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Consider the general inequality constrained minimization problem in (4.73),
restated below.

min flx) _
xeD _ (4.50)
subject to qiix) = 0,i=1,2,....m



There are three simple and straightforward steps in forming a dual problem.

1. The first step involves forming the lagrange function by associating a price
Az, called a lagrange mmltiplier, with the constraint involving g;.

L(x,A) = f(x) + D Aigi(x) = f(x) + AT g(x)
=1

2. The second step is the construction of the dual function L*(A) which is
defined as:
L*(A) = minZ(x, A) = minf(x) + Ma(x)
xg

K K

xeD
What makes the theory of duality constructive is when we can solve for

L* efficiently - either in a closed form or some other ‘simple’” mechanism.
If L* is not easy to evaluate, the duality theory will be less nseful.

3. We finally define the dual problem:

max LA .
AER™ (4.81)
subject to A =0

[t can be immediatly proved that the dual problem is a concave maximization
problem.

Theorem 80 The dual function L*(\) is concave.



Theorem 81 If p* € 'k is the solution to the primal problem in (4.80) and
d* € W is the solution to the dual problem in (4.51), then

p‘Ed‘

In general, if X is any feasible solution to the primal problem (4.80) and \is a
feasible solution to the dual problem (4.81), then

R

f(X) = L7(A)

The weak duality theorem has some important implications. If the primal
problem is unbounded below, that is, p* = —o0, we must have d* = —oo, which
means that the Lagrange dual problem is infeasible. Conversely, if the dual
problem is unbounded above, that is, d* = 20, we must have p* = oc, which
is equivalent to saying that the primal problem is infeasible. The difference,
p* — d* is called the duality gap.

In many hard combinatorial optimization problems with dualitv gaps, we
get good dual solutions, which tell us that we are guaranteed of being some k& %
within the optimal solution to the primal, for some satisfactorily low values of
fo. This is one of the powerful uses of duality theorv; constructing bounds for
optimization problems.

Under what conditions can one assert that d* = p*? The condition d* = p* is
called strong duality and it does not hold in general. It nsually holds for convex
problems

I'heorem 82 If the function f is convex, g; are convex and h; are affine, then
K KT conditions in 4.858 are necessary and sufficient conditions for zero duality

fOE.




