.12,2).
Hetero_aromatic_5_ring(225,[f1-5, f1_1, f1.2, f1.3, f1.4]). Bond(225, f1_11, f1.13,1).

Consider now the positive example Mutagenic(225). It is covered by the
following H:

Mutagenic(M) :- Nitro(M, R1), Logp(M,C),C > 1.

together with the background knowledge B, because H U entails the example.
To see this, we unify Mutagenic(225) with the clauses (H) head. This yields

Mutagenic(225) :— Nitro(225, R1), Logp(225,C),C > 1.

Now, Nitro(225, R1) unifies with the third ground atom (left-hand side column)
in B, and Logp(225,C) with the second one on the right. Because 1.01 > 1, we
found a proof of mutagenic(225).

There are, broadly speaking, three types of ILP approaches for learning from
entailment: top-down approaches, bottom-up approaches and hybrid approaches.

1. Top-down approaches start from short clauses, iteratively adding literals
to their bodies as long as they do not become to overly general. Basically,
in top-down approaches, hypotheses are generated in a pre-determined
order, and then tested against the examples. More precisely:

(a) They start with the most general hypothesis, i.e., clauses of the form
Daugther(C, P) : —=True, where all arguments are distinct variables.

(b) After seeing the first example that contradicts the hypothesis, i.e.,
after seeing the first negative example, the hypothesis is specialized
by specializing the general clause.

(¢) The clause is specialized typically in two ways:
e by applying a substitution,

e by adding a literal, i.e., an atom or its negation to the body, and
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For instance, we can specialize Daughter(C, P) : —True and consider
Daughter(C, P) : —Female(C) and Daughter(C, P) : —Mother(P,C')
for further investigations. Several possibilities (and successive spe-
cializations) have to be tried before one finds a clause that covers
some positive examples but no negative ones such as Daugther(C, P) :
—Female(C), Mother(P,C).

(d) If some positive examples are still not covered, these techniques typ-
ically add a new, maximally general clause to the hypothesis and
essentially iterate the process in step lc as before, until all positive
examples are covered and no negative example is covered.

(e) The background knowledge B is typically viewed as a logic program
(i.e. a definite clause program) that is provided to the inductive
logic programming system and fixed during the learning process. The
hypothesis H together with the background theory B should cover
all positive and none of the negative examples.

Top-down approaches are often employed by ILP systems that learn from
entailment. More precisely, these systems often employ a separate-and-
conquer rule-learning strategy [Furnkranz, 1999]. In an outer loop of the
algorithm, they follow a set-covering approach [Mitchell, 1997] in which
they repeatedly search for a rule covering many positive examples and
none of the negative examples. They then delete the positive examples
covered by the current clause and repeat this process until all positive
examples have been covered. In the inner loop of the algorithm, they
typically refine a clause by unifying variables, by instantiating variables
to constants, and/or by adding literals to the clause.

Figure 4.1 presents the generic framework for top-down ILP systems while
Figure 4.2 outlines one of the original ILP systems, MIS.

2. Bottom-up approaches start from long clauses, iteratively removing liter-
als until they would become overly general. While top-down approaches
successively specialize a very general starting hypothesis, bottom-up ap-
proaches successively generalize a very specific hypothesis. This is basi-
cally done

(a) by deleting literals (or clauses),

(b) by turning constants into variables and/or

(¢) by turning bounded variables into new variables.
At each step, the theory is generalized by taking the least general gener-

alization (under .-subsumption) of pairwise clauses. Of course, care must
be taken that the generalized theory does not cover

negative examples.
3. Hybrid approaches that mix top-down and bottom-up searches. Hybrid

approaches are usually employed for multiple predicate learning [De Raedt
et al., 1993] and theory revision [Wrobel, 1996].
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Initialize &, = &;
Initialize H = 0;
//Start covering
repeat
Initialize C' =T «;
//Start specialization
repeat
Find the best refinement Ches: € pr(C);
Assign C' = Chpegy;
until Necessity stopping criterion is satisfied;
Add C to H to get new hypothesis H' = H U C;
Remove positive examples covered by C' from &, to get new training set

gcur = SCUT - U {6}7
{665;';”\co’uers(B,H’,e):l}

Assign &gy = S;M, H="H;

until Sufficiency stopping criterion is satisified;

Figure 4.1: A general strategy for top-down ILP approaches.

4.4.1 Constraining the ILP Search

It should be stressed that ILP is a difficult problem. Practical ILP systems
fight the inherent complexity of the problem by imposing all sorts of constraints,
mostly syntactic in nature. Such constraints include

1. Language and search biases: These are sometimes summarized as declar-
ative biases, (see [Nedellec et al., 1996] for an overview). Essentially,
the main source of complexity in ILP steams from the variables in the
clauses. In top-down systems, the branching factor of the specialization
operator increases with the number of variables in the clauses. Following
are frequently adopted techniques for reducing this branching factor by
introducing language and search bias.

(a) Introducing types for predicates can rule out main potential substitu-
tions and unifications. As an example, the type definition type(Father(person, person))
specifies that both argument of atoms over Father/2 have to be per-
sons.

(b) Refinement operators can also be used to encode a language bias,
since they can be restricted to generate only a subset of the language
L. For instance, refinement operators can easily be modified to
generate only constant-free and function-free clauses.

(¢) Other methods use a kind of grammar construction to explicitly de-
clare the range of acceptable clauses, see e.g. Cohen [1994].

(d) Lookaheads are an example of a search bias. In some cases, an atom
might never be chosen by our algorithm because it will not, in itself,
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Initialize hypothesis H to a (possibly empty) set of clauses in Ly;
loop
Read the next (positive or negative) example;
repeat
if There exists an e € £~ covered by H then
Delete incorrect clauses from H.
end if
if There exists an e € £ not covered by H then
With breadth-first search of the refinement graph develop a clause C
which covers e and add it to H;
end if
until H is complete and consistent;
return Hypothesis H;
end loop

Figure 4.2: A simplified version of the MIS algorithm by [Shapiro 1983].which
is the general strategy of top-down approaches.

result in a better score. However, such an atom, while not useful
in itself, might introduce new variables that make a better coverage
possible by adding another atoms later on [Quinlan, 1991] 7. It is
usually solved by allowing the algorithm to look ahead in the search
space. Instead of considering refinements with a single atom, one
considers larger refinements consisting of multiple atoms [Blockeel
and De Raedt, 1997].

2. Bound on number of distinct variables: One can also put a bound in the
number of distinct variables that can occur in clauses.

3. Mode declarations: Mode declarations are another well-known ILP de-
vise. They are used to describe input-output behaviour of predicate
definitions. For example, we might specify mode(Daugther(+,—)) and
mode(Father(—,+)), meaning that the + arguments must be instanti-
ated, whereas the — arguments will be bounded to the answer.

In general, a model can suffer from either underfitting or overfitting. A
model that is not sufficiently complex can fail to fully detect the underlying
rule of a complicated data set, leading to underfitting. A model that is too
complex may fit the noise, not just the underlying rule, leading to overfitting
and, for instance, wild predictions.

4.4.2 Example: Aleph

As an example for the learning from entailments setting, we will discuss Aleph.
Given background knowledge B and positive examples Et =e1 Aesy..., nega-
tive examples £~ = f; A fo A ..., the generic ILP system Aleph, is concerned
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with finding a hypothesis H = D; A ... that satisfies (note: U and A used
interchangeably)

Prior Satisfiability. BAE™ = O
Prior Necessity. B [~ T
Posterior Sufficiency. BAH =&t and BAD; Eei Ve V...

Posterior Satisfiability. BAHAE™ DO

If more than one H satisfies this, the one with highest posterior probability
is chosen. The D; can be found by examining clauses that “relatively subsume”
at least one example, making use of plotkin’s relative subsumption discussed
elaborately in Section 2.5.1. This gives the following sufficient implementation
of Aleph, given B, €£.

1. HOZB,i:0,5+ :{61,...76n}
2. repeat

(a) increment i
(b) Obtain the most specific clause L (B, e;)

(¢) Find the clause D; that: subsumes L (B,¢;); and is consistent with
the negative examples;

(d) H;=H;_1U{D;}
3. until i > n
4. return H,,

As discussed in Section 2.5.1, there are problems with this implementation.
Particularly,

— 1(B,e;) may be infinite

— This implementation may perform a lot of redundant computation (D; €

H; 1)

— This implementation need not return the hypothesis with maximum pos-
terior probability
So we next present a “Greedy” implementation for Aleph, given B, £.
1. Ho=B,&f =&t,i=0.
2. Repeat
(a) Increment 4
(b) Randomly choose a positive example e; from S{tl

(¢c) Obtain the most specific clause L (B, e;)
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L TRAINS COING EAST 2 TRAINS GOING WEST
v HL o He Hoog R
gy, e A B

» Ao - Lo HEaH

=1 GO WA VYT s O\ SHEHES oA
5 o I s looHo 0

Figure 4.3: The train-spotting example for illustrating Aleph.

(d) Find the clause D; that: subsumes L(B,e;); and is consistent with the
negative examples; and maximises p(H;_1 U {D;}|e] UE™) where e
the examples in £t made redundant by H;_1 U {D;}

(e) Hi=H;—1U{D;}
(f) & =&\ef

3. until & =0

4. return H;

are

However, this implementation does not address the problem that 1 (B, e;)
may be infinite and that it need not return in the hypothesis with maximum
posterior probability. The problem of infinite 1(B,e;) may be addressed by
making use of mode declarations introduced on page 120. This gives a revised
“Greedy” implementation for Aleph, given B, £, d.

1. Ho=B,f =¢€*,i=0
2. Repeat
(a) Increment i
(b)
(c) Obtain the most specific clause L4(B, e;)
(d)

Randomly choose a positive example e; from Sit 1

Find the clause D; that: subsumes L (B, e;); and is consistent with the
+
are

7

negative examples; and maximises p(H;—1 U {D;}|ej U E™) where e
the examples in £7 made redundant by H; 1 U {D;}

(e) Hi=H;-1U{D;}
() & =& \ef
3. until & =0
4. return H;
As an example, let us consider the trainspotting problem (c.f. Figure 4.3)

to illustrate the discussion thus far.
We will use the following mode declarations for the trainspotting example.
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:— modeh(1,eastbound(+train)).

:- modeb(1,short(+car)).

:— modeb(1,closed(+car)).

:— modeb(1,long(+car)).

:— modeb(1,open_car(+car)).

:— modeb(1,double(+car)).

:— modeb(1, jagged(+car)).

:- modeb(1,shape (+car,#shape)).
:- modeb(1,load(+car,#shape,#int)).
:— modeb(1,wheels(+car,#int)).

:— modeb (*,has_car(+train,-car)).

Further, the examples £t and £~ for this example will be:

Positive Negative
eastbound (eastl). eastbound (west6) .
eastbound (east2) . eastbound (west7) .
eastbound (east3). eastbound (west8) .
eastbound (east4) . eastbound (west9) .
eastbound (eastb) . eastbound (west10) .

whereas, the background knowledge B will comprise:

% type definitions
car(car_11). car(car_12).
car(car_21). car(car_22).

shape(elipse). shape(hexagon).

% eastbound train 1

has_car(eastl,car_11). has_car(eastl,car_12).
shape(car_11,rectangle). shape(car_12,rectangle).
open_car(car_11). closed(car_12).

long(car_11). short(car_12).

% westbound train 6

has_car(west6,car_61). has_car(west6,car_62).
long(car_61). short(car_62).
shape(car_61,rectangle). shape(car_62,rectangle).

The outcome of a simple search in Aleph, for the trainspotting setting is
outlined next:

eastbound(A) :-
has_car(A,B).
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[5/5]
eastbound(A) :-
has_car(A,B), short(B).
[5/5]
eastbound(A) :-
has_car(A,B), open_car(B).
[5/5]
eastbound(A) :-
has_car(A,B), shape(B,rectangle).
[5/5]

[theory]

[Rule 1] [Pos cover = 5 Neg cover = 0]

eastbound(A) :-

has_car(A,B), short(B), closed(B).

[pos-neg] [5]

175

We will next discuss the search and redundancy aspects of Aleph. There
are two stages in the clause-by-clause construction of hypothesis, which are

summarized below:

1. Search

[ Eopty clanee

. l . ° ,+ Clanses inconsitent with negative examples

Mest specific clause

e

& Clause (reduced member of equivalence class)

Most specific clause in depé-bounded mode lmguage

Generality

Less general

2. Remove redundant clauses once best clause is found

Aleph has provision for bottom-up as well as top-down search for moving
about in the lattice. The following refinement steps can be used in Aleph.

General-to-specific search: start at O, and move by

1. Adding a literal drawn from L;

p(X,Y) « q(X) becomes p(X,Y) — q(X),r(Y)
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Figure 4.4: The conversion of (relative) subsumption lattice to tree.

2. Equating two variables of the same type
p(X,Y) — q(X) becomes p(X, X) «— q(X)
3. Instantiate a variable with a general functional term or constant
p(X,Y) — q(X) becomes p(3,Y) < q(3)
Specific-to-general search: start at L;

Dual operations to above (ie. remove literal etc.)

Progol does a general-to-specific search

Next, we discuss some search methods. The subsumption lattice can be
represented as a directed acyclic graph. However, the DAG can be converted
to a tree such that root is the first node (O or L;) and children of a node
are refinements. The conversion of a lattice to a search tree is illustrated in

Figure 4.4
Searching the lattice is therefore equivalent to searching a tree. Out goal is

to find the node (goal node) that has greatest “compression”. There are two
basic types of tree search: depth-first (DF) and breadth-first (BF) as discussed
in chapter 3. DF and BF are “blind”. More guidance is desirable at any node
s. The guidance can be in one or more of the following forms:

e g,: cost of optimal path from root to s
e h: estimated cost of optimal path to goal from s
The different kinds of guided search can be summarized as follows:
Hill-climbing: DF with hg
Best-first: BF with A,
Best-cost: BF with g,
A*: BF with g5 and hy
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Progol does an A*-like search — uses utilit instead of costs. For a clause C
at a node

ps = |{e:ec EY and BAC AE =0}
ns = |{e:e€ E” and BAC Ae =0}
¢cs = |C|—-1

N
w
Il

L.b. on literals needed

hs = _(ns+cs+ls)
9s = Ds
fs = gs+ hs

Compression of a clause at node s = p;, — ns — ¢; Progol seeks clauses with
¢s < c and ng = 0 and guaranteed to have maximum ps — ¢; — hs. Progol has
several admissable pruning strategies to reduce search.

E.g. Let children(s) = S. If f(s) > py — cg for s’ € S then prune(s’)

We next outline an optimal search algorithm that uses branch-and-bound.

bb(i, p, f) : Given an initial element ¢ from a discrete set S; a successor function p :
S — 25; and a cost function f : § — R, return H C S such that H contains the
set of cost-minimal models. That is for all h; ; € H, f(h:) = f(hj) = fmin and
for all s € S\H f(s") > fmin-

. Active := (3).

. best : = 0

selected := ()

while Active # ()

. begin

[SA IS JCR R

(a) remove element k from Active
(b) cost := f(k)
(c) if cost < best
(d) begin
i. best := cost
ii. selected := {k}
ili. let Prunei C Active s.t. for each j € Prunei, f(j) > best where
f (j) is the lowest cost possible from j or its successors
iv. remove elements of Prune; from Active
(e) end
(f) elseif cost = best
i. selected := selected U {k}
(g) Branch := p(k)
(h) let Prunes C Branch s.t. for each j € Prunes, f(j) > best where

f(J) is the lowest cost possible from j or its stuccessors
(i) Bound := Branch\Prunez

(j) add elements of Bound to Active
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6. end

7. return selected

Different search methods result from specific implementations of Active:
— Stack: depth-first search

— Queue: breadth-first search

— Prioritised Queue: best-first search

There are two types of redundancies in the hypothesis H:

1. Redundancy 1: Literal Redundancy:

Literal [ is redundant in clause C V [ relative to background B iff
BA(CVI)=BAC

It can be shown that the literal [ is redundant in clause C' V[ relative
to the background B iff

BA(CVD EC

The clause C is said to be reduced (c.f. Section 2.1, page 102) with
respect to background knowledge B iff no literal in C is redundant.

2. Redundancy 2: Clause redundancy:
Clause C is redundant in the BAC iff BA C = B.
It can be shown that clause C' is redundant in B A C' iff

BEC=BACED

A set of clauses S is said to be reduced iff no clause in S is redundant

Progol uses this procedure to determine (and remove) examples made
redundant by clause found in the search.

Example
€j: gfather(henry, john) «—
B: father(henry, jane) «—
father(henry, joe) —

parent(jane, john) «—

parent(joe, robert) «—

Dj;: gfather(X,Y) « father(X, Z),parent(Z,Y)
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e; is redundant in B A D; Aej since BADj ANe; =0
There are several implementation issues that need further thought.

Question. Will the clause-by-clause search method yield the best set of clauses?
If no, why not?

Question. Is it possible to do a theory-by-theory search?

Question. Is it possible devise a complete search that is non-redundant? If no,
why not?

4.5 Probabilistic Learning from Entailment

Probabilistic learning from entailment has been investigated for learning stochas-
tic logic programs [Muggleton, 2000a,b, Cussens, 2001, Muggleton, 2002] and
for parameter estimation of PRISM programs [Sato and Kameya, 2001, Kameya
et al., 2004] from possible examples only.

In order to integrate probabilities in the entailment setting, we need to find
a way to assign probabilities to clauses that are entailed by an annotated logic
program. Since most ILP systems working under entailment employ ground
facts for a single predicate as examples, we will restrict our attention to assign
probabilities to facts for a single predicate?.

More formally, let us annotate a logic program H consisting of a set of clauses
of the form g <« b;, where p is an atom of the form p(Vi,...,V,) with the V;
different variables, and the b; are different bodies of clauses. Furthermore, we
associate to each clause in H the probability values p(b;|q); they constitute the
conditional probability distribution that for a random substitution € for which
g0 is ground and true (resp. false), the query b;6 succeeds (resp. fails) in the
knowledge base B. Recall that the query g succeeds in B if there is a substitution
o such that B | qo. Furthermore, we assume the prior probability of g is given
as p(q), which denotes the probability that for a random substitution 6, pf is
true (resp. false). This can then be used to define the covers relation p(qf | H, B)
as follows (we delete the B as it is fixed):

p(b10,...,b;0]g0) x p(qh)

0|H) =p(qf | 010, ...,b,0) =
p(qf|H) = p(q0 | by k0) p(b10, ..., bb)

For instance, applying the naive Bayes assumption yields

[ p(®:6146) x p(g6)
p(ab|H) = ——

(010, ..., by0) (4.1)

21t remains an open question as how to formulate more general frameworks for working
with entailment.
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Finally, since p(¢f | H) + p(—¢0 | H) = 1, we can compute p(gf|H) without
p(b10, ..., bi0) through normalization.

As an example, consider again the mutagenicity domain and the following
annotated logic program:

(0.01,0.21) :  Mutagenetic(M) «— Atom(M, _, _,8,_)
(0.38,0.99) :  Mutagenetic(M) «— Bond(M, _, A, 1), Atom(M, A, c,22,_), Bond(M, A, 2)

We denote the first clause by b; and the second one by bs. The vectors
on the left-hand side of the clauses specify p(b;0 = true | ¢f = true) and
p(b;0 = true | ¢80 = false) respectively. The covers relation (assuming the
Naive Bayes assumption) assigns probability 0.97 to example 225 because both
features fail for § = {M/225}. Hence

p(Mutagenetic(225) = true,b10 = false,b20 = false) = p(b16 = false|Mutagenetic(225) = true)
x  p(b20 = false|Mutagenetic(225) = true)
x  p(Mutagenetic(225) = true)

0.99 x 0.62 x 0.31 = 0.19
and
p(Mutagenetic(225) = false,b16 = false, b8 = false) = 0.79x0.01x0.68 ~ 0.005

This yields

1
P(Mutagenetic(225) = true | b10 = false, bof = false) = ﬁ ~ 0.97

4.5.1 Structure and Parameter Learning

Next, we outline typical solutions to the problems of structure and parame-
ter learning in the setting of probabilistic learning from entailment (as well as
interpretation).

1. The problem of parameter estimation is concerned with estimating the
values of the parameters A of a fixed probabilistic program H = (L, \)
that best explains the examples £. So, A is a set of parameters and can
be represented as a vector. To measure the extent to which a model fits
the data, one usually employs the likelihood of the data, i.e. P(E|L,\),
though other scores or variants could be used as well.

When all examples are fully observable, maximum likelihood reduces to
frequency counting. In the presence of missing data, however, the maxi-
mum likelihood estimate typically cannot be written in closed form. It is a
numerical optimization problem, and all known algorithms involve nonlin-
ear optimization The most commonly adapted technique for probabilistic
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logic learning is the Expectation-Maximization (EM) algorithm [Dempster
et al., 1977, McLachlan and Krishnan, 1997]. EM is based on the observa-
tion that learning would be easy (i.e., correspond to frequency counting),
if the values of all the random variables would be known. Therefore, it
estimates these values, maximizes the likelihood based on the estimates,
and then iterates. More specifically, EM assumes that the parameters
have been initialized (e.g., at random) and then iteratively performs the
following two steps until convergence:

(a) (E-Step): On the basis of the observed data and the present pa-
rameters of the model, it computes a distribution over all possible
completions of each partially observed data case.

(b) (M-Step): Treating each completion as a fully observed data case
weighted by its probability, it computes the improved parameter val-
ues using (weighted) frequency counting. The frequencies over the
completions are called the expected counts.

2. What if we need to learn both the structure L and the parameters \
of the probabilistic program H = (L, \) from the data? Often, further
information is given as well. As in ILP, the additional knowledge can take
various different forms, including a language bias that imposes restrictions
on the syntax of L, and an initial hypothesis (L, \) from which the learning
process can start.

Nearly all (score-based) approaches to structure learning perform a heuris-
tic search through the space of possible hypotheses. Typically, hill-climbing
or beam-search is applied until the hypothesis satisfies the logical con-
straints and the score(H, &) is no longer improving. The steps in the
search-space are typically made using refinement operators, see Section 2.7.

Logical constraints often require that the possible examples are covered
in the logical sense. For instance, when learning stochastic logic programs
from entailment, the possible example clauses must be entailed by the
logic program.

4.5.2 Example: Extending FOIL

Building on [Landwehr et al., 2005], we will next illustrate a promising, alterna-
tive approach with less computational complexity, which adapts FOIL [Quinlan
and Cameron-Jones, 1995] with the conditional likelihood as described in Equa-
tion (4.1) as the scoring function score(L,\,£). This idea has been followed
with nFOIL, see [Landwehr et al., 2005] for more details.

Given a training set & containing positive and negative examples (i.e. true
and false ground facts), this algorithm stays in the learning from possible ex-
amples only to induce a probabilistic logical model to distinguish between the
positive and negative examples. It computes Horn clause features by, bo, ... in
an outer loop. It terminates when no further improvements in the score are ob-
tained, i.e, when score({b1,...,b;}, \;,E) < score({b;,...,bit1}, Ait1,E), where
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A denotes the maximum likelihood parameters. A major difference with FOIL

is, however, that the covered positive examples are not removed. The inner

loop is concerned with inducing the next feature b;11 top-down, i.e., from gen-

eral to specific. To this aim it starts with a clause with an empty body, e.g.,

Mutagenic(M). This clause is then specialized by repeatedly adding atoms to

the body, e.g., Mutagenic(M) «— Bond(M, A, 1), Muta(M) «— Bond(M, A, 1), Atom(M, A, c,22, ),
etc. For each refinement b; 11 we then compute the maximum-likelihood param-

eters A\, and score({bi,...,b;1},...,&). The refinement that scores best,

say b;+1, is then considered for further refinement and the refinement process

terminates when

score({b1,...,biy1}, Aix1,E) < score({b1,... ,b;:rl}, )\;/H, )

It has been experimentally found that nFOIL performs well compared to
other ILP systems on traditional ILP benchmark data sets. mFOIL and Aleph,
two standard ILP systems, are never significantly better than nFOIL (paired
sampled t-test, p = 0.05). nFOIL achieves significantly higher predictive accu-
racies than mFOIL on Alzheimer amine, toxic, and acetyl. Compared to Aleph,
nFOIL achieves significantly higher accuracies on Alzheimer amine and acetyl
(paired sampled t-test, p = 0.05). For more details, we refer to [Landwehr et
al., 2005].

4.5.3 Example: Stochastic Logic Programming

Cussens [2001] and Sato and Kameya [2001], solve the parameter estimation
problem for stochastic logic programs respectively PRISM programs, and Mug-
gleton [2000a, 2002] presents an approach to structure learning of stochastic
logic programs: adding one clause at a time to an existing stochastic logic pro-
gram. The essentially use equation (4.4) as covers relation and, hence, employ
the learning from entailment setting while making use of the semantics of prob-
abilistic proofs. Here, the examples are ground atoms entailed by the target
stochastic logic program. However, the Naive Bayes framework studied prior
to this example has a much lower computational complexity. Also, learning
stochastic logic programs from atoms only is much harder than learning them
from proofs because atoms carry much less information than proofs.

4.6 Learning from Interpretations

The learning from interpretations setting [De Raedt and Dzeroski, 1994] up-
grades boolean concept-learning in computational learning theory [Valiant, 1984].
When learning from interpretations, the examples are Herbrand interpretations?
and a hypothesis H covers an example e with respect to the background theory
B if and only if BU e is a model of H.

As an example, consider the interpretation I, which is the union of B and e:

3Recall that Herbrand interpretations are sets of true ground facts and they completely
describe a possible situation.
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B = {Father(henry,bill), Father(alan, betsy), Father(alan, benny), Father(brian, bonnie), Father(bill, carl),

e = {Carrier(alan), Carrier(ann), Carrier(betsy).}

The interpretation I is covered by the clause H:

Carrier(X) :— Mother(M,X),Carrier(M), Father(F, X), Carrier(F).

because I is a model of C, i.e., for all substitutions 6 such that body(C)6 C I,
it holds that head(C)0 € I.

The key difference between learning from interpretations and learning from
entailment is that interpretations carry much more, even complete information.
Indeed, when learning from entailment, an example can consist of a single fact,
whereas when learning from interpretations, all facts that hold in the exam-
ple are known. Therefore, learning from interpretations is typically easier and
computationally more tractable than learning from entailment, c.f., [De Raedst,
1997].

ILP systems that learn from interpretations work in a similar fashion as
those that learn from entailment. There is, however, one crucial difference and it
concerns the generality relationship: When learning from entailment, G is more
general than S if and only if G |= S,whereas when learning from interpretations,
when S = G. Another difference is that learning from interpretations is well
suited for learning from positive examples only. For this case, a complete search
of the space ordered by 6-subsumption is performed until all clauses cover all
examples [De Raedt and Dehaspe, 1997].

4.7 Learning from Probabilistic Interpretations

The large majority of statistical relational learning techniques proposed so far
fall into the learning from interpretations setting including parameter estimation
of probabilistic logic programs [Koller and Pfeffer, 1997], learning of probabilis-
tic relational models [Getoor et al., 2002], parameter estimation of relational
Markov models [Taskar et al. 2002], learning of object-oriented Bayesian net-
works [Bangs et al., 2001], learning relational dependency networks [Neville and
Jensen, 2004], learning logic programs with annotated disjunctions [Vennekens
et al., 2004, Riguzzi, 2004] and most recently, learning Bayesian logic programs
[Kersting et. al. 2000,2005].

In order to integrate probabilities in the learning from interpretations set-
ting, we need to find a way to assign probabilities to interpretations covered
by an annotated logic program. In the past few years, this issue has received a
lot of attention and various different approaches have been developed such as
probabilistic-logic programs [Ngo and Haddawy, 1997], probabilistic relational
models [Pfeffer, 2000], relational Baysian networks Jager [1997], and Bayesian
logic programs [Kersting, 2000, Kersting and De Raedt, 2001b]. Here, we focus
on two methods:



184 CHAPTER 4. STATISTICAL RELATIONAL LEARNING

1. Undirected Graphical Model: Domingos and Richardsons [2004] Markov
logic networks (MLNs) and

2. Directed Graphical Model: Kersting and De Raedt’s [2001b] Bayesian logic
programs.

4.7.1 Example: Markov Logic Networks

Markov logic networks combine Markov networks [Pearl, 1991], which repre-
sent probability distributions over propositional interpretations, with first order
logic. The idea underlying Markov logic networks is to view logical formulas as
soft constraints on the set of possible worlds, i.e., as soft constraints on inter-
pretations: if a world violates one formula, it is less probable but not necessarily
impossible as in classical logic. The fewer formulas a world violates, the more
probable it is. In a Markov logic network, this is realized by associating a weight
with each formula that reflects how strong the constraint is. More precisely, a
Markov logic network consists of weighted first-order predicate logic formulae
Y ={C,Cs,...,Cnp}. The weights we of a formula C specify a bias for ground
instances to be true in a logical model.

Consider the following example taken from [Richardson and Domingos, 2005].
Friends-smokers is a small Markov logic network that calculates the probability
of a person P having lung cancer Ca(P) based whether or not a person or her
friends Fr(P, P’) smokes Sm(P) respectively Sm(P’). This can be encoded
using the following Markov logic formulas:

1.5: VX: Sm(X) = Ca(X)
1.1: vVX,)Y: Fr(X)Y)= (SmX) < Sm(Y))

For a given finite domain (roughly speaking a finite set of constants) D =
{dy,da,...,d,}, the Markov logic network defines a probability distribution over
interpretations I over domain D and the relations occurring in the Markov logic
network via

P(I|H,B):L H enc(f)‘wczi H ¢c(])nc(1) (4.2)

Z(I) CeHuUB Z(I) CeHuUB

where n¢(I) is the number of true groundings of C' in I, ¢c(I) = €%, and B
is a possible background theory.

Markov logic networks can be viewed as proving templates for constructing
Markov networks. Given a set D constants,

e the nodes correspond to the ground atoms in the Herbrand base of the
corresponding set of formulas X

e and there is an edge between two nodes if and only if the corresponding
ground atoms appear together in at least one grounding of one formula
C; € X,
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riends (anna , bob)

smokes (bab) riends (bob  bob)

cancer {bob)

friends(boh, anna)

Figure 4.5: The Markov network induced by the friends-smoker Markov logic
network assuming anna and bob as constants.

Assuming anna and bob as constants, the friends-smoker Markov logic net-
work induces the Markov network in Figure 4.5.

Note that given different sets of constants, the Markov logic network will
produce different Markov networks. From Equation (4.2), we can see that an
example e consists of

e a logical part, which is a Herbrand interpretation of the annotated logic
program, and

e a probabilistic part, which is a partial state assignment of the random
variables occurring in the logical part.

To see this, consider that a possible example I in the friends-smokers domain is

Friends(anna, bob) = true, Friends(bob,anna) = true, Friends(anna,anna) =7,
Friends(bob, bob) = true, Smokes(anna) = false, Smokes(bob) =7,

Cancer(anna) =7, Cancer(bob) = false

where 7 denotes an unobserved state. The covers relation for e can now be
computed using any Markov network inference engine based on Equation (4.2).

Nearly all (score-based) approaches to structure learning perform a heuris-
tic search through the space of possible hypotheses. Typically, hill-climbing
or beam-search is applied until the hypothesis satisfies the logical constraints
and the score(H,E) is no longer improving. The steps in the search-space are
typically made using refinement operators, see Section 2.7.

As described in Section 4.5, logical constraints often require that the pos-
sible examples are covered in the logical sense. For instance, when learning
Markov logic networks, the possible interpretations must be models of the un-
derlying logic program. Thus, for a probabilistic program H = (Ly,Ay) and a
background theory B = (B, Ag) it holds that Ve, € &, : p(e|H,B) > 0 if and
only if covers(e, L, B) = 1, where Ly (respectively B) is the underlying logic
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program (logical background theory) and covers(e, Ly, B) is the purely logical
covers relation, which is either 0 or 1.

Kok and Domingos [2005] proposed a beam-search based approach for learn-
ing clausal Markov logic networks from possible examples only. Recall that a
clausal Markov logic program consists of weighted clauses, i.e., disjunction of
literals. The clauses without associated weights constitute a clausal program L,
and the weights the parameters A. Starting with some initial clausal Markov
logic network H = (L, A), the parameters maximizing score(L, A, E) are com-
puted. Then, refinement operators (Section 2.7) generalizing respectively spe-
cializing L are used to to compute all neighbours of L in the hypothesis space.
Literals are added and deleted, and signs of literals are flipped. Each neigh-
bour is scored, yielding new hypotheses (L', \'). To speed-up scoring, Kok and
Domingos employ a variant of the pseudo-log-likelihood

> i =1"logp(X; = x;| MBy(X;)

where x is the Herbrand base, x; is the i*" ground atoms truth value, and
MB,(X;) is the state of X;s Markov blanket in the data, where, the Markov
blanket of a node is its set of neighbouring nodes. The b best ones with
score(L', N ,E) > score(L,\, &) are kept. On these b best ones, the refining
and scoring process is iteratively applied again until no new clauses improve
the score or a maximal number of literals is reached. The clause with high-
est score in all iterations is added to H, and the process is continued until no
improvement in score of the current best hypothesis is obtained.

4.7.2 Example: Bayesian Logic Programs

Recall from Chapter ?? that a Bayesian network specifies a joint probability
distribution over a finite set of random variables and consists of two components:
(1) a qualitative or logical one that encodes the local influences among the
random variables using a directed acyclic graph, and (2) a quantitative one that
encodes the probability densities over these local influences.

Despite these interesting properties, Bayesian networks also have a major
limitation: they are essentially propositional representations.

For an illustrative example, imagine the task of modeling the localization of
genes/proteins. When using a Bayesian network, every gene is a single random
variable. There is no way of formulating general probabilistic regularities among
the localizations of the genes such as the localization L of gene G is influenced by
the localization L’ of another gene G’ that interacts with G. The propositional
nature and limitation of Bayesian networks are similar to those of traditional
attribute-value learning techniques, which have motivated work on upgrading
these techniques within ILP. This in turn also explains the interest in upgrading
Bayesian networks towards using first order logical representations.

Bayesian logic programs (BLPs) unify Bayesian networks with (definite clause)
logic programming, which allows one to overcome the propositional character
of Bayesian networks and the purely logical nature of logic programs. From a
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knowledge representation point of view, BLPs can be distinguished from alter-
native frameworks by having both

1. Logic programs (i.e. definite clause programs, which are sometimes called
pure Prolog programs) as well as

2. it Bayesian networks as an immediate special case.

This is realized through the use of a small but powerful set of primitives.
Indeed, similar to that for markov logic networks, the underlying idea of BLPs
is to establish a one-to-one mapping between

1. ground atoms in the least Herbrand model (M M () and random variables,
and

2. between the immediate consequence operator and the direct influence re-
lation.

Therefore, BLPs can also handle domains involving structured terms as well
as continuous random variables. We will briefly describe BLPs, their represen-
tation language, their semantics, and a query-answering process, and present
the learning of BLPs from data based on [Kersting 200, Kersting and De Raedt
2005].

The least Herbrand model of a BLP together with its direct influence relation
is viewed as a (possibly infinite) Bayesian network. BLPs inherit the advantages
of both Bayesian networks and definite clause logic, including

1. the strict separation of qualitative and quantitative aspects and conse-
quently,

2. the introduction of a graphical representation, which stays close to the
graphical representation of Bayesian networks.

Indeed, BLPs can naturally model any type of Bayesian network (includ-
ing those involving continuous variables) as well as any type of ‘pure’ Prolog
program (including those involving functors). In fact, BLPs can model hidden
Markov models and stochastic grammars, and cal also be related to other first
order extensions of Bayesian networks.

The framework for learning BLPs is an instance of the probabilistic learning
from interpretations setting as described in Section 2.4.3. It is unifying

as it combines traditional Bayesian network learning and ILP principles.
Therefore, the BLP framework builds upon

e Many of the results for Bayesian network learning from the Uncertainty
in AT community, see e.g. [Heckerman, 1995],

e Many of the results from the ILP community,

e The EM and gradient ascent algorithms for parameter estimation,
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e The general structure learning mechanisms from the field of Bayesian net-
works, and

e The clausal discovery and learning from interpretations settings from ILP
for probabilistic learning from interpretations.

Consider the family disease example from page 7?7. Now, imagine another to-
tally separated family, which could be described by a similar Bayesian network.
The graphical structure and associated conditional probability distribution for
the two families are controlled by the same intensional regularities. But these
overall regularities cannot be captured by a traditional Bayesian network. So,
we need BLPs to represent these overall regularities. The central notion of BLPs
is that of a Bayesian clause.

Definition 16 A Bayesian (definite) clause C is an expression of the form
AlAy,..., A, wheren >0, the A, Ay, —, Ay, are Bayesian atoms and all Bayesian
atoms are (implicitly) universally quantified. Whenn = 0, C' is called a Bayesian
fact and expressed as A. The differences between a Bayesian clause and a logical
clause are:

1. the atoms P(t1,...,tx) and predicates P/k are Bayesian, which means
that they have an associated finite set S(P/k) of possible states (the ideas
easily generalize to discrete and continuous random variables, modulo the
well-known restrictions for Bayesian networks)

2. ‘—is used instead of ‘:- to highlight the conditional probability distribution.

For instance, consider the Bayesian clause C : BT(X) | MC(X), PC(X)
where S(BT/1) = {a,b,ab,0} and S(MC/1) = S(PC/1) = {a,b,0}. Intu-
itively, a Bayesian predicate P/k generically represents a set of random vari-
ables. More precisely, each Bayesian ground atom g over P/k represents a
random variable over the states S(g) = S(P/k). For example, BT (ann) rep-
resents the blood type of a person named Ann as a random variable over the
states {a,b,ab,0}. Apart from that, most logical notions carry over to BLPs.
So, we can speak of Bayesian predicates, terms, constants, substitutions, propo-
sitions, ground Bayesian clauses, Bayesian Herbrand interpretations etc. For
the sake of simplicity we will sometimes omit the term Bayesian as long as no
ambiguities arise. We will assume that all Bayesian clauses are range-restricted,
ie., Var(head(C)) C Var(body(C)). Range restriction is often imposed in the
database literature; it allows one to avoid the derivation of non-ground true
facts. As already indicated while discussing Figure 77, a set of Bayesian clauses
encodes the qualitative or structural component of the BLPs. More precisely,
ground atoms correspond to random variables, and the set of random variables
encoded by a particular BLP corresponds to its least Herbrand domain. In ad-
dition, the direct influence relation corresponds to the immediate consequence.

Consider again, the following



4.7. LEARNING FROM PROBABILISTIC INTERPRETATIONS 189

M (ann, dorothy). F f(brian, dorothy).
PC(ann). PC(brian).
MC(ann). MC(brian).

MC(X) | M(Y,X),MC(Y), PC(Y). PC(X)|F(Y,X), MC(Y), PC(Y).
BT(X) | MC(X), PC(X).

For each Bayesian predicate, the identity function is the combining rule.
The conditional probability distributions associated with the Bayesian clauses
BT (X)|MC(X),PC(X)and MC(X)|M(Y,X), MC(X), PC(Y) are represented
as tables. The other distributions are correspondingly defined. The Bayesian
predicates M /2 and F/2 have as possible states {true, false}.

MC(X) PC(X) Pr(BT(X))

a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
0 0 (0.01,0.01,0.01,0.97)

M(Y,X) MC(Y) PC(Y) Pr(MC(X))

true a a (0.98,0.01,0.01)
true b a (0.01,0.98,0.01)
false a a (0.33,0.33,0.33)

To keep the exposition simple, we will assume that cpd(C) is represented as
a table. More elaborate representations such as decision trees or rules would be
possible too. The distribution CPD(c) generically represents the conditional
probability distributions associated with each ground instance C6 of the clause
C.

In general, one has several clauses that may even make conflicting statements
on conditional probability distributions. As another example, consider clauses
Cy = BT(X)|MC(X) and Cy = BT(X)|PC(X) and assume corresponding sub-
stitutions theta; that ground the clauses C; such that head(C161) = head(C265).
In contrast to BT (X)|MC(X), PC(X), they specify cpd(C161) and cpd(ce02),
but not the desired distribution Pr (head(C161)|body(Cy) U body(C3)).

So called combining rules are the standard solution to obtain the distribution
required.

Definition 17 A combining rule is a function that maps finite sets of condi-
tional probability distributions {Pr (A|A;,, ..., A, )i =1,...,m} onto one (com-
bined) conditional probability distribution Pr (A|By, ..., Bg) with {By,...,Br} C
Ut Ay, A

(2
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vp(pl,[sleep]
w(pl [sleep],(]

TE(pl [the turtles, sleep) [sleSp]

S(pi[the turtles sleep] [turtles sleep)]

turtles sleep) the [turties, sleep]

Figure 4.6: An example proof tree (which is covered by the definite clause
grammar on page 4.8).

nipl, [turtles, sleep],[sleep]

Thrtles, sleep) turtles, [sleap]

We assume that for each Bayesian predicate P/k there is a corresponding
combining rule er(P/k), such as noisy or (see e.g.[Jensen, 2001]) or average.
The latter assumes n; = ... = n,, and S(A;;) = S(Ag,), and computes the
average of the distributions over S(A) for each joint state over j € S(A4;,).

4.8 Learning from Proofs

Because learning from entailment (with ground facts as examples) and interpre-
tations occupy extreme positions with respect to the information the examples
carry, it is interesting to investigate intermediate positions. Ehud Shapiros
[1983] Model Inference System (MIS) fits nicely within the learning from en-
tailment setting where examples are facts. However, to deal with missing infor-
mation, Shapiro employs a clever strategy: MIS queries the users for missing
information by asking them for the truth-value of facts. The answers to these
queries allow MIS to reconstruct the trace or the proof of the positive examples.

When learning from proofs, the examples are ground proof-trees and an
example e is covered by a hypothesis H with respect to the background theory
B if and only if e is a proof-tree for H U B. At this point, there exist various
possible forms of proof-trees. Here, we will, assume that the proof-tree is given
in the form of a ground and-tree where the nodes contain ground atoms. More
formally, a tree t is a proof-tree for a logic program ¥ if and only if ¢ is a rooted
tree where for every node n € t with children(n) satisfies the property that
there exists a substitution 6 and a clause C' € ¥ such that n = head(C)f. and
children(n) = body(C).

Consider the following definite clause grammar.
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Sentence(A, B) : — Noun_phrase(C, A, D), Verb_phrase(C, D, B).
Noun_phrase(A, B,C) : — Article(A, B,D),Noun(A, D,C).
Verb_phrase(A, B, C) : — Intransitive_verb(A, B, C).

Article(singular, A, B) : — Terminal(A,a, B).

Article(singular, A, B) : —  Terminal(A,the, B).

Article(plural, A, B) : —  Terminal(A,the, B).

Noun(singular, A, B) : —  Terminal(A,turtle, B).

Noun(plural, A, B) : —  Terminal(A,turtles, B).
Intransitive_verb(singular, A, B) : — Terminal(A, sleeps, B).
Intransitive_verb(plural, A, B) : —  Terminal(A, sleep, B).

Terminal([A|B], A, B).

It covers the proof tree shown in Figure 4.6. Proof-trees contain, as inter-
pretations, a lot of information. Indeed, they contain instances of the clauses
that were used in the proofs. Therefore, it may be hard for the user to provide
these type of examples. Even though this is generally true, there exist specific
situations for which this is feasible. Indeed, consider tree banks such as the
UPenn Wall Street Journal corpus [Marcus et al., 1994], which contain parse
trees. These trees directly correspond to the proof-trees we talk about. An-
other example is explanation-based learning (EBL) [Ellman, 1989, Mooney and
Zelle, 1994]. Tt uses an existing domain theory to deductively explain an exam-
ple (explanation step) in terms of a proof-tree and variablizes the explanation,
i.e., generalizes the proof as far as possible while maintaining its correctness
(generalization step).

In the learning from proofs setting, one could turn all the proof-trees (cor-
responding to positive examples) into a set of ground clauses, which would
constitute the initial theory. This theory can then be generalized by taking
the least general generalization (under #-subsumption) of pairwise clauses. Of
course, care must be taken that the generalized theory does not cover negative
examples.

4.9 Probabilistic Proofs

To define probabilities on proofs, ICL [Poole, 1993], PRISMs [Sato, 1995, Sato
and Kameya, 2001], and stochastic logic programs [Eisele, 1994, Muggleton,
1996, Cussens, 2001] attach probabilities to facts (respectively clauses) and
treat them as stochastic choices within resolution. Relational Markov mod-
els [Anderson et al., 2002] and logical hidden Markov models [Kersting 2000],
can be viewed as a simple fragment of them, where heads and bodies of clauses
are singletons only, so-called iterative clauses. We will illustrate probabilistic
learning from proofs using stochastic logic programs. For a discussion of the
close relationship among stochastic logic programs, ICL, and PRISM, we refer
to [Cussens, 2005].
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Stochastic logic programs are inspired on stochastic context free grammars
[Abney, 1997, Manning and Schutze, 1999]. The analogy between context free
grammars and logic programs is that

1. grammar rules correspond to definite clauses,
2. sentences (or strings) correspond to atoms, and

3. productions correspond to derivations.

Furthermore, in stochastic context-free grammars, the rules are annotated with
probability labels in such a way that the sum of the probabilities associated to
the rules defining a non-terminal is 1.0 (see this relation with the closed world
assumption discussed in Section 1.3.7).

Eisele and Muggleton have exploited this analogy to define stochastic logic
programs. These are essentially definite clause programs, where each clause C'
has an associated probability label pc such that the sum of the probabilities
associated to the rules defining any predicate is 1.0 (though Cussens [1999]
considered less restricted versions as well). This framework allows ones to assign
probabilities to proofs for a given predicate ¢ given a stochastic logic program
H U B in the following manner. Let D, denote the set of all possible ground
proofs for atoms over the predicate ¢q. For simplicity reasons, it will be assumed
that there is a finite number of such proofs and that all proofs are finite (but
again see [Cussens, 1999] for the more general case). Now associate to each

proof t, € D, the probability
v = Hp’éc’t
c

where the product ranges over all clauses C and n¢; denotes the number of times
clause C has been used in the proof ¢,. For stochastic context free grammars,
the values vy correspond to the probabilities of the production.

However, the difference between context free grammars and logic programs
is that in grammars two rules of the form n «— ¢,n1,...,ny and ¢ — q1,...,qx
always resolve to give n «— q1,...,qx,n1,...,Nm, Whereas resolution may
fail due to unification. Therefore, the probability of a proof tree ¢t in Dy, i.e.,
a successful derivation is

Ut

th

s€Dy

p(t|H,B) = (4.3)

The probability of a ground atom a is then defined as the sum of all the prob-
abilities of all the proofs for that ground atom.

s€Dy

p(alH,B) = Z Us (4.4)

s is a proof for a
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As an example, consider a stochastic variant of the definite clause grammar in
the example on page 191 with uniform probability values for each predicate. The
value v, of the proof (tree) u in the example on the page 191 is p(vy) = % X % X
1 = L. The only other ground proofs s1, s, of atoms over the predicte Sentence
are those of Sentence([a, turtle, sleeps], []) and Sentence([the, turtle, sleeps], []).
Both get the value p(vs,) = p(vs,) = 1. Because there is only one proof for each

of the sentences,

p(Sentence([the, turtles, sleepl,[])) = vy = 3

For stochastic logic programs, there are at least two natural learning settings.

1. Motivated by Equation (4.3), we can learn them from proofs. This makes
structure learning for stochastic logic programs relatively easy, because
proofs carry a lot of information about the structure of the underlying
stochastic logic program. Furthermore, the learning setting can be con-
sidered as an extension of the work on learning stochastic grammars from
proof-banks. It should therefore also be applicable to learning unification
based grammars. We will present a probabilistic ILP approach within the
learning from proofs setting subsequently in this section.

2. On the other hand, we can use Equation (4.4) as covers relation and, hence,
employ the learning from entailment setting as mentioned in Section 4.5.3.
Here, the examples are ground atoms entailed by the target stochastic
logic program. Learning stochastic logic programs from atoms only is
much harder than learning them from proofs because atoms carry much
less information than proofs.

4.9.1 Example: Extending GOLEM

Given a training set £ containing ground proofs as examples, one possible ap-
proach to learning from possible proofs only combines ideas from the early ILP
system Golem [Muggleton and Feng, 1992] that employs Plotkins [1970] least
general generalization(LGG) with bottom-up generalization of grammars and
hidden Markov models [Stolcke and Omohundro, 1993]. The resulting algorithm
employs the likelihood of the proofs score(L, A, €) as the scoring function. It
starts by taking as Ly the set of ground clauses that have been used in the
proofs in the training set and scores it to obtain \g. After initialization, the
algorithm will then repeatedly select a pair of clauses in L;, and replace the pair
by their LGG (lub) to yield a candidate L’. The candidate that scores best is
then taken as H;y1 = (Li+1, A\i+1), and the process iterates until the score no
longer improves.

One interesting issue is that strong logical constraints can be imposed on the
LGG. These logical constraints directly follow from the fact that the example
proofs should still be valid proofs for the logical component L of all hypotheses
considered. Therefore, it makes sense to apply the LGG only to clauses that de-
fine the same predicate, that contain the same predicates, and whose (reduced)
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LGG also has the same length as the original clauses. In general, the length
(number of literals) of the LGG of m (ground) clauses of length at most n is
n™, see [Muggleton and Feng, 1992].

As an example, consider the following target stochastic logic program:

S(A, B) «— NP(Number, A,C),V P(Number,C, B).

NP(Number, A, B) « det(A, C),n(Number,C, B).
P(Number, A, B) < pronom(Number, A, B).

VP(Number, A, B) « V(Number, A, B).

V P(Number, A, B) «— V(Number, A,C), NP(D,C, B).

Det(A, B) «— Term(A,the, B).

(s, A, B) «— Term(A, man, B).

(s, A, B) < Term(A,apple, B).

(pl, A, B) «— Term(A, men, B).

(pl, A, B) < Term(A, apples, B).

(s, A, B) < Term(A,eats, B).

(s, A, B) «— Term(A, sings, B).

(pl, A, B) — Term(A, eat, B).

V(pl, A, B) «— Term(A, sing, B).

Pronom(pl, A, B) — Term(A,you, B).

Term([A|B], A, B).

[l i N RN TN PN PN PN N PN T e VSR SR T O
=S S=2=2=27=

From this program, (independent) training sets of 50, 100, 200, and 500
proofs were generated. For each training set, 4 different random initial sets of
parameters were tried. The learning algorithm was run on each data set start-
ing from each of the initial sets of parameters. The algorithm stopped when a
limit of 200 iterations was exceeded or a change in log-likelihood between two
successive iterations was smaller than 0.0001. In all runs, the original structure
was induced from the proof-trees. Moreover, already 50 proof-trees suffice to
rediscover the structure of the original stochastic logic program. Further exper-
iments with 20 and 10 samples respectively show that even 20 samples suffice to
learn the given structure. Sampling 10 proofs, the original structure is rediscov-
ered in one of five experiments. This supports that the learning from proof trees
setting carries a lot information. Furthermore, the method scales well. Runs
on two independently sampled sets of 1000 training proofs yield similar results:
the original structure was learned in both cases. More details can be found in
[De Raedt et al., 2005].

Other statistical relational learning frameworks that have been developed
within the learning from proofs setting are relational Markov models [Anderson
et al., 2002] and logical hidden Markov models [Kersting 20007].
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Probabilistic leaming from ..

A‘ zé:ﬁ zﬁ%
AR
JM&\_J;.C,

... entailment ... interpretations. ... proofs or traces.

Figure 4.7: The level of information on the target probabilistic program pro-
vided by probabilistic ILP settings: shaded parts denote unobserved informa-
tion. Learning from entailment provides the least information. Only roots of
proof tree are observed. In contrast, learning from proofs or traces provides the
most information. All ground clauses and atoms used in proofs are observed.
Learning from interpretations provides an intermediate level of information. All
ground atoms but not the clauses are observed.

4.10 Summary

The three learning settings are graphically compared in Figure 4.7.
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