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Chapter 1

Graphical Models

Graphical models [Lau96, CGH97, Pea88, Jor98, Jen01] provide a pictorial rep-
resentation of the way a joint probability distribution factorizes into a product
of factors. They have been widely used in the area of computer vision, con-
trol theory, bioinformatics, communication, signal processing, sensor networks,
neurovision, etc.

There is a relation between the conditional independence properties of a
joint distribution and its factorization properties. Each of these properties can
be represented graphically. This allows us to

1. organize complicated mathematics through graph based algorithms for
calculation and computation and thus save complicated computations (in
many cases, map the pictorial representation onto computations directly)

2. gain new insights into existing models; it is a standard practice to modify
an existing model by addition/delection of nodes or links and adopt it to
the problem at hand

3. motivate new models by simply ammending pictures

However, everything that you could do in graphical models using pictures
could also be done without pictures, by grinding through all the mathematics
while consistently using the innocuous-looking sum (1.1) and product (1.2) rules
of probability

Pr (X) =
∑
y∈Y

Pr (X = x, Y = y) (1.1)

Pr (X = x, Y = y) = Pr (X = x | Y = y) Pr (Y = y) (1.2)

3



4 CHAPTER 1. GRAPHICAL MODELS

where X and Y are discrete random variables, assuming values x ∈ X =
{x1, x2, . . . , xm} and y ∈ Y = {y1, y2, . . . , yn} respectively. A combination of
the two rules yields the Bayes theorem:

Pr (X = xi, Y = yj) =
Pr (X = xi | Y = yj) Pr (Y = yj)

Pr (X = xi)

=
Pr (X = xi | Y = yj) Pr (Y = yj)∑

yj∈Y
Pr (X = xi | Y = yj) Pr (Y = yj)

(1.3)

The two main kinds of graphical models are directed and undirected models.
The problems we will address in graphical models include

1. Inference: Broadly, there are two inference techniques for graphical mod-
els, viz., exact and approximate inference. Exact inference is appropriate
if the graphic is a tree, since it is a linear time algorithm. But for complex
graphical models, exact inference may or may not be appropriate, since
exact algorithms could be very slow. In such cases, approximate inference
schemes are often resorted to. Markov chain monte carlo (which is exact
if there were an infinite amount of computing resources and approximate
otherwise) and variational inference (by approximating the analytical form
for the posterior distribution) are two popular techniques. While varia-
tional techniques scale better, their other strengths and weaknesses are
complementary to those of MCMC. An often adopted stepping stone for
explaining variational inference is the expectation maximization algorithm
(EM) and we will take the same route.

2. Learning:

1.1 Semantics of Graphical Models

We will first discuss the semantics of graphical models, both directed and undi-
rected. In the sections that follow, we will discuss the computational aspects of
graphical models - in particular, inferencing and learning techniques.

1.1.1 Directed Graphical Models

We will start with the example of a directed graphical model. Consider an arbi-
trary joint distribution Pr (X1 = x1, X2 = x2, X3 = x3) over three discrete ran-
dom variables X1, X2 and X3 that assume values x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3

respectively. Denoting1 Pr (Xi = xi) by p(xi) and Pr (X1 = x1, X2 = x2, X3 = x3)
by p(x1, x2, x3) and applying the product rule of probability successively, we ob-
tain

1As a convention, we will use capital letters to denote random variables and lower case
letters to denote their realizations.
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p(x1, x2, x3) = p(x1)p(x2, x3 | x1) = p(x1)p(x2 | x1)p(x3 | x1, x2) (1.4)

The successive application of the product rule is often termed as the chain rule.
We should note that this rule applies even if x1, x2 and x3 happen to be continu-
ous random variables (in which case p is a density function) or vectors of random
variables. We should note that this factorization is quite non-symmetrical in
the three random variables. This factorization can be represented in the form of
the following directed graph: There is one node for each variable. We draw a di-
rected edge between every conditioning variable (i.e. the corresponding node) to
the conditioned variable. The way to go from a graph to the factorization of the
joint distribution is to write down the product of the conditional distribution of
every node (i.e., the corresponding variable) conditioned on its parents within
the graph. In the example above, x1 had no parent, and therefore the term
corresponds to its conditional p(x1) turned out to be its marginal distribution.

The factorization in the last example holds for any joint distribution over any
three variables and the graph is therefore uninformative. In fact, any completely
connected graph will be uninformative, as we will soon see. What interests us
in graphical models is not the presence of edges but rather, the absence of
edges. Since the graph in the previous example had no missing edges, it was
uninteresting.

Definition 1 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S} where
S ⊆ {1, 2, . . . , n}. Let G =< V, E > be a directed acyclic graph with vertices
V = {1, 2, . . . , n} and E ⊆ V × V such that each edge e = (i, j) ∈ E is a directed
edge. We will assume a one to one correspondence between the set of variables
R and the vertex set V; vertex i will correspond to random variable Xi. Let
πi be the set of vertices from which there is edge incident on vertex i. That
is, πi = {j | j ∈ V, (j, i) ∈ E}. Then, the family F(G) of joint distributions
associated with the DAG2 G is specified by the factorization induced by G as
follows:

2As we saw earlier, the family of probability distributions specified by the related formalism
of undirected graphical models is somewhat different.
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F(G) =

{
p(x)

∣∣∣∣∣p(x) =
n∏
i=1

p(xi | xπi), p(xi | xπi)∀ 1 ≤ i ≤ n ≥ 0,
∑
xi∈Xi

p(xi | xπi) = 1

}
(1.5)

where, x denotes the vector of values [x1, x2, . . . , xn] and xi is the value assumed
by random variable Xi and xπi denotes the vector of values from x, composed
from positions in πi.

For notational convenience with directed acyclic graphs, it is a common
practice to assume a topological ordering on the indices of vertices in V so
that πi ⊆ µi−1 = {1, 2, . . . , i − 1}. Note that, by the chain rule, the following
factorization always holds:

p(x) =
n∏
i=1

p(xi | xµi−1) (1.6)

Making use of the sum rule, in conjunction with (1.5), for any p ∈ F(G), we
have

p(xµi) =
∑

xi+1∈Xi+1,...,xn∈Xn

p(x)

=
∑

xi+1∈Xi+1,...,xn∈Xn

p(x1)p(x2 | xπ2) . . . p(xi | xπi) (1.7)

Since the vertex indices are topologically ordered, it can be proved using the
principle of induction (working backwards from n) on the basis of the sum rule
in (1.7), that for any p ∈ F(G):

p(xµi) =
i−1∏
j=1

p(xi | xπi) (1.8)

Contrasting (1.6) against (1.5), we can think of the set of probability dis-
tribution F(G) as a sort of restricted class of distributions that arises from
throwing away some of the dependencies. In particular, if p ∈ F(G) then

p(xi | xµi−1) = p(xi | xπi)

that is, Xi is independent of Xµi−1 , given Xπi . The independence is denoted
by: Xi ⊥ Xµi−1 | Xπi . This leads us to another approach to defining the class
of probability distributions based on a DAG G.
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Definition 2 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S} where
S ⊆ {1, 2, . . . , n}. Let G =< V, E > be a directed acyclic graph with vertices
V = {1, 2, . . . , n} and E ⊆ V×V such that each edge e = (i, j) is a directed edge.
Let πi = {j | j ∈ V, (j, i) ∈ E}. Then, the family C(G) of joint distributions
associated with the DAG G is specified by the conditional independence induced
by G as follows:

C(G) =

{
p(x)

∣∣∣∣∣Xi ⊥ Xµi−1 | Xπi ∀ 1 ≤ i ≤ n,
∑
x

p(x) = 1

}
(1.9)

We will next show that the class F(G) defined in terms of factorizations is
equivalent to the class C(G) defined in terms of independences. This is called
the Hammersley Clifford theorem.

Theorem 1 The sets F(G) and C(G) are equal. That is p ∈ F(G) iff p ∈ C(G)

Proof: ⇐: We will first prove that F(G) ⊆ C(G). Let p ∈ F(G). We will prove
that p ∈ C(G), that is, p(xi | xµi−1 ,xπi) = p(xi | xπi). This trivially holds for
i = 1, since xπi = ∅. For i = 2:

p(x1, x2) = p(x1)p(x1 | x2) = p(x1)p(x1 | xπ2)

where, the first equality follows by chain rule, whereas the second equality fol-
lows by virtue of (1.8). Consequently,

p(x1 | x2) = p(x1 | xπ2)

Assume that p(xi | xµi−1) = p(xi | xπi) for i ≤ k. For i = k + 1, it follows from
chain rule and from (1.8) that

p(xµk+1) =
k+1∏
i=1

p(xi | xµi−1) =
k+1∏
i=1

p(xi | xπi)

Making use of the induction assumption for i ≤ k in the equation above, we can
derive that

p(xk | xµk−1) = p(xk | xπk)

By induction on i, we obtain that p(xi | xµi−1) = p(xk | xπi) for all i. That is,
p ∈ C(G). Since this holds for any p ∈ F(G), we must have that F(G) ⊆ C(G).
⇒: Next we prove that C(G) ⊆ F(G). Let p′ ∈ C(G) satisfy the conditional

independence assertions. That is, for any 1 ≤ i ≤ n, p′(xi | xµi−1) = p′(xi | xπi).
Then by chain rule, we must have:

p′(xµn) =
n∏
i=1

p′(xi | xµi−1) =
k+1∏
i=1

p′(xi | xπi)
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Figure 1.1: A directed graphical model.

which proves that p′ ∈ F(G) and consequently that C(G) ⊆ F(G) 2

As an example, we will discuss the directed graphical model, as shown in
Figure 1.1. Based on theorem 1, the following conclusions can be drawn from the
graphical representation of a family of distributions represented by Figure 1.1.

1. Given the value of X3, the values of X1, X2 and X4 will be completely un-
informative about the value of X5. That is, (X5 ⊥ {X1, X2, X4} | {X3}).
Similarly, given the value of X2, the values of X1 and X3 will be completely
uninformative about the value of X4. That is, (X4 ⊥ {X1, X3} | {X2}).

2. Secondly, since p ∈ F(G), we have

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3 | x1, x2)p(x4 | x2)p(x5|x3)

What about other independence assertions? Is X5 independent of X4 given
X2? Is X3 independent of X4, given X2? The answer to both these questions
happens to be yes. And these could be derived using either of the equivalent
definitions of graphical models. In fact, some such additional conditional in-
dependence assertions can always follow from the two equivalent definitions of
graphical models. Before delving into these properties, we will define an impor-
tant concept called d-separation, introduced by Pearl [Pea88].

Definition 3 A set of nodes A in a directed acyclic graph G is d-separated from
a set of nodes B by a set of nodes C, iff every undirected path from a vertex
A ∈ A to a vertex B ∈ B is ‘blocked’. An undirected path between A and B
is blocked by a node C either (i) if C ∈ C and both the edges (which might be
the same) on the path through C are directed away from C (C is then called a
tail-to-tail node) or (ii) if C ∈ C and of the two edges (which might be the same)
on the path through C, one is directed toward C while the other is directed away
from C (C is then called a head-to-tail node) or (iii) if C 6∈ C and both the edges
(which might be the same) on the path through C are directed toward C (C is
then called a head-to-head node).

In Figure 1.1, node X2 blocks the only path between X3 and X4, node X3

blocks the path between X2 and X5. Whereas, node X3 does not block the
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path between X1 and X2. Consequently, {X3} and {X4} are d-separated by
{X2}, while {X2} and {X5} are d-separated by {X3}. However, {X1} and
{X2} are not d-separated by {X3}, since X3 is a head-to-head node. X3 does
not d-separate X1 and X2 even though it separates them. Thus, not every pair
of (graph) separated nodes in the graph need be d-separated. We next define
a family of probability distribution that have independences characterized by
d-separation.

Definition 4 The set of probability distributions D(G) for a DAG G is defined
as follows:

D(G) = {p(x) |XA ⊥ XB | XC , whenever A and B are d− separated by C }
(1.10)

It can be proved that the notion of conditional independence is equivalent to
the notion of d-separation in DAGs. That is,

Theorem 2 For any directed acyclic graph G, D(G) = C(G) = F(G).

Thus, in Figure 1.1. {X3} ⊥ {X4} | {X2} and {X2} ⊥ {X5} | {X3}. Whereas,
{X1} 6⊥ {X2} | {X3}. We could think of X1 and X2 as completing explanations
for X3. Thus, given a value of X3, any value of X1 will, to some extent ‘explain
away’ the value of X3, thus withdrawing the independence of X2. In terms of a
real life example, if X1, X2 and X3 are discrete random variables corresponding
to ‘the color of light’, ‘the surface color’ and ‘the image color’ respectively, then,
given the value of X3 (image color), any value of X1 (color of light) will explain
away the color of the image, thus constraining the values that X3 (surface
color) might take. On the other hand, {X1} ⊥ {X2} | {}. What about the
independence of X1 and X2 given X5? The path X1, X3, X5, X3, X2 involves a
head-to-head node X5 and therefore, X1 6⊥ X2 | {X5}. The Bayes ball algorithm
provides a convenient algorithmic way for deciding if XA ⊥ XB | XC , by using
the d-separation property.

Bayesian Networks and Logic

The logical component of Bayesian networks essentially corresponds to a propo-
sitional logic program. This has already been observed by Haddawy [1994] and
Langley [1995]. Langley, for instance, does not represent Bayesian networks
graphically but rather uses the notation of propositional definite clause pro-
grams. Consider the following program. This program encodes the structure
of the blood type Bayesian network in Figure 1.2. Observe that the random
variables in this notation correspond to logical atoms. Furthermore, the di-
rect influence relation in the Bayesian network corresponds to the immediate
consequence operator.
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Figure 1.2: The graphical structure of a Bayesian network modeling the inheri-
tance of blood types within a particular family.

PC(ann). PC(brian).
MC(ann). MC(brian).
MC(dorothy) : −MC(ann), PC(ann). PC(dorothy) : −MC(brian), PC(brian).
BT (ann) : −MC(ann), PC(ann). BT (brian) : −MC(brian), PC(brian).
BT (dorothy) : −MC(dorothy), PC(dorothy).

1.1.2 Undirected Graphical Models

We will move on to an undirected graphical models (also known as Markov
Random fields) primer, while drawing parallels with the directed counterpart.
An undirected graph G is a tuple < V, E > where E ⊆ V × V and such that
each edge e = (i, j) ∈ E is a directed edge. While the conditional independence
property for directed graphical models was tricky (involving concepts such as d-
separation, etc.), the conditional independence property for undirected models
is easier to state. On the other hand, the factorization property for directed
graphical models simply involved local conditional probabilities as factors. It
is however not as simple with undirected graphical models. Taking the easier
route, we will first define the conditional independence property for undirected
graphical models. Toward that, we introduce the notion of graph separation.

Definition 5 Given an undirected graph G =< V, E >, and A,B, C ⊆ V, we
say that C separates A from B in G if every path from any node A ∈ A to any
node B ∈ B passes through some node C ∈ C. C is also called a separator or a
vertex cut set in G.

In Figure 1.3, the set A = {X1, X7, X8} is separated from B = {X3, X4, X5}
by the (vertex cut) set C = {X2, X6}. It is easy to see that separation is sym-
metric in A and B. This simple notion of separation gives rise to a conditional
indpendence assertion for undirected graphs. A random vector XC for C ⊆ V
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Figure 1.3: A directed graphical model.

is said to be markov with respect to a graph G if XA ⊥ XB | XC whenever C
separates A from B. That is, the random variables corresponding to the vertex
cut set acts like a mediator between the values assumed by variables in A and
B so that the variables in A and B are independent of each other, if we knew
the values of variables in C. It is straightforward to develop a ‘reachability’
algorithm (as with the bayes ball algorithm) for undirected graphs, to assess
conditional independence assumptions. Based on the definition of markov ran-
dom vector, we next define the familyM(G) of distributions associated with an
undirected graph G.

Definition 6 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S}
where S ⊆ {1, 2, . . . , n}. Let G =< V, E > be an undirected graph with vertices
V = {1, 2, . . . , n} and E ⊆ V × V such that each edge e = (i, j) ∈ E is an
undirected edge. Then, the family M(G) of joint distributions associated with G
is specified as follows:

M(G) = {p(x) |XA ⊥ XB | XC ∀ A,B, C ⊆ V, whenever C seperates A from B}
(1.11)

As in the case of directed models, there is another family of probability
distributions that could be specified for a given undirected graph G based on a
factorization assertion. The main difference is that, while the factorization for
DAGs was obtained in terms of local conditional probabilities or local marginals,
it turns out that this factorization is not possible for a general undirected graph
(specifically when it has a cycle). Instead there is another notion of ‘local’ for
undirected graphs – there should be no function involving any two variables
Xi and Xj where (i, j) 6∈ E (otherwise, such a term will not break further,
prohibiting assertions about conditional independences). Instead, we will have
a function φC(XC) for every clique C ⊆ V, since a clique is a subset of vertices
that all ‘talk to’ one another. The most general version of factorization will be
one for which there is a function corresponding to each maximal clique; all other
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factorizations involving factors over smaller cliques will be specialized versions.
These functions will be referred to as compatibility or potential functions. A
potential or compatibility function on a clique C is a non-negative real valued
function φC(xC) defined over all instantiations x ∈ X1 × X2 × . . . × Xn of X.
Other than these restrictions, the potential function can be arbitrary.

Definition 7 Let R = {X1, X2, . . . , Xn} be a set of random variables, with
each Xi (1 ≤ i ≤ n) assuming values xi ∈ Xi. Let XS = {Xi | i ∈ S}
where S ⊆ {1, 2, . . . , n}. Let G =< V, E > be an undirected graph with vertices
V = {1, 2, . . . , n} and E ⊆ V × V such that each edge e = (i, j) ∈ E is an
undirected edge. Then, the family M(G) of joint distributions associated with G
is specified as follows:

F(G) =

{
p(x)

∣∣∣∣∣p(x) =
1
Z

∏
C∈Π

φC(xC), such that φC(xC) ∈ <+,∀C ∈ Π

}
(1.12)

where, Π is the set of all cliques in G, x denotes the vector of values [x1, x2, . . . , xn],
xi ∈ Xi is the value assumed by random variable Xi and where each φC is a po-
tential function defined over the clique C ⊆ V. Without loss of generality, we can
assume that Π is the set of maximal cliques in G. The normalization constant
Z is called the partition function and is given by

Z =
∑

x1∈X1,...,xn∈Xn

∏
C∈Π

φC(xC) (1.13)

The potential functions are typically represented as tables – each row listing
a unique assignment of values to the random variables in the clique and the
corresponding potential. Thus, the value φC(xC) can be obtained by a simple
table lookup.

The form of the potential function can be chosen based on the particular
application at hand. For instance, the clique potential can be decomposed into
a product of potentials defined over each edge of the graph. When the do-
main of each random variable is the same, the form of the potential can be
chosen to either encourage or discourage similar configurations (such as sim-
ilar disease infection for patients who are related) at adjacent nodes. The
potential function is often interpreted as an energy function in the model-
ing of crystals, protein folding, etc., where a minimum energy configuration
is desirable. Frequently, the energy function is assumed to have the form
φC(XC) = exp (−θC(XC)), which leads to the factorization as an exponential
form distribution p(x) = exp (−

∑
C∈Π

θC(xC)− logZ). The quantities θC(XC) are

called sufficient statistics.
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From our discussion on the equivalence of directed and undirected trees in
terms of conditional independencies, we may be tempted to conclude that the
factors for the undirected tree can be the local conditional probabilities. This
is easily established if we prove that for strictly positive distributions, the def-
inition of an undirected graphical model in terms of conditional independences
is equivalent to the definition in terms of factorization, that is, M(G) = F(G).

Theorem 3 For strictly positive distributions,M(G) = F(G). That is,M(G)∩
D+ = F(G) ∩ D+, where, D+ = {p(x) |p(x) > 0,∀x ∈ X1 ×X2 . . .×Xn }.

Proof: The proof that M(G) ⊆ F(G) is a bit involved and requires Mobius
inversion. On the other hand, that F(G) ⊆M(G) can be shown as follows. For
any given A,B ⊆ V that are separated by C ⊆ V, consider the partitions P1, P2

and P3 of Π:
P1 = {K |K ∈ ΠandK ⊆ A ∩ C and K 6⊆ C }

P2 = {K |K ∈ ΠandK ⊆ B ∩ C and K 6⊆ C }

P3 = {K |K ∈ ΠandK ⊆ C }

Now, p(x) can be factorized into factors involving cliques in P1, P2 and P3.
Consequently,

p(xA,xB,xC)
p(xB,xC)

=

∏
K∈P1

φK(xK)
∏
K∈P2

φK(xK)
∏
K∈P3

φK(xK)∑
xA

∏
K∈P1

φK(xK)
∏
K∈P2

φK(xK)
∏
K∈P2

φK(xK)
=

∏
K⊆A∪C

φK(xK)∑
xA

∏
K⊆A∪C

φK(xK)
= p(xA | xC)

2

While conditional independence is useful for modeling purposes, factoriza-
tion is more useful for computatinal purposes.

1.1.3 Comparison between directed and undirected graph-
ical models

Is there any difference between the undirected and directed formalisms? Are
they equally powerful? Or is more powerful than the other. It turns out that
there are families of probability distributions which can be represented using
undirected models, whereas they have no directed counterparts. Figure 1.4
shows one such example. Imagine that random variables X1 and X3 represent
hubs in a computer network, while X2 and X4 represent computers in the net-
work. Computers do not interact directly, but only through hubs. Similarly,
hubs interact only through computers. This leads to two independences: (i)
conditioned on X1 and X3 (the hubs), nodes X2 and X4 (the computers) be-
come independent and (ii) conditioned on X2 and X4, nodes X1 and X3 become
independent. However, with a directed acyclic graph on four nodes, we will al-
ways have some head-to-head node and therefore, it is impossible to simultane-
souly satisfy both conditions (i) and (ii) using a DAG. Larger bipartitie graphs
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Figure 1.4: An undirected graphical model which has no equivalent directed
model.

Figure 1.5: A directed graphical model which has no equivalent undirected
model.

will have similar conditional independence assertions, which are inexpressible
through DAGs.

Similarly, there are familiies of probability distibutions which can be rep-
resented using directed models, whereas they have no undirected counterparts.
Figure 1.5 shows one such example and corresponds to the ‘explaining away’ phe-
nomenon, which we discussed earlier in this chapter. The node X3 is blocked
if not observed (so that {X1} ⊥ {X2} | ∅), whereas it is unblocked if its value
is known (so that {X1} 6⊥ {X2} | {X3}). Can you get this behaviour with an
undirected graph? The answer is no. This is because, with an undirected graph,
there is no way of getting dependence between X1 and X2 if they were apriori
independent.

On the other hand, for graphical models such as markov chains, dropping the
arrows on the edges preserves the independencies, yielding an equivalent undi-
rected graphical model. Similarly, directed trees are fundamentally no different
from undirected trees.

An important point to note is that it is the absence of edges that char-
acterizes a graphical model. For any graphical model, it is possible that the
compatibility functions (or local conditional probabilities) assume a very spe-
cial form so that there are more (conditional) independences that hold than
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what is indicated by the graphical model (which means that some of the edges
in the graph could be redundant).

1.2 Inference

In this section, we discuss the problem of determining the marginal distribution
p(xA), the conditional distribution p(xA | xB) and the partition function Z,
given a graphical model G =< V, E > and for anyA,B ⊆ V. We will assume that
the conditional probability tables (for directed models) or the potential function
table (for undirected models) are already known. The sum and product rules of
probability yield the following formulae3 for the marginal, the conditional4 and
the partition function5 respectively:

p(xA) =
∑
xV\A

p(x)

p(xA | xO) =
p(xA,xO)
p(xO)

Z =
∑

x∈X1×X2×...Xn

∏
C∈Π

φC(xC)

All these problems are somewhat similar, in that they involve summation over
a very high dimensional space. Computing any of these quantities will involve
number of computations that are atleast exponential in the size of V \A. This is
not feasible in many practical applications, where the number of nodes will run
into the hundreds or the thousands. As we will see, there is ample redundancy
in these computations. We will briefly discuss a simple and pedagogical algo-
rithm called the elimination algorithm that provides the intuition as to how the
structure of the graph could be exploited to answer some of the questions listed
above. More clever algorithms such as the sum-product algorithm that captures
redundancies more efficiently will be discussed subsequently.

A problem fundamentally different from the three listed above is that of
maximum aposteriori optimization - determining the mode of a conditional dis-
tribution.

x̂A = argmax
xA

p(xA | xO)

For discrete problems, this is an integer linear programming problem. For gen-
eral graphs, you cannot do much better than a brute force, whereas, for special
graphs (such as trees), this mode can be computed efficiently.

3For continuous valued random variables, you can expect the summation to be replaced
by integration in each formula.

4The problem of computing conditionals is not fundamentally different from the problem
of computing the marginals, since every conditional is simply the ratio of two marginals.

5The partition function needs to be computed for parameter estimation.
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1.2.1 Elimination Algorithm

The elimination algorithm provides a systematic framework for optimizing com-
putations by rearranging sums and products, an instance of which we saw in the
proof of theorem 3. Consider the simple directed graph in Figure 1.1. Let us
say each random variable takes values from the set {v1, v2, . . . , vk}. Brute force
computation of p(x1 | x5) = p(x1,x5)

p(x5) will involve k × k3 = k4 computations for
the numerator and k×k4 = k5 computations for the denominator. To take into
account conditioning, we introduce a new potential function δ(xi, x′i) which is
defined as follows:

δ(xi, x′i) =

{
1 if xi = x′i
0 otherwise

and simply write the conditional as

p(x1 | x5) =
p(x1, x5)
p(x5)

=
∑

x2,x3,x4,x′5

p(x′5|x3)δ(x5, x
′
5)p(x3|x1, x2)p(x4|x2)p(x2)

That is, whenever a variable is observed, you imagine that you have imposed
the indicator function for that observation into the joint distribution. Given
this simplicification, we will focus on efficiently computing p(x1), assuming that
the δ function will be slapped onto the corresponding factor while computing
conditionals.

Using the structure of the graphical model (implicit in the topological or-
dering over the indices) , we can rearrange the sums and products for p(x1|x5)

p(x1 | x5) =

∑
x2

p(x2)

∑
x3

p(x3|x1, x2)

(∑
x4

p(x4|x2)

)∑
x′5

p(x′5|x3)δ(x5, x
′
5)


(1.14)

where brackets have been placed at appropriate places to denote domains of
summation.

Analysing this computational structure inside-out,

1. We find two innermost factors to be common across all the summations,
viz.,

mx4(x2) =
∑
x4

p(x4|x2)

mx5(x3) =
∑
x′5

p(x′5|x3)δ(x5, x
′
5)

where mx4 is a message function of x2 and is obtained using k × k = k2

computations and mx5 is a message function of x3 and similarly obtained
using k2 computations.
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2. Further, we can decipher from (1.14), the following message function mx3

of x1 and x2 which can be computed using k3 operations:

mx3(x1, x2) =
∑
x3

p(x3|x1, x2)mx4(x2)mx′5
(x3)

3. Putting all the messages together, we get the message function mx2 of x1,
computable with k2 operations.

mx2(x1) =
∑
x2

mx3(x1, x2)

Thus, the summation over the factorization can be expressed as a flow of
message from one node to another; when the message from a node passes on
to another, the former gets stripped or eliminated. In the step (1), nodes x4

and x5 got stripped. In step (2), node x3 was stripped and finally, in step (3),
x2 got stripped. This yields an elimination ordering6 [x4, x5, x3, x2]. The order
of computation is thus brought down from O(k5) to O(max(k2, k3)) = O(k3)
computations. While some researchers could argue that this may not be a
substantial decrease, for larger graphs the gain in speed using this procedure is
always substantial.

More formally, consider a root to leaf ordering I of the nodes, where r is
the root node (equivalently, an ordering that corresponds to leaf stripping).
Figure 1.1 shows a numbering of the nodes corresponding to such an ordering.
We will define as the current active set A(k), a set of indices of general potential
functions. At each step of the algorithm the potential functions are of three
different types: (i) some of the local conditional probabilities p(xi|xπi), (ii)
some of the indicators δ(xj , x′j) of the observed nodes and (iii) some messages
(c.f. page 16) generated so far. More formally, the active set of potentials
is given by {Ψα(xα)}α∈A(k) , with α being a generic index that ranges over
sets of nodes. A(0) is initialized as the set of all cliques that are associated
with potential functions in the graphical model. For example, in Figure 1.1,
A(0) = {{1}, {2}, {3, 2, 1}, {2, 4}, {3, 5}}. Then, A(k) can be computed using
the algorithm presented in Figure 1.6.

When the active set construction is complete, the desired conditional/marginal
probability can be obtained as

p(xr | xo) =
Ψ{r}xr∑
xr

Ψ{r}xr

A flip side of the elimination algorithm is that it requires a ‘good’ elimination
order to be first determined. The number of elimination orderings is obviously
a large value of (n − 1)!, where n is the number of nodes. Finding a good
elimination ordering is an NP hard problem and heuristics have been the only
recourse. We will not discuss the elimination algorithm any further, but instead
jump to the more efficient sum-product algorithm.

6Since either x4 and x5 may get stripped first, [x5, x4, x3, x2] is also a valid elimination
ordering.
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1. Construct an elimination ordering of the nodes so that the target node
at which condition/marginal is desired, is last in the ordering.
2. Initialize A(0) to the set of all cliques on which potentials are defined.
Set k = 0.
for Each i ∈ I do

4. Compute Ψβi(xβi) =
∏

{α∈A(k)|i∈α}

Ψα(xα) where, βi = {i} ∪{
j | ∃α ∈ A(k), {i, j} ⊂ α

}
. That is, Ψβi(xβi) is a product of potentials

that have shared factors with {i}.
5. Message Computation: Compute the message communicated to
xi by stripping out xi through summing over xi. Mi(xγi) = Ψγi(xγi) =∑
xi

Ψβi(xβi), where, γi = βi\{i}, that is, γi is the resudial left after strip-

ping out {i} from βi and the message Mi depends only on this residual.
The computational complexity is determined by the size of the residuals.
6. Stripping out factors: Remove all α such that i ∈ α and add γi to
the current active set to obtain A(k+1).

A(k+1) = A(k) \ {α ∈ A(k) | i ∈ α} ∪ {γi}

end for

Figure 1.6: Procedure for constructing the active set, and the message at the
desired target node t.

1.2.2 Sum-product Algorithm

The sum-product algorithm builds on the idea of ‘messages’ as motivated by
the elimination algorithm. It involves local computations at nodes, to gener-
ate ‘messages’ which are related by nodes along their edges to their neighbors.
This formalism enables simultaneous computation of marginals, conditionals
as well as modes for several variable sets. This algorithm generalizes special
algorithms such as viterbi, the forward-backward algorithm, kalman filtering,
gaussian elimination as well as the fast fourier transform.

We will initially restrict our attention to undirected trees and will later
generalize the algorithm. Figure 1.7 shows an example tree structured graph-
ical model. Since the cliques consist of edges and individual nodes, the po-
tential functions are basically either node potentials φp(xp) or edge potentials
φp,q(xp, xq). The joint distribution for the tree is

p(x) =
1
Z

∏
p∈V

φp(xp)
∏

(p,q)∈E

φp,q(xp, xq) (1.15)

Note that, all discussions that follow, hold equally well for directed trees, with
the special parametrization φp,q(xp, xq) = p(xp|xq) if xp ∈ πxq and φp(xp) =
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Figure 1.7: A tree graphical model.

p(xp).
We will deal with conditioning in a manner similar to the way we dealt

with conditioning in the case of directed graphical models. For every observed
variable Xo = xo, we impose the indicator function δ(xo, x′o) onto φo(x′o). Then,
for a set of observed variables XO, the conditional then takes the form:

p(x | xO) =
1
ZO

∏
p∈V\O

φp(xp)
∏
o∈O

φo(x′o)δ(xo, x
′
o)

∏
(p,q)∈E

φp,q(xp, xq) (1.16)

Thus, modifying the compatibility functions appropriately reduces the condi-
tional problem to an instance of the base problem.

The crux of the sum-product algorithm is the following observation on the
application of the leaf stripping and message construction procedure in Fig-
ure 1.6 to a tree-structured graphical model.

Theorem 4 When a node i is eliminated, γi = {p}, where p is the unique
parent of node i. This means, we can write the message as Mi→p.

Proof Sketch: This can be proved by induction on the number of steps in the
leaf-stripping (elimination) order. You will need to show that at every step,
βi = {i, p}, where p is the unique parent of i. Consequently, γi = {p} and we
can derive the (recursive) expression for Mi→p(xp) as

Mi→p(xp) = Ψxp(xp) =
∑
xi

φi(xi)φi,p(xi, xp)︸ ︷︷ ︸
SUM

∏
q∈N (i)\p

Mq→i(xi)︸ ︷︷ ︸
PRODUCT

(1.17)

Note that the proof of this statement will again involve induction. 2
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Figure 1.8: An illustration of (1.17) on a part of a tree structured (undirected)
graphical model.

Figure 1.8 illustrates an application of (1.17) on a part of a tree structured
graphical model.

Theorem 4 provides a very useful observation; the message is not a function of
the vector of all nodes eliminated so far (which could have assumed km possible
values for m eliminated nodes having k possible values each), but is instead
is a function only of the child from which the message is being passed. This
allows us to move from the elimination algorithm to the sum-product algorithm.
In particular, the parts underlined as ‘SUM’ and ‘PRODUCT’ in (1.17) form
the basis of the sum-product algorithm. In the sum-product algorithm, at every
time step, the computation in (1.17) is performed at every node; each node does
local computations and passes ‘updated’ messages to each of its neighbors. In
this way, the computations are not tied to any particular elimination ordering.

Theorem 5 Consider an undirected tree structured graphical model G = (V, E)
with factorization given by (1.15). Let each random variable Xi, i ∈ V assume
k possible values from X = {α1, α2, . . . , αk}. For each edge (u, v), define non-
negative messages along both directions: Mv→u(αi) along v → u and Mu→v(αi)
along u→ v for each αi ∈ X . If r is the iteration number, then the update rule

M (r+1)
u→v (xv) =

1

Z
(r)
u→v

∑
xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu)

︸ ︷︷ ︸
˜

M
(r+1)
u→v (xv)

can be executed parallely at every node u along every edge u, v originating at u
and will converge, resulting in a fix-point for each M (r∗)

u→v(xv) for some r∗. That
is, there exists an r∗ such that M (r∗+1)

u→v (xv) = M
(r∗)
u→v(xv) for all (u, v) ∈ E. At

convergence,

p(xv) = φ(xv)
∏

u∈N (v)

Mu→v(xv) (1.18)
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Note that Z(r)
u→v is the normalization factor (required for ensuring numerical sta-

bility across iterations but not otherwise) and can be computed at each iteration
as

Z(r)
u→v =

∑
xv

˜
M

(r+1)
u→v (xv)

Theorem 5 does away with the need for any elimination ordering on the
nodes and lets computations at different nodes happen in parallel. It leads to
the sum-product algorithm7 for trees, which is summarized in Figure 1.9. The
so-called flooding8 schedule does a ‘for’ loop at each iteration of the algorithm,
for each node in V. By Theorem 5, the procedure will converge. In fact, it can
be proved that the algorithm will converge after at most κ iterations, where κ
is the diameter (length of the longest path) of G. The intuition is that message
passing needs the message from every node to reach every other node and this
will take κ iterations for that to happen in the sum-product algorithm.

Initialize M
(0)
u→v(xv) for each (u, v) ∈ E to some strictly positive random

values.
Set r = 0.
repeat

for Each u ∈ V do
for Each v ∈ N (u) do
M

(r+1)
u→v (xv) = 1

Z
(r)
u→v

∑
xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu).

end for
end for
Set r = r + 1.

until M (r)
u→v(xv) = M

(r−1)
u→v (xv) for each (u, v) ∈ E and each xv ∈ X

Set r∗ = r − 1.

Figure 1.9: The sum-product algorithm for a tree, using the flooding schedule.
It converges for r∗ ≤ κ, κ being the tree diameter.

There have been modern, interesting uses of message passing techniques on
graphs with cycles, such as in the field of sensor networks, where locally paral-
lelizable algorithms such as message passing are highly desirable. While there is
nothing that stops us in principle from applying the algorithm in Figure 1.9 to
general graphs having cycles, the theory does not guarantee anything at all - nei-
ther in terms of convergence nor in terms of the number of iterations. However,
in solving partial differential equations, the message passing algorithm is often
used. The algorithm is widely used on certain interesting cyclic graphs in the

7SIMPLE EXERCISE : Implement the algorithm using Matlab.
8The flooding schedule somewhat mimics the flow of water or some liquid through a net-

work; water flows in to a node along an edge and then spreads through the other edges incident
on the node.
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field of communications. For special problems such as solving linear systems,
this method converges9 on graphs with cycles as well.

However, a schedule such as in Figure 1.9 will typically incur a heavy com-
munication cost, owing to message transmissions. While the flooding schedule
is conceptually easy in terms of parallelization, an alternative schedule called
the serial schedule is often preferred when parallelization is not of paramount
importance. The serial schedule minimizes the number of messages passed. In
this schedule, a node u transmits message to node v only when it has received
messages from all other nodes q ∈ N (u) \ v. This algorithm will pass a message
only once along every direction of each edge (although during different steps).
Thus, the scheduling begins with each leaf passing a message to its immediate
neighbor. An overhead involved in the serial schedule is that every node needs
to keep track of the edges along which it has received messages thus far. For
chip level design, the highly parallelizable flooding schedule is always preferred
over the serial schedule.

A point to note is that while the algorithm in Figure 1.9 is guaranteed to
converge within κ steps, in practice, you might want to run the algorithm for
fewer steps, until the messages reasonably converge. This strategy is especially
adopted in the belief propagation algorithm, which consists of the following steps
at each node of a general graphical model, until some convergence criterion is
met:

1. form product of incoming messages and local evidence

2. marginalize to give outgoing message

3. propagate one message in each direction across every link

The belief propagation algorithm will be discussed later.

1.2.3 Max Product Algorithm

The max product algorithm solves the problem of determining the mode or peak
of a conditional distribution, specified by a graphical model G, first addressed
on page 15.

x̂A = argmax
xA

p(xA | xO)

where XO is the set of observed variables, having observed values xO, and XA
are the query variables.

Before looking at the procedure for finding the model of a distribution, we
will take a peek at an algorithm for determining the maximum value of p(x),
assuming it to be a distribution over an undirected tree G. This algorithm is
closely related to the sum product algorithm and can easily be obtained from
the sum-product algorithm by replacing the ‘SUM’ with a ‘MAX’ in (1.17). This
is because, maximums can be pushed inside products and computations can be

9For solving linear systems, the message passing algorithm is more efficient than Jacobi,
though less efficient than conjugate gradient.
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structured in a similar manner as in the sum product algorithm. This places
max-product in the league of message passing algorithms.

The sum-product and max-product algorithms are formally very similar.
Both methods are based on the distributive law10:

• For sum-product: ab+ ac = a(b+ c).

• For max-product (whenever a ≥ 0): max {ab, ac} = a×max {b, c}.

Initialize M
(0)
u→v(xv) for each (u, v) ∈ E to some strictly positive random

values.
Set r = 0.
repeat

for Each u ∈ V do
for Each v ∈ N (u) do
M

(r+1)
u→v (xv) = 1

Z
(r)
u→v

max
xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu).

end for
end for
Set r = r + 1.

until M (r)
u→v(xv) = M

(r−1)
u→v (xv) for each (u, v) ∈ E and each xv ∈ X

Set r∗ = r − 1.

Figure 1.10: The max-product algorithm for a tree, using the flooding schedule.
It converges for r∗ ≤ κ, κ being the tree diameter.

The max-product and sum-product algorithms can be implemented in a com-
mon framework, with a simple flag to toggle between the two. The convergence
of the max-product algorithm in Figure 1.10 is very similar to the proof of the
convergence of the sum-product algorithm in Figure 1.9 (the proof is rooted in
Theorem 5). After convergence of the max-product algorithm in Figure 1.10,
the maxium value of Pr(X = x) can be retrieved as

max
x

Pr(X = x) = max
xr

φ(xr)
∏

u∈N (r)

Mu→r(xr) (1.19)

where, we assume that xr is the root of the tree. However, we need to go
beyond the maximum value of a distribution; we need to find the point at
which the maximum is attained. To traceback this, and in general to compute
argmax

xA

p(xA | xO) we will introduce some additional machinery.

As before (c.f. page 19), the conditioning can be obtained as in (1.16).

10See commutative semirings for the general algebriac framework. Also refer to work on
generalized distributive laws.
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Definition 8 We define the singleton marginal of a distribution p(x) as

µs(xs) =
1
α

max
x\{xs}

p(x) (1.20)

and the pairwise marginal as

νs(xs, xt) =
1
α

max
x\{xs,xt}

p(x) (1.21)

where
α = max

x
p(x)

The max marginals are analogs of marginilization, but with the summation
replaced by the max operator over all variables, except xs in the former or
(xs, xt) in the latter. While µs(xs) gives a vector of max-marginals for the
variable Xs, νs(xs, xt) corresponds to a matrix of values, for the pair of variables
(Xs, Xt). You can easily convince yourself that the maximum value of any max-
marginal is 1 and it will be attained for atleast one value xs for each variable
Xs.

How can the marginals be tracedback efficiently? And how can they be
useful? The marginals encode preferences in the form of sufficient statistics.
For example:

µ1(x1) =
1
α

max
x2,x3,...,xn

p(x)

In fact, we can look at the local maximal configurations, when they are unique
and traceback the (unique) global maximal configuration. This is stated in the
following powerful theorem.

Theorem 6 If argmax
xs

µs(xs) = {x∗s} ∀s ∈ V (that is, there is a unique value of

variable Xs that maximizes µs(xs) for every s ∈ V), then x∗ = {x∗1, x∗2, . . . , x∗n} =
argmax

x
p(x) is the unique MAP configuration.

Proof Sketch: The theorem can be equivalently stated as follows: if µi(x∗i ) >
µi(xi) for all xi 6= x∗i , and for all i ∈ V, then p(x∗) ≥ p(x) for all x 6= x∗. This
can be proved by contradiction as follows. Suppose x′ ∈ argmax

x
p(x). Then,

for any s ∈ V,

µs(x′s) = max
x

p(x) = max
xs

max
x\xs

p(x) > µs(xs) ∀ xs

But by definition

max
xs

max
x\xs

p(x) = max
xs

µs(xs) = {x∗s}

Thus, x′s = x∗s. Since s ∈ V was arbitrary, we must have x′ = x∗. 2

The singleton max marginal µs(xs) can be directly obtained as an outcome
of the max-product algorithm:
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µs(xs) ∝ φs(xs)
∏

u∈N (s)

Mu→s(xs) (1.22)

What if {x1
s, x

2
s} ⊆ µs(xs)? That is, if µs(xs) violates the assumption in the-

orem 6? Then we have to start worrying about what is happening on the edges,
through the medium of the max marginal νs,t(xs, xt). All we do is randomly
sample from the set of configurations that have maximum probability, without
caring which one we really get. We first randomly sample from argmax

xr

µr(xr)

at the root r of the tree and then keep randomly sample for a configuration
for a child s, given its parent t (i.e. for an edge) argmax

xs

νst(xs, xt) which re-

spects the pairwise coupling. The following theorem states the general traceback
mechanism.

Theorem 7 Given a set of singleton max-marginals, {µs | s ∈ V} and a set of
pairwise marginals: {νst | (s, t) ∈ E} on a tree G =< V, E >, x∗ = (x∗1, . . . , x

∗
n),

constructed using the following procedure is a maximal configuration, that is
x∗ ∈ argmax

x
p(x).

1. Let r be the root. Let x∗r ∈ argmax
xr

µr(xr).

2. In root to leaf order, choose x∗s ∈ argmax
xs

νst(xs, x∗t )

Proof: We will first prove that x∗ is optimal for the root term. For any arbitrary
x, by step 1,

µr(xr) ≤ µr(x∗r) (1.23)

If t→ s is an edge, then we have by definition of the singleton max-marginal

argmax
xs

νst(xs, xt) = µt(xt)

Thus,
νst(xs, xt)
µt(xt)

≤ 1

Since x∗s ∈ argmax
xs

νst(xs, x∗t ) by step 2, we must have νst(x∗s, x
∗
t ) = µt(x∗t ) and

therefore, the following upperbound

νst(xs, xt)
µt(xt)

≤ νst(x∗s, x
∗
t )

µt(x∗t )
(1.24)
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for all edges t→ s. With repeated application of step 2, we can stitch together
the local optimality conditions (1.23) and (1.24) to get

µr(xr)
∏
t→s

νst(xs, xt)
µt(xt)

≤ µr(x∗r)
∏
t→s

νst(x∗s, x
∗
t )

µt(x∗t )
(1.25)

Just as the singleton max marginals (1.22) can be expressed in terms of the
messages from the max product algorithm, the edge max-marginals can also
be expressed similarly, by restricting attention to the pair of variables (xs, Xt)
instead of the world of singletons Xs, and by avoiding accounting for the message
Ms→t or Mt→s between the pair:

νst(xs, xt) ∝ φs(xs)φt(xt)φst(xs, xt)
∏

u∈N (s)\t

Mu→s(xs)
∏

u∈N (t)\s

Mu→t(xt)

(1.26)

Combining (1.22) with (1.26), we get

νst(xs, xt)
µs(xs)µt(xt)

∝ φst(xs, xt)
Mt→s(xs)Ms→t(xt)

(1.27)

Applying (1.27) and (1.25) in the factorization for p(x), we get11, we obtain

p(x) ≤ p(x∗)

Since x was arbitrary, we must have x∗ ∈ argmax
x

p(x). 2

An outcome of the proof above is that for trees, the factorization can be
written in terms of max-marginals instead of the potential functions:

p(x) ∝ µr(xr)
∏
t→s

νts(xs, xt)
µt(xt)

The above form is a directed form of factorization and does not hold for general
graphs that may contain cycles. For general graphs, it can be further proved
that the following factorization holds

p(x) ∝
∏
s∈E

µs(xs)
∏

(s,t)∈E

νts(xs, xt)
µs(xs)µt(xt)

11EXERCISE: Prove.
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1.2.4 Junction Tree Algorithm

In many applications, the graphs are not trees. We have not discussed any
pricipled techniques for finding marginals and modes for graphs that are not
trees, though we have discussed them for trees. The elimination algorithm dis-
cussed earlier is applicable for some general graphs, but the question of what
elimination should be chosen, needs to be addressed. The junction tree algo-
rithm is very much related to the elimination algorithm, but is a more principled
approach for inferencing in directed acyclic graphs. Like the sum-product algo-
rithm, the junction tree algorithm can ‘recycle’ computations. This is unlike the
general elimination algorithm, whose computation was focused completely on
a single node. The work on junction trees is primarily attributed to Lauritzen
and Spielgelhalter (1998). The correspondence between the graph-theoretic as-
pect of locality and the algorithmic aspect of computational complexity is made
explicit in the junction tree framework.

For a graph with nodes, it is an intuitive idea to consider clustering com-
pletely connected nodes, form a tree connecting these clusters and finally per-
form message passing the tree. This idea can be formalized using the concept
of a clique tree.

Definition 9 Given a graph G =< V, E > with a set Π ⊆ 2V of maximal cliques,
a clique tree TG is a tree, whose vertices correspond the maximal cliques Π of G
and such that there is an edge between two nodes in the tree only if12 there is
an edge in G between two nodes across the corresponding maximal cliques.

Let us take some examples:

• For the acylcic graph G with V = {1, 2, 3, 4, 5, 6}, E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 6)},
the (not so interesting) clique tree TG =< Π, EΠ > would be Π = {[1, 2], [1, 3], [2, 4], [2, 5], [3, 6]}
and EΠ = {([1, 2], [2, 4]), ([1, 2], [2, 5]), ([1, 2], [1, 3]), ([1, 3], [3, 6])}.

• For the cyclic graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4), (2, 3)},
the clique tree TG =< Π, EΠ > would have Π = {[1, 2, 3], [2, 3, 4]} and
EΠ = {([1, 2, 3], [2, 3, 4])}. We will adopt the practice of labeling the edge
connecting nodes corresponding to two maximal cliques C1 and C2, with
their intersection C1 ∩ C2, which will be called the separator set. In the
second example here, the separator set for vertices [1, 2, 3] and [2, 3, 4] is
[2, 3].

• For the slightly different cyclic graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)},
there are many possible clique trees. One possible clique tree TG =<
Π, EΠ > would have Π = {[1, 2], [1, 3], [2, 4], [3, 4]} and EΠ = {([1, 2], [1, 3]), ([1, 2], [2, 4]), ([1, 3], [3, 4])}.
It is a bit worrisome here that [2, 4] and [3, 4] are not connected, since a
myopic or ‘local’ sum-product algorithm, running on the clique tree might
make a wrong inference that [2, 4] and [3, 4] do not share anything in
common. In this example, for instance, the message coming from [2, 4],

12Since we are interested in a clique ‘tree’, it may be required to drop certain edges in the
derived graph. This can be seen through the third example.
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through [1, 2] to [3, 4] has marginalized over X4. But this is incorrect,
since [3, 4] include the variable X4.

With the last example in mind, we will refine the notion of a clique tree to a
junction tree, in order to ensure that local computations are guaranteed to pro-
duce globally consistent answers; that different copies of the same random
variable have ways of communicating with each other.

Definition 10 A junction tree for a graph G =< V, E > having a set Π ⊆ 2V

of maximal cliques, is a particular type of clique tree TG such that for any two
C1, C2 ∈ Π, C1 ∩C2 is a subset of every separator set on the unique path from C1
to C2 in TG. This property of junction trees is called the running intersection
property.

Based on this definition, the clique trees for the first two examples are junction
trees, whereas that for the third is not a junction tree. In fact, there are no
junction tree for the third example. Let us consider another example.

• Consider the cyclic graph G with V = {1, 2, 3, 4, 5}, E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}.
There are many possible clique trees for G. One possible clique tree TG =<
Π, EΠ > has Π = {[1, 2, 3], [2, 3, 4], [3, 4, 5]} and EΠ = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])}
and this happens to also be a junction tree. Another clique tree with same
vertex set Π and E ′Π = {([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])} is not a junc-
tion tree, since node 2 which is in the intersection of [1, 2, 3] and [2, 3, 4] is
not on every separator on the path between these two nodes. This illus-
trates that how you generate your clique tree matters; some clique trees
may happen to be junction trees, while some may not.

• For the cyclic graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)},
considered in the third example above, there are no junction trees possible.

The global picture on a graph is specified by the factorization property:

p(x) ∝
∏
C∈Π

φC(xC) (1.28)

On the other hand, the local message passing algorithm should honor constraints
set by the separator set; that the configuration of variables in the separator
set are the same in both its neighbors. More precisely, if we define the set
x̃C = {x̃i,C |i ∈ C} for each C ∈ Π, then, for each separator set C1 ∩ C2, the
separator sets define the constraints in the form

∏
i∈C1C2

δ (x̃i,C1 = x̃i,C2) (1.29)
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The factorization that message passing on TG =< Π, C′ > should see with the
set of additional constraints will involve multiple copies of each random variable,
but will be tied together through the δ constraints in (1.29):

p̃(x̃i,C , ∀i ∈ C, ∀C ∈ Π) ∝
∏
C∈Π

φC(x̃C)
∏

(C1,C2)∈EΠ

∏
i∈C1∩C2

δ (x̃i,C1 = x̃i,C2) (1.30)

The (localized) sum-product algorithm will work precisely on the junction tree
TG with factorization as specified in (1.30). The factorization in (1.30) is in fact
equivalent to the factorization in (1.28). In (1.30), the multiple copies of xi’s
cancel out aginst the constraints δ constraint. The is called the junction tree
property and is formally stated in the next proposition.

Theorem 8 For a graph G having distribution p(x) as in (1.28) and for its
junction tree TG having distribution p̃ specified by (1.30), the p̃ distribution sat-
isfies the following property:

p̃(x̃i,C , ∀i ∈ C, ∀C ∈ Π) =

{
p(x) if {xi,C1 = xi,C2 |∀C1, C2 ∈ Π, ∀ i ∈ C1 ∩ C2 }

0 otherwise

That is, the new distribution p̃ is faithful to the original distribution. The tran-
sitivity due to the running intersection property of junction trees is exactly what
you need for this desirable property to hold.

The proof of this theorem is trivial, given the junction tree assumption. As
an exercise, you may verify the truth of this statement for all the junction tree
examples considered so far. The message passing formalisms in Figures 1.9
and 1.10, when applied to the junction tree, will land up not accepting con-
tributions from inconsistent configurations, owing to the δ constraint and will
therefore discover the true marginal/mode.

Theorem 9 Suppose that G has a junction tree TG =< Π, EΠ >. Then run-
ning the sum-product or max-product algorithm on the distribution p̃ defined in
(1.28) will output the correct marginals or modes respectively, for p defined for
G, in (1.30). The φC(x̃C) can be thought of as node potentials for TG, while
δ (x̃i,C1 = x̃i,C2) are the edge potentials.

Theorem 9 presentes a transformation of the original problem to a problem on
a right kind of tree on which the running intersection property holds so that
marginals and modes are preserved. The proof of this theorem is also simple.
In practice, the message passing algorithm need not create multiple copies of
the shared variables; the sharing can be imposed implicitly.
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1.2.5 Junction Tree Propagation

The junction tree propagation algorithm is the sum-product algorithm applied
to the junction tree, with factorization specified by (1.30). It is due to Shafer
and Shenoy [SS90]. Consider the message update rule from the algorithm in
Figure 1.9.

M (r+1)
u→v (xv) =

1

Z
(r)
u→v

∑
xu

φu(xu)φu,v(xu, xv)
∏

q∈N (u)\v

M (r)
q→u(xu)

If neighbors u and v are replaced by neighboring cliques C1 and C2 respectively,
the equation becomes

M
(r+1)
C1→C2(xC2) =

1

Z
(r)
C1→C2

∑
x′C1

φC1(x′C1)
∏

i∈C1∩C2

δ
(
x′i,C1 = xi,C2

)
︸ ︷︷ ︸
based on separator set C1∩C2

∏
C3∈N (C1)\C2

M
(r)
C3→C1(x′C1)

The constraint based on the separator set ensures that configurations that are
not consistent do not contribute to the outermost summation

∑
x′C1

. The expres-

sion for the message can therefore be equivalently written as

M
(r+1)
C1→C2(xC2) =

1

Z
(r)
C1→C2

∑
x′C1\C2

φC1(x′C1\C2 ,xC2)
∏

C3∈N (C1)\C2

M
(r)
C3→C1(x′C1)

(1.31)

Note that in (1.31), the constraints based on separator sets are implicitly cap-
tured in the summation

∑
x′C1\C2

over only a partial set of variables from x′C1 .

Further, the message M (r+1)
C1→C2(xC2) is not a function of the complete vector xC2

but is only a function of xC2∩C1 . Rewriting (1.31) to reflect this finding, we have

M
(r+1)
C1→C2(xC2∩C1) =

1

Z
(r)
C1→C2

∑
x′C1\C2

φC1(x′C1\C2 ,xC2∩C1)
∏

C3∈N (C1)\C2

M
(r)
C3→C1(x′C1∩C3)

(1.32)

This finding is important, since it helps reduce the computational complexity of
the algorithm. You need to send messages whose sizes do not depend on the size
of the cliques themselves but only on the size of the separator sets. Thus, if each
variable was multinomial with k possible values, then the message size would
be k|C1∩C2| instead of k|C2|. Thus, the complexity of junction tree propagation
is exponential in the size of the separator sets. Typically however, the size of
seperator sets are not much smaller than the cliques themselves.
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The junction tree propagation will converge, by the convergence property of
the sum-product algorithm. After convergence, the marginals can be obtained
as

p(xC) = φC(xC)
∏

D∈N (C)

MD→C(xC∩D) (1.33)

1.2.6 Constructing Junction Trees

How do we obtain a junction tree for a graph. And what classes of graphs have
junction trees? We already saw an example of a graph that did not have any
junction tree; G =< V, E >, V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}.
We also saw an example for which a particular clique tree was not a junction
tree, though it had another clique tree that was a junction tree: G′ with Π =
{1, 2, 3, 4, 5}, EΠ = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}. The junction tree <
V ′t, Et > has V ′t = {[1, 2, 3], [2, 3, 4], [3, 4, 5]} and E ′t = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])},
which corresponds to the elimination ordering [1, 3, 2, 4, 5]. While the clique tree
V ′′t = V ′t and E ′′t = {([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])} is not a junction tree
and corresponds to the elimination ordering [1, 2, 4, 5, 3]. We can see that the
construction of the junction tree really depends on the choice of a ‘nice’ elimina-
tion ordering. One difference between G and G′ is that, while in the former, you
cannot eliminate any node without adding additional edges, in the latter, you
have an elimination ordering [1, 3, 2, 4, 5] that does not need to add extra edges.
For G′, the elimination ordering [1, 2, 3, 4, 5] will not yield a junction tree.

This leads to the definition of a triangulated graph, one of the key prop-
erties of any graph which can be transformed into a junction tree. In fact, a
requirement will be that an elimination algorithm is ‘good’ for junction tree
construction only if it leads to a triangulated graph.

Definition 11 A cycle is chordless if no two non-adjacent vertices on the cycle
are joined by an edge. A graph is triangulated it is has no chordless cycles.

Thus, the graph G with V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)} is not tri-
angulated, whereas, the graph G′ with Π′ = {1, 2, 3, 4, 5}, E ′Π = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}
is triagulated. In fact, every triangulated graph has at least one junction tree.
Another equivalent characterization of a triangulated graph is as a decomposable
graph.

Definition 12 A graph G =< V, E > is decomposable either if it is complete or
if V can be recursively divided into three disjoint sets A, B and S such that

1. S separates A and B and

2. S is fully connected (i.e., a clique).

3. A ∪ S and B ∪ S are also decomposable.
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Following are examples of decomposable graphs:

• V = {1, 2, 3}, E = {(1, 2), (2, 3)}.

• V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}. Application of elim-
ination procedure on this graph, say starting with 3 should lead in 2 and 4
being connected together, which are already connected in this graph. This
shows the connection between decomposable graphs and elimination.

However, for V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (4, 1)}, G is not de-
composable.

Recall from Section 1.2.1, the elimination algorithm, which eliminated one
node at a time, while connecting its immediate neighbors. Thus, for any undi-
rected graph, by the very construction of the elimination algorithm, it is obvious
that the reconstituted graph, output by the elimination algorithm is always tri-
angulated. This can be proved by induction on the number of vertices in the
graph13. The statement is trivial for the base case of a one node graph.

The following theorem is a fundamental characterization of graphs that have
junction trees.

Theorem 10 The following are equivalent ways of characterizing a graph G:

1. G is decomposable.

• (This captures the ‘divide-and-conquer’ nature of message passing
algorithms. In fact, the message passing algorithm exploited

a divide and conquer strategy for computation on trees.)

2. G is triangulated.

• (Elimination can result in a triangulated graph.)

3. G has a junction tree.

• (If the graph is triangulated, it must have at least one junction tree.
And junction tree is a good canonical data structure for conducting
computations on general graphs.)

Some practical impacts of this theorem are listed itemized in brackets by the
side of each of the equivalent characterizations of G. The equivalence of the first
and second statements in the theorem can be proved very simply by induction
on the number of nodes in the graph.

The first step in the junction tree algorithm is triangulating a graph. This
might mean adding extra edges or increasing clique size. But this cannot be
harmful14, since the potential function can be defined over a larger clique as the

13Prove: EXERCISE.
14What characterizes a graphical models is not the presence of edges, but the absence of

edges. As an the extreme example, a completel graph potentially subsumes every graphical
model.
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product of potential functions over its sub-parts. Given a triangulated graph, we
know that it must have a junction tree by virtue of theorem 10. How can a junc-
tion tree be constructed from a triangulated graph? The first step would be to
isolate all its cliques. Going back to the second example on page 28, the triangu-
lated graph G with V = {1, 2, 3, 4, 5}, E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}
has three maximal cliques: Π = {[1, 2, 3], [2, 3, 4], [3, 4, 5]}. There are different
ways to connect up the cliques to form a tree. One possible clique tree TG =<
Π, EΠ > has EΠ = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])} and this happens to also
be a junction tree. Another clique tree has E ′Π = {([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])}
is not a junction tree, since node 2 which is in the intersection of [1, 2, 3] and
[2, 3, 4] is not on every separator on the path between these two nodes.

While you can discover a junction tree by exhaustive search, that is an in-
feasible idea.However, the search for a junction tree can be performed efficiently
by making use of the following theorem.

Theorem 11 Let G =< V, E > be a triangulated graph with V = {X1, X2, . . . , Xn}
and with Π being the set of maximal cliques. Let TG be a spanning tree for
the clique graph of G, having Π = {C1, C2, . . . , Cm} as the set of vertices and
EΠ = {e1, e2, . . . , em−1} as the set of edges (|Π| = m and |EΠ| = m − 1). Let
S(e) be the separator associated15 with any edge e ∈ EΠ. We will define the
weight16 of the spanning tree as

w(TG) ∈
m−1∑
i=1

|S(ei)| =
m−1∑
i=1

n∑
j=1

[Xj ∈ S(ei)] (1.34)

where [condition] is the indicator function that assumes value 1 if and only if
condition is satisfied and is 0 otherwise. Then, if

T̂G = argmax
TG

w(TG)

T̂G must be a junction tree.

Proof: First we note that for any variable Xj , the number of separator sets in
TG in which Xj appears is upper bounded by the number of cliques in which Xj

appears.

m−1∑
i=1

[Xj ∈ S(ei)] ≤
m∑
i=1

[Xj ∈ Ci] (1.35)

15Since any edge e in the cliqe graph is of the form (C1, C2), where C1, C2 ∈ Π, the separator
associated with e can be viewed as a function S(e) = C1 ∩ C2.

16For the example above with EΠ = {([1, 2, 3], [2, 3, 4]), ([2, 3, 4], [3, 4, 5])}, the weight
is 2 + 2 = 4, and this also happens to be a junction tree. For E ′Π =
{([1, 2, 3], [3, 4, 5]), ([2, 3, 4], [3, 4, 5])}, the weight is 1 + 2 = 3 and this is not a junction tree.
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Equality will hold if and only if the running intersection property holds for Xj

in TG . By interchanging the order of summations in (1.34) and applying the
inequality in (1.35), it follows that

w(TG) =
m−1∑
i=1

n∑
j=1

[Xj ∈ S(ei)] ≤
n∑
j=1

(
m∑
i=1

[Xj ∈ Ci]− 1

)

Interchanging the summations in the rightmost term yields an upper-bound on
w(TG), which can be attained if and only if TG is a junction tree (that is, if and
only if equality holds in (1.35) for all 1 ≤ j ≤ n)

w(TG) ≤
m∑
i=1

|Ci| − n

We know from lemma 10 that if G is triangulated, it must have a junction tree.
Given that G is triangulated, T̂G = argmax

TG
w(TG) must be a junction tree and

will satisfy w(T̂G) =
m∑
i=1

|Ci| − n. 2

The maximum weight spanning tree problem in (1.34) can be solved exactly
by executing the following step m− 1 times, after intializing EallΠ to all possible
‘legal’ edges between nodes in Π and EΠ = {}

1. For i = 2 to m− 1, if

ê = argmax
e∈acyclic(EΠ,EallΠ )

|S(e)|

then set EΠ = EΠ ∪ {e} and EallΠ = EallΠ \ {e}.

Here, acyclic(EΠ, EallΠ ) =
{
e ∈ EallΠ |EΠ ∪ {e} has no cycles

}
. This can be effi-

ciently implemented using Kruksal and Prim’s algorithm. The only additional
requirement is that this problem requires specialized data structure to quickly
check if e ∈ acyclic(EΠ, EallΠ ), that is, if addition of e to the current set of
edges would induce any cycle. This discussion is also relevant for learning tree
structured graphical models such that the structure maximizes some objective
function on the data.

In Figure 1.11, we present the overall junction tree algorithm. Typically,
junction tree propagation is the most expensive step (and is the main ‘online’
step) and has complexity O

(
m|Cmax|k

)
, where k is the maximum number of

states for any random variable and Cmax is the largest clique. The treewidth
τ of a graph is defined as τ = Cmax − 1 in the optimal triangulation. Thus,
the junction tree propagation algorithm scales exponentially in the treewidth τ .
There are many elimination orderings/triangulations. The best triangulation
is the one that leads to smallest value of Cmax. The problem of finding the
best elimination ordering or of finding the best junction tree is NP-hard. In
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Input: A graph G =< V, E >.
Pre-processing:

1. Moralization: Convert a directed graph to an undirected graph by
connecting parents.

2. Introduce delta functions for observed variables.

Triangulation: Triangulate the graph.
Junction tree construction: Construct a junction tree from the triangu-
lated graph.
Junction tree propagation: Using sum-product or max-product, propa-
gate messages on the junction tree.

Figure 1.11: The high-level view of the Junction tree algorithm.

practice, there are many heuristics that work well. Though NP-hard in a worst
case sense, this problem is much easier in the average case.

Many problems do not have bounded treewidth. The junction tree algorithm
is limited in its application to families of graphical models that have bounded
treewidth. Many common graphical models, such as grid structured graphical
model that is commonplace in image processing have very high treewidth. The
treewidth of an n × n grid (i.e., n2 nodes) scales as O(n). Thus, junction tree
becomes infeasible for grids as large as 500 × 500, though it is applicable in
theory.

1.2.7 Approximate Inference using Sampling

While the generic junction tree method is principled, it is limited to graphs with
bounded treewidth. There are several approximate inference methods that could
be considered as alternatives, in practice. One class of approximate inference
techniques is the class of sampling methods.

Monte Carlo Methods

The general umbrella problem underlying Monte Carlo sampling methods is

E[f ] =
∫
p(x)f(x)dx (1.36)

where f(x) is some function defined on some possibly high dimensional space
in <n and p is a distribution defined on the same space. For f(x) = x, E[f ]
turns out to be the mean. For f(x) = δ(x = x′), E[f ] becomes the marginal
probability p(X = x′) or more general, for f(x) = δ(x ≤ x′), E[f ] becomes
the tail probability p(x ≥ x′). The goal of sampling methods, such as Monte
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Carlo methods is to approximate such integrals over such possibly high di-
mensional space using sampling techniques. If we could collect iid samples17

x = (x(1),x(2), . . . ,x(m)) from p(.), then

f̂ =
1
m

m∑
i=1

f(x(i))

is a Monte Carlo estimate of E[f ]. Since x is a collection of random samples
from p(.), f̂ is also a random variable. We could ask some questions about such
an estimator:

• Is f̂ unbiased? That is, on an average, will the estimator produce the right
quantity? The estimator is unbiased if

E[f ] = Ex[f̂ ]

Using the linearity property of expectation,

Ex[f̂ ] =
1
m

m∑
i=1

E
[
f(x(i))

]
= E[f ]

that is, the estimator f̂ is indeed unbiased and gives the right answer on
an average.

• The unbiased requirement on the part of the estimator only requires the
sample mean to match the expected mean, on an average. It may also
be desirable that the variance be stable. A related expecation is that as
the number m of samples increases, the estimate should get closer to the
actual answer. In fact, this is true for the estimator just discussed. It can
be shown that if f has finite variance,

var(f̂) =
1
m2

m∑
i=1

var
(
f(x(i))

)
=

m∑
i=1

var
(
f(x(i))

)
m

(1.37)

or equivalently, the spread for var(f̂) is 1√
m

times the spread for f̂ . From

this, we can infer that as m→∞, var(f̂)→∞.

The discussion thus far was centered around the assumption that we can
draw samples from p(.). This area of sampling has warranted seperate atten-
tion for research. Even generation of pseudo random numbers is not straightfor-
ward18. As another example, it is not straightforward to sample efficiently from

17The difference between x here and in the case of maximum likelihood estimation is that
in the latter case, x is data provided, whereas here, we consider x sampled from the model
itself. However, the analytical form is similar.

18If a distribution function can be ‘inverted’ a common strategy is to pass a unform distri-
bution through it to generate samples.
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a typically graphical model-like distribution (especially if it is multi-model) such
as

p(x) =
1
Z

exp
{
ax4 + bx3 + cx2 + dx+ e

}︸ ︷︷ ︸
℘(x)

where, the ℘(x) part is easy to compute, whereas 1
Z is hard to compute.

We will not look at a series of attempts at sampling from a distribution p(.).

Adopting Numeric Methods

One natural way out is to adopt standard numerical methods, such as the stan-
dard numerical recipe for evaluating an integral from first principles - creating
discrete intervals and then letting the intervals shrink.

1. Discretize the space of x (such as the real line) into k discrete points,
x1, x2, . . . , xk

2. Compute an approximation to z as ẑ =
k∑
i=1

℘(xi).

3. The samples can then be drawn from one of k points based on the distri-
bution pd:

pd(xi) =
℘(xi)
ẑ

The new distribution has point masses at the samples x1, x2, . . . , xk. As
the number of grows larger, the approximation will get better

While a controllable approximation that works well in one dimension, how well
does such a discretization method scale to higher dimensions. The number of
discrete points scales exponentially19 in the number of dimensions as kn (n being
the dimensionality). Thus, discretization is not feasible in higher dimensions.
Another factor in favour of Monte Carlo methods, vis-a-vis numerical techniques
is that the statement (1.37) for the Monte Carlo estimator is really independent
of the dimensionality n.

Rejection Sampling

Rejection sampling, which dates back to von Neumann in 1950’s assumes that
in addition to the decomposition p(x) = z

℘(x) with ℘(x) easy to compute and 1
Z

is hard to compute, we also have a proposal distribution q(x) that is relatively
easy to (exactly) sample from. q could be one of Gaussians, Cauchy, or some
other member of the exponential family.

q(x) =
zq
q̂(x)

19This problem also goes under the name of the curse of dimensionality - the task that is
easy in a single dimension becomes extremely complex at higher dimensions.
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Rejection sampling also assumes that you have a constant M such that q̂(x)
scaled by the constant yields an upper bound for the original distribution ℘(x).

℘(x) ≤Mq̂(x)

The way rejection sampling works is:

1. First generate a sample y ∼ q(x).

2. Secondly, sample u from a uniform distribution between 0 and Mq̂(y):
u ∼ U [0,Mq̂(y)].

• If u < ℘(y), then accept y as a realization of ℘(x).

• Otherwise, reject y.

We will see that this random procedure itself induces a distribution prej
over x that happens to be the same as ℘(x). For any y that is an output of the
rejection sampling procedure, its probability of being generated by the procedure
is the product of the probability q(y) of choosing y and the probability ℘(y)

Mq̂(y)

of accepting y:

prejgen(y) =
1

zprejgen
q(y)

(
℘(y)
Mq̂(y)

)
=

1
zprejgenzq

℘(y)

where, the normalization constant 1
z
p
rej
gen

is defined as

zprejgen =
∫
y′
q(y′)

(
℘(y′)
Mq̂(y′)

)
dy′ =

∫
y′

1
zq
℘(y′)dy′ =

zp
zq

Combined, these two equalities mean that

prejgen(y) =
1

zprejgenzq
℘(y) =

zq
zprejgenzqzp

℘(y) =
1
zp
℘(y) = p(y)

In practice, it crucially matters how small you can make the reject region,
since you would not like to spend too many sampling cycles to generate each
sample y. So it will be best to choose a q̂ that follows ℘ very closely. A measure
of this ‘following closely’ is the ratios of the area Aacc under ℘(x) to the area
Atot under Mq̂(x). This can be thought of as the acceptance probability prejacc.

prejacc =

∫
x

℘(x)dx∫
x

Mq̂(x)dx
=
Aacc
Mzq

=
Aacc
Atot

One of the concerns with rejection sampling in high dimensions is that since
prejacc ∝ 1

M , the number of attempts before getting a single sample will scale as M .
For instance, suppose X and Y are independent Gaussians with slightly different
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variances - p(x) = N (x,0, σ2
pI) and q(y) = N (y,0, σ2

qI). where ρ ∈ (0, 1.1].
For rejection sampling, we will need to choose an M > ℘(x)

q̂(x) for every x ∈ <n.

For this Gaussian, we will require that M > ℘(0)
q̂(0) = exp

{
n log σq

σp

}
. Note that

if σq is even slightly larger than σp, then M will increase exponentially with n.
That is, we will have to do exponentially many rejection trials before getting a
sample accepted.

In summary, while rejection sampling is useful in low dimensions, it breaks
down in higher dimensions. Markov chain monte carlo (MCMC) builds on re-
jection sampling. While rejection sampling in memoriless - in the sense that
rejected samples are naively abandoned, MCMC preserves rejected samples us-
ing memory.

Importance Sampling

Importance sampling is a more general form of Monte Carlo sampling method.
Recall that Monte Carlo sampling was to solve the problem

E[f ] =
∫
p(x)f(x)dx (1.38)

and the Monte Carlo estimate collects iid samples x = (x(1),x(2), . . . ,x(m)) from
p(.) and computes the weighted sum

f̂ =
1
m

m∑
i=1

f(x(i))

The idea of importance sampling is to generate samples y from an alternative
q which is somewhat easier to sample than p. However, how do we make use of
y in estimation? Assuming that q(x) > 0 whenever f(x)p(x) > 0, we rewrite
the expression for E[f ] as

E[f ] =
∫
p(x)f(x)
q(x)

q(x)dx

Defining g(x) = p(x)f(x)
q(x) , we just re-express

Ep[f ] = Eq[g]

This motivates the study of the Monte Carlo estimate ĝ based on samples y
from q.

ĝ =
1
m

m∑
i=1

g(y(i)) =
1
m

m∑
i=1

p(y(i))f(y(i))
q(y(i))

(1.39)
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The estimate ĝ is called the importance sampling estimate. The terms p(y(i))
q(y(i))

are called importance weights. It can be shown that ĝ is unbiased, that is,

Ep[f ] = Ey[ĝ]

Like for the case of the Monte Carlo estimate, it can also be shown that if g has
finite variance then,

var(ĝ) =
m∑
i=1

var
(
g(y(i))

)
m

(1.40)

or equivalently, the spread for var(ĝ) is 1√
m

times the spread for ĝ.
Importance sampling is useful when q is easier to sample than p. Backing

off a bit, it may happen that q is itself of the form

q(y) =
1
zq
q̂(y)

where q̂(y) is easy to compute while the normalization constant zq is not. This
is especially true in the case of graphical models, for which q̂(y) is simply the
product of some compatibility functions or exponentiated weighted sum of suf-
ficient statistics (exponential family). Similarly, it is often that p(x) = 1

zp
℘(x).

In such a case, we can write

ĝ =
1
m

m∑
i=1

p(y(i))f(y(i))
q(y(i))

=
1
m

m∑
i=1

℘(y(i))f(y(i))
q̂(y(i))

zq
zp

For this formulation, ℘(y(i))
q̂(y(i))

are called the importance weights im(y(i)). Also,

zp/q =
zp
zq

=
1
zq

∫
℘(x)dx =

∫
℘(x)

q(x)
q̂(x)

=
∫
℘(x)
q̂(x)

q(x)dx

which is again the expectation under q of im(y). The Monte Carlo estimate
ẑp/q for zp/q = zp

zq
is

ẑp/q =
1
m

m∑
i=1

im(y(i)) =
1
m

m∑
i=1

℘(y(i))
q̂(y(i))

This gives you a modified Monte Carlo estimate, which can be contrasted against
(1.39).

ĝ′ =

1
m

m∑
i=1

p(y(i))f(y(i))
q(y(i))

1
m

m∑
i=1

℘(y(i))
q̂(y(i))

=

m∑
i=1

f(y(i))im(y(i))

m∑
i=1

im(y(i)

(1.41)
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This modified Monte Carlo estimate uses samples y from q and also does not
require explict computation of p. Rather it needs to compute only ℘.

Importance sampling considerably widens the scope of Monte Carlo methods,
since it provides flexibility of choosing q. In fact, even if you could sample from
p, it can be useful to use a q, especially when f lies in the tail region(s) of p.
Since q lets you reshape what you sample from, the modified g can help shift the
mass over to regions of p such that getting information from f becomes much
more likely. In practice, adapting q to the shape of f can also lead to reduction
in the variance of ĝ.

Finally, importance sampling can be useful even when you can draw samples
from p(.). For example, say Xi ∈ {0, 1}, for 1 ≤ i ≤ n are n binary random
variables with p(Xi = 1) = ε for a very small ε, close to 0. Let the Xi’s be
independent (though the example could hold for many non-independent Xi’s as
well). Let us say, we are interested in estimating

p


n∑
i=1

xi

n

 ≥ 0.5

As can be seen, that

n∑
i=1

xi

n ≥ 0.5 is a very rare event. Importance sampling
can be used to model such rare events which are otherwise computationally
infeasible to simulate.

Like in the case of rejection sampling and numerical techniques, there are
problems that importance sampling techniques have in high dimensional spaces.

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a suite of methods based on
setting up a markov chain to generate samples from a target distribution

p(x) =
1
z
℘(x)

where z may not be easy to compute. The basic idea here is to set up a Markov
chain X1 → X2 → . . . Xn and a sequence of distributions q so that as t → ∞,
q(.|X(t)) → p. While these methods have a flavour of rejection sampling, they
are not memoryless; rejected samples are not entirely discarded. Introduced by
physicists Metropolis, Rosenbluth, Teller in 1953, these methods were general-
ized by Hastings in 1970.

The Metropolis-Hastings algorithm is one of the more popular examples from
this class. It is outlined in Figure 1.12. It builds on the rejection sampling tech-
nique, with two main differences. More importantly, a sample is not discarded
if rejected; the value of Xt+1 is set to Xt. Secondly, the acceptance probability
determines if it is more likely to go X(t) → y or y→ X(t).
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Input: A target distribution p(x) = 1
z℘(x).

Initialize: X(1) ∼ q(x) for some arbitrary q.
for t = 1, 2, . . . do

1. Sample y from the conditional probability distribution q(.|X(t)).
2. Sample u ∼ Uniform[0, 1].
3. Define the acceptance probability as

A(X(t),y) = min
{

1,
℘(y)q(X(t)|y)
℘(X(t))q(y|X(t))

}
4. Set

X(t+1) =

{
y, if u ≤ A(X(t),y) //Accept
X(t) otherwise //Reject, but do not discard.

end for

Figure 1.12: The Metropolis-Hastings algorithm.

In the special case of symmetry, that is if q(y|X(t)) = q(X(t)|y),

A(X(t),y) = min
{

1,
℘(y)
℘(X(t))

}
the algorithm acts like a gradient algorithm with some randomness. To see this,
note that if ℘(y) ≥ ℘(X(t)), the algorithm will always accept. Else it accepts
with probability ℘(y)

℘(X(t) < 1; the logic is that you do not always want to reject
even if you were to go downhills, since you might want to wriggle out of local
modes. So you reject, but probabilistically. Thus, the algorithm always tries to
sample from regions of the space where the density is more.

We will eventually see that if q(y|X(t)) → p(y) as t → ∞. Enroute to
proving this, we will require to understand the limiting behaviour of Markov
chains as number of states goes to ∞.

1. The Metropolis-Hastings algorithm in Figure 1.12 generates a first or-
der Makov chain. Assume for simplicity that the Markov chain is finite
state and that X(i) ∈ {x1,x2, . . . ,xk}. For many graphical models, k
could be exponential in the number of nodes in the graphical model. For
the Markov chain X(1),X(2),X(3), . . . generated by the algorithm in Fig-
ure 1.12, X(1) ∼ q(.) while the transition X(t) → X(t+1) is specified by
the homogeneous (i.e. fixed across time steps) conditional distribution

Γ(X(t+1)|X(t)) = A(X(t),y)q(y|X(t))

That is, the transition function for the algorithm is the combination of
the original proposal distribution and the probability of acceptance in the
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accept/reject step. Then, by the steps (1) and (4) of the algorithm in
Figure 1.12,

q(X(t+1)) =
∑
X(t)

q(X(t))Γ(X(t+1)|X(t))

In matrix notation, this translates to

qt+1 = qTt T (1.42)

where, Γ[i, j] = Γ(X(t+1) = xj |X(t) = xi) and qt[i] = q(X(t) = xi). By
its very definition, Γ is row-stochastic, that is,

Γ1 = 1

We would like q → p, where p is the targetted probability vector. The
following sequence of arguments will help arrive at conditions under which
this will happen.

2. Let r be the fix point of update equation (1.42). Then r is also invariant20

with respect to Γ. Thus, once the distribution qt hits an invariant r, it
stays in qt.

3. In order to have an invariant vector, the matrix must be non-negative
(Γ ≥ 0) and must be row-stochastic, which it is. The matrix Γ is not
symmetric in general. The Perroon Forbenius theorem states that for
any non-negative, row-stochastic matrix A, its spectral radius ρ(A) =

max
i=1,2,...,n

|λi(A)| satisfies the condition ρ(A) = 1 and that it has a left

eigenvector v ≥ 0 such that vTA = v. Since the matrix Γ is both non-
negative and row-stochastic, a consequence of this theorem is that r =

1
k∑
i=1

vk

v will be invariant with respect to Γ.

4. The above conditions and arguments state in principle that there is poten-
tially a fix point for (1.42). In general, the fix point need not be unique; for
a diagonal matrix, there are several invariant distributions. It can shown
that an irreducible matrix Γ (i.e., every state is reachable from every
other state with strictly positive probability) will have a unique invariant
distribution r.

20A vector r ∈ <k is invariant with respect to matrix Γ if r represents a probability dis-
tribution (i.e., rT 1 = 1 and r ≥ 0) and is fixed under the updates of Γ, that is rTΓ = r.
As an example, you can verify that for random walks on a graph G =< V, E > with 0 jump

probability, r such that vi = di∑
i∈V

di
is invariant, di being the degree of vertex i.



44 CHAPTER 1. GRAPHICAL MODELS

5. But will the algorithm in Figure 1.12 converge to the fix point? To en-
able convergence, another necessary condition is that the Markov chain
should be aperiodic (so that qt does not keep toggling between values) or
equivalently, have a period of 1.

6. With all the armour discussed so far, we state the following theorem,
central to the correct convergence of the algorithm in Figure 1.12:

Theorem 12 For any finite-chain irreducible aperiodic Markov Chain,
the sequence qt+1 = qTt Γ converges, for an arbitrary q1, to the unique
invariant distribution r of the chain.

The next few steps are dedicated to proving that (i) the Metropolis-
Hastings algorithm satisfies the pre-requisites for this theorem under cer-
tain conditions and (ii) that the target distribution is indeed invariant
with respect to the Markov chain in the Metropolis-Hastings algorithm.

7. The next step is to establish that the matrix Γ defined as

Γ(X(t+1)|X(t)) = A(X(t),y)q(y|X(t))

is irreducible and aperiodic. The Metropolis-Hastings algorithm is very
general, allowing fairly arbitrary proposal distribution. Both these proper-
ties can be established if q(y|X(t)) > 0 for all y, so that Γ(X(t+1)|X(t)) > 0
for all y. For complex models such as graphical models, the q should be
designed so as to make that task of sampling from q efficient. Gibbs
sampling is one such example.

8. The final step is in showing that the target distribution p is invariant for
the Markov chain Γ. That is, for every y,∑

x

p(x)Γ(y|x) = p(y)

This can be shown by first noting that the Metropolis Hastings Markov
chain Γ satisfies the detailed balance condition with respect to p, which
means

p(x)Γ(y|x) = p(y)Γ(x|y)

This can be proved by simply substituting for Γ(y|x). This leads to the
desired result ∑

x

p(x)Γ(y|x) =
∑
x

p(y)Γ(x|y) = p(y)

since Γ is row-stochastic.

While the algorithm in Figure 1.12 works in principle, it can be very slow,
taking small steps into valleys. In practice, many refinements are made to the
algorithm to make it work fast.
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Gibbs Sampling

Gibbs sampling is a simple subclass of Metropolis-Hastings algorithm in which
the transitions Γ are intuitive and easy to draw from. It is especially relevant
for graphical models, which have a large state space of size cn if each random
variable can take c values and the graph has n nodes. Let G =< V, E > be a
graph with n nodes. The Gibbs sampling procedure involves two main steps, as
outlined in Figure 1.13 It is very natural to think of Gibbs sampling in terms of

Input: A target distribution p(x) = 1
z℘(x) over a graph G =< V, E >.

Initialize: X(1) = x(1) for some arbitrary q.
for step t = 1, 2, . . . do

for i = 1, . . . , n do
Sample: x(t+1)

i ∼ p(xi | x(t+1)
1,i−1 ∪ x(t)

i+1,n.
end for

end for

Figure 1.13: The Gibbs sampling algorithm.

the graphical model; the sampling is very much simplified given the conditional
independence property - that a node is indepent of all other nodes, given its
Markov blanket. Thus, each distribution in the sampling step is the probability
of a node given its Markov blanket. This procedure depends on the ordering of
nodes, though. Though a very popular inference procedure for graphical models,
it could take an extemely long time to converge.

For discrete random variables, the graph of configurations is in general a
hypercube. While MCMC potentially allows jumps from one node to another
in the hypercube, Gibbs sampling restricts every step to be along an edge of
the hypercube. This can lead to poor convergence. There are many smarter
algorithms that take larger, but calculated steps in the hypercube, leading to
better convergence, without incurring excessive computational cost for individ-
ual steps.

1.3 Factor Graphs

We have seen that both directed and undirected models can be specified in one
of two equivalent ways each; conditional independence and factorization. The
semantics for directed and undirected models are however different. While the
two specifications are equivalent, factorization can be specified at different levels
of granularity or could be defined using different forms of potential functions
and is therefore richer. For instance, factorization could be over maximal cliques
or over smaller cliques or even over edges, while all these specifications could
map to the same conditional independence properties demanding specialization
in the conditional independence assertions.

Consider a triangular graph, given by the adjacency matrix
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A =

 1 1 1
1 1 1
1 1 1


The factorization for this graph could be presented as

p(x1, x2, x3) ∝ φ123(x1, x2, x3)

However, the following factorization is also a valid one for the graph

p(x1, x2, x3) ∝ φ12(x1, x2)φ23(x2, x3)φ13(x1, x3)

Such problems interest statisticians a lot, since existence of interactions between
variables influence diagnosis and/or treatments in the medical domain, for ex-
ample. Is it possible to graphically differentiate between the two factorizations?
Factor graphs precisely serve this purpose. In some sense, there is more informa-
tion being embedded in the second factorization; the bonafide triplet interaction
has been decomposed into pairwise interactions. And this information is repre-
sented as ‘factor nodes’ in factor graphs. Corresponding to each factor in the
factorization, factor graphs host a node. The nodes in the original graphical
model are also retained. But edges are changed; there will be an edge between
the factor node and each node whose random variable the factor is a function
of.

Definition 13 Given a graphical model G =< V, E >, with a factorization
p(x) =

∏
a∈F

φa(xa) with F ⊆ 2V , that is compatible with the independence as-

sumptions asserted by the edges E, the factor graph Gf =< V∪F , Ef > is defined
by Ef = {(q, a) | q ∈ V, a ∈ F , q ∈ a} The factor graph Gf is said to encode the
factorization of G.

The set of factor nodes F is a set of placeholders for particular terms in the
factorization. Factor graphs can be looked upon as a ‘graphical way’ of repre-
senting hypergraphs (which can have a single edge spanning multiple vertices),
where each hyperedge can be thought of as spanning all vertices that figure
together in some potential function in the factorization.

As an example, the factor graph for p(x1, x2, x3) ∝ φ123(x1, x2, x3) will be
given by V = {1, 2, 3}, F = {a} and Ef = {(1, a), (2, a), (3, a)}. Whereas, the
factor graph for p(x1, x2, x3) ∝ φ12(x1, x2)φ13(x1, x3)φ23(x2, x3) will be given
by V = {1, 2, 3}, F = {a, b, c} and Ef = {(1, a), (2, a), (1, b), (3, b), (2, c), (3, c)}.

Any undirected/directed graph without any specialized factorization speci-
fied can also be converted into a factor graph. Thus, if V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {(1, 2), (2, 3), (3, 4), (2, 5), (3, 4), (4, 5), (4, 7), (5, 7), (5, 6), (6, 8), (7, 8)}, then
Gf can be read off the maximal cliques; F = {a, b, c, d, e} and Ef = {(1, a), (2, a), (3, a), (2, b), (5, b), (3, c), (4, c), (5, d), (4, d), (7, d), (5, e), (7, e), (8, e), (6, e)}.
As another example, consider a hidden markov model with V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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and E = {(1, 2), (1, 6), (2, 3), (2, 7), (3, 4), (3, 8), (4, 5), (4, 9), (5, 10)}. Then the
factor graph will have F = {a, b, c, d, p, q, r, s} and Ef = {(1, a), (2, a), (2, b), (3, b), (3, c), (4, c), (4, d), (5, d), (1, p), (6, p), (2, q), (7, q), (3, r), (8, r), (4, s), (9, s), (5, t), (10, t)}.
As a final example, consider a markov decision process, which is a purely di-
rected model and which has five ‘control’ variables in addition to the 10 for
the HMM described above (decision process because there is a control that
helps you decide the behaviour of the evolution across states in the HMM).
It will be specified by V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and E =
{(1, 2), (1, 6), (11, 1), (2, 3), (2, 7), (12, 2), (3, 4), (3, 8), (13, 3), (4, 5), (4, 9), (14, 4), (5, 10), (15, 5)}.
What will be the factor graph corresponding to this graph? Note that, even
though there are no directed triangles in this graph, nodes 1 throug 5 have two
parents each and the corresponding factors are conditional probabilities of the
form p(x1|x6, x11), p(x2|x7, x12), etc. Thus, the factor graph will have a node
for each such factor connected to three nodes each.

All the factor graph examples considered thus far are factor trees. The sum-
product and max-prodyct algorithms are exact on factor trees. Though they
assume slightly different forms, the essential ideas are the same. There is no
consistent reason for the factor graph being a better representation than the
graphical model representation.

1.4 Exponential Family

The exponential family captures many common discrete21 and continuous22

graphical model formulations at an abstract level. It provides a rich (though
not exhaustive) toolbox of models. The multinomial distribution which models
random variables taking k discrete values is what we have looked at so far.
Gaussian is one of the most widely used continuous distributions. The poisson
distribution helps model distribution over random variables that can take any
integral value (as against just k discrete values).

Definition 14 For a given vector of functions f(x) = [f1(x), . . . , fk(x)] and a
parameter vector η ∈ <k, the exponential family of distributions is defined as

p(x, η) = h(x) exp
{
ηT f(x)−A(η)

}
(1.43)

where the h(x) is a conventional reference function and A(η) is the log normal-
ization constant23 designed as

A(η) = log

[∫
x∈Range(X)

exp {ηT f(x)}h(x)dx

]

The domain of the parameters η will be restricted to Domain(η) =
{
η ∈ <k | A(η) < +∞

}
.

A(η) plays a fundamental role in hypothesis testing, parameter estimation, etc.,
21Density with respect to the Counting measure.
22Density with respect to the Lebesgue measure.
23The same as logZ for graphical models.
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though often not very easy to estimate. The central component here is the log-
linear form. The parametrization η ∈ <k, is also called the canonical parametriza-
tion. The function f(x) is a sufficient statistic function.

As an example, the Gaussian density function can be expressed in the expo-
nential form. If X ∼ N (µ, σ2) is a univariate Gaussian distribution, then its
normal parametrization is

p(x, µ, σ2) =
1√
2πσ

exp
{
− 1

2σ2
(x− µ)2

}
This density can be manipulated and shown to be a member of the exponential
family

p(x, µ, σ2) =
1√
2π

exp
{
µ

σ2
x− 1

2σ2
x2 − 1

2σ2
µ2 − log σ

}
= p(x, η)

The parameter vector for the exponential form is η =
[
µ
σ2 ,− 1

2σ2

]
while the

feature function vector is f(x) = [x, x2]. The log normalization constant is
A(η) = 1

2σ2µ
2 + log σ ≡ − η2

1
4η2

+ 1
2 log (−2η2), which determines Domain(η) ={

η ∈ <2 | η2 < 0
}

. Finally h(x) = 1√
2π

for this example. The number of de-
grees of freedom (reflected through two parameters in the moment parametriza-
tion) will precisely be the number of canonical parameters. The canonical
parametrization extended24 to the multivariate Gaussian counterpart will be
discussed in Section 1.5.

As a second example, consider the bernoulli distribution. A bernoulli random
variable X ∈ {0, 1} can model the outcome of any coin-flipping experiment. It
can be expressed as

p(x, µ) = µx(1− µ)1−x

where µ is the probability of X = 1. Rearranging the terms, we get the expo-
nential form for bernoulli distribution as

p(x, µ) = exp
{(

log
µ

1− µ

)
x+ log (1− µ)

}
= p(x, η)

with parameter vector specified as η =
[
log µ

1−µ

]
which gives µ as a logistic

function (log of likelihood ratio or log-odds ratio) of η1 and f(x) = [x]. The log
normalization constant is A(η) = − log (1− µ) ≡ log {1 + eη1}25 while h(x) = 1.
Also, Domain(η) = <. In general, if you started coupling together multiple
distributions and try expressing them in exponential form, determining η could
become a very hard problem.

As a third example, consider the poisson26 random variable X ∈ N (set of
natural numbers). Its density function is given by

p(x, µ) =
µxe−µ

x!
24EXERCISE.
25EXERCISE.
26When London was being bombed in World war 2, experts were trying to model where the

bomb would next fall using a 2D poisson distribution.
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Poisson distributions are often used to model events, such as the ringing of a
telephone. The mean parameter µ controls the density or frequency with which
the event is happening. The canonical parametrization for this distribution can
be obtained using a routine rewrite as

p(x, µ) =
1
x!

exp {(logµ)x− µ}

where h(x) = 1
x! , η = [logµ], f(x) = [x], A(η) = µ = eη1 with Domain(η) = <.

In all examples considered so far, we algebriacally converted the density
function from a moment parametrization to a canonical representation as a
member of the exponential family. How about going backwards from a canonical
form to moment parametrization? The vector of moment parameters is defined
as µ = [µ1, µ2, . . . µk] = [E[f1(X)], E[f2(X)], . . . , E[fk(X)]]. That is, we can get
the moment parameters by taking expectations of the sufficient statistics fi(X)
that sit in the exponent of the canonical form. And the expecation of the ith

component of this function can be proved to be the same as ∂A
∂ηi

. That is

∇A(η)i =
∂A

∂ηi
= E[f(X)] = µi (1.44)

Further, it can be proved that

∇2A(η)ij =
∂2A

∂ηi∂ηj
= cov {fi(X), fj(X)} = E [(fi(X)− µi)(fj(X)− µj)] = µij

The proof of the two above statements are straightforward and use the prop-
erty that A(η) is infinitely differentiable. To illustrate this, we will revisit the
canonical parametrization for the Gaussian example.

p(x, µ, σ2) =
1√
2π

exp
{
µ

σ2
x− 1

2σ2
x2 − 1

2σ2
µ2 − log σ

}
= p(x, η)

The moments can be derived to me µ1 = E[x] = µ and µ2 = E[x2] = σ2 + µ.
Similarly, for the poisson distribution, the moment parameter is simply [µ] as
also var(X) = µ. For the bernoulli distribution, E(X) = µ and var(X) =
(1− µ)µ.

1.5 A Look at Modeling Continuous Random
Variables

A normal or gaussian distribution is one of the most widely (ab)used proba-
bility distributions. They come up in the central limit theorem in the sums
of independent or weakly dependent random variables, whose normalized sum
coverges to a gaussian (justifying their wide use). They are very often used
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to model noise. Example graphical models that use gaussian distribution are
Gaussian graphical models, Gauss-Markov time series, etc.

Another reason for their wide use is computational. In the case of continuous
random variables, messages are functions rather than vectors. In general, this
can often force us to quantize the messages. But in the case of gaussians (and in
general for exponential models which we will shortly see), the message passing
can be performed in terms of sufficient statistics. Kalman filters are a special
case of message passing that pass sufficient statistics as messages.

The form of the density function for Gaussian distribution, with x, µ ∈ <n
and Σ ∈ <n×n is

p(x, µ,Σ) =
1

(2π)
1
2
√
det(Σ)

exp
{

1
2

(x− µ)TΣ−1(x− µ)
}

(1.45)

where µ is the mean vector and Σ � 0 is the covariance matrix27. It can be veri-

fied that µ is indeed the mean vector; µ = E[X] =
∫
<n

xp(x, µ,Σ)dx. Similarly,

it can be verified that Σ = E[(X−µ)(X−µ)T ]. The quantity 1

(2π)
1
2
√
det(Σ)

is the

normalization constant and can be computed as
∫
<n

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
dx.

If n = 1, the integral is easy to compute. For computing integrals for multivari-
ate problem, it is a good idea to reduce the matrix Σ by diagonalization.

What sits in the exponent of the density function is a quandratic term. The
contours of constant probability are ellipsoids, with shape determined by Σ−1

and center as µ (which does not affect the shape of the ellipsoid). For example,
if Σ−1 is diagonal, the axes of the ellipsoid will be aligned along the coordinate
axes.

The parametrization (µ,Σ) is called the moment parametrization of the
Gaussian; µ is the first order moment of x while Σ is the matrix of second order
centered moment. There is another canonical parametrization of the Gaussian
which is related to the sum-product algorithm. The parameters are a new vector
and a new matrix:

η = Σ−1µ

and a new matrix
Ω = Σ−1

With a bit of algebra, the Gaussian density can be re-expressed in terms of the
canonical parameters as:

p(x, η,Ω) = exp
{
ηTx− 1

2
xTΩx + x

}
(1.46)

27Recall that a matrix is positive definite if all its eigenvalues are strictly positive or equiv-
alently, ∀z 6= 0, zTΣx > 0.
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where

x = −1
2
{
n log (2π)− log |Ω|+ ηTΩ−1η

}
is a constant, analogous to the normalization constant in the moment parametriza-
tion of the Gaussian density in (1.45). The parametrization for (1.45) is more
naturally suited for graphical models, because, as we will see, the canonical
parameters can be directly related to the compatibility functions when you
start breaking up the Gaussian into a graphical model-like factorization. Typ-
ically, graphical model factorizations invoke canonical parameters. The above
parametrization is often referred to as N (η,Ω).

Equation (1.46 gives a quadratic form in the exponent and is a special case
of the exponential family representation, which happens to be a very general
concept. Note that all logarithms are to the base e. The quadratic term in the
exponent can be rewritten as a trace:

xTΩx = trace(ΩxxT )

where trace(A) is the sum of the diagonal entries of A and happens to be linear.
The Gaussian density using this transformation is obtained in its log-normal
form, which has an exponent linear in its features of x and xxT .

It can be shown that linear functions of Gaussian random vectors are Gaus-

sian;
n∑
i=0

Yi ∼ N (0, (n + 1)σ2) if each Yi ∼ N (0, σ2). Also, if Xi =
n∑
j=0

Yi then

p(xi+1 | xi) = exp
{
− 1

2σ2 (xi+1 − xi)2
}

and the random variables Xi form a
markov chain with factorization

p(x) = exp
{
− 1

2σ2
x2

0

} n∏
i=1

exp
{
− 1

2σ2
(xi+1 − xi)2

}

We can verify that for this markov chain, E[X1] = EX0

[
EX1|X0 [X1 | X0]

]
=

EX0 [X0 + E[Y0]] = 0 and in general E[Xi] = 0. Also, E[X1X2] = 2σ2.
The canonical parameters for p(x) can be read off the factorization as η = 0

and a tridiagonal, sparse

Ω =



2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
0 0 −1 . . . 0
. . . . . . .

. . . . . . −1
0 0 0 . . . 2
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The matrix Ω is sparse, because the graph is sparse (just a markov chain).
Missing edges translate to zeros; for any graph, if there is no edge between Xi

and Xj , Ωij = 0.
Factor analysis is another example application of gaussian density functions.

Principal component analysis and Karhunen Loeve transform are limiting cases
of factor analysis. The motivation here is dimensionality reduction for cases
when Y ∈ <n and n is very large, such as the size of an image for a naive
1 − d raster scanned pixel vector representation. The complete vector need
not really capture the intrinsic dimensionality of the object being described
(such as a face). Factor analysis is useful if you think that the data should be
lying in some lower (d << n) dimensional space28. Let ω1, ω2, . . . , ωd ∈ <n
be d (linearly independent) basis vectors. Consider the linear subspace M ={

y ∈ <n
∣∣∣∣∣y =

d∑
i=1

xiωi, xi ∈ <, ωi ∈ <n
}

. Factor analysis tries to induce a

probabilitic distribution over the subspace M , by defining X ∼ N (0d, Id×d)
and

Yn×1 = µn×1 + Ωn×dXd×1 + Kn×1

where the ith column of Ω is ωi, K ∼ N (0, D) is gaussian noise (capturing the
assumption that the model may not be exactly correct) and µ ∈ <d is the shift
(in subspace <n) vector. Though very naive, it has not stopped researchers
and especially practitioners from using it successfully. The components ωi’s
are extracted from a large database using eigenvalue analysis (such as eigenface
analysis in image processing literature).

The graphical model representation for factor analysis is very simple; V =
{X1, X2, . . . , Xd,Y} and E = {(X1,Y), (X2,Y), . . . , (Xd,Y)}. The Xi’s are
marginally independent as indicated by G. Further, we can infer that E[Y] = µ
and

Σ = E
[
(Y − µ)(Y − µ)T

]
= E

[
(ΩX + K)(ΩX + K)T

]
= ΩΩT +D

Finally, you can show that

(
Xd×1

Yn×1

)
∼ N

((
0d×1

µn×1

)
,

(
Id×d ΩTd×n
Ωn×d

(
ΩΩT +D

)
n×n

))

In practice, it is useful to infer a distribution for X (distribution on weights for
different eigenfaces) used to synthesize a particular observation Y = ŷ (such as
a face image). That is, it can be required to infer p(X | ŷ). Fortunately29, this
turns out to be a Guassian and this can be inferred using the Bayes rule and

28There is a lot of interest these days in identifying the manifold (especially non-linear
subspaces, such as spheres) in which the data lies. In the classical technique of factor analysis,
we make a very restrictive assumption that the data lies in some linear subspace.

29The conditional distribution need not always stay in the same family. But for Gaussians,
the conditional distribution stays in the same family.
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algebraic operations on matrices. In particular, the following property turns out
to be useful. If

(
X

Y

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

then, µX|y = µ1 + Σ12Σ−1
22 (y − µ2), V ar(X | y) = Σ11 − Σ12Σ−1

22 Σ21 and
V ar(X | y) � Σ11 = V ar(X). The last expression indicates that observation
over Y should reduce uncertainity over X.

1.6 Exponential Family and Graphical Models

We will now discuss the exponential family in the setting of graphical mod-
els. Particularly, we will discuss how to stitch together exponential models on
graphs. Many, if not all graphical models take an exponential form. We will
mainly discuss undirected graphs. Recall from (1.12), the standard factorization
for an undirected graphical model

p(x) =
1
Z

∏
C∈Π

φC(xC)

where φC is a compatibility or potential function and Π is the set of all maximal
cliques. All we do in exponential form is rewrite it in the log form to get an
additive decomposition. This does not always hold, since will need that all φC
are non-negative in order to take their logs.

p(x) = exp

{∑
C∈Π

log φC(xC)− logZ

}
The above additive decomposition is essentially in exponential form, though
not quite in the exponential family form (we still need to specify the canonical
parameters). As an example, consider a Gaussian graphical model with X ∼
N (0,Ω) (canonical parametrization) defined on a tree G =< V, E > with noisy
observations Y = CX + V, V ∼ N (0, R). Then the conditional distribution
p(X | Y = y) is also Gaussian, which can be decomposed according to the tree
structure of G.

p(x|y) ∝
∏
s∈V

p(ys|xs)
∏

(s,t)∈E

exp
{
−1

2
[xs xt]Jst[xs xt]T

}
where,

Jst =

[
Ωs(t) Ωts
Ωst Ωt(s)

]
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with Ωs(t) specified so that Ωss =
∑

t∈N (s)

Ωs(t). In this representation, it is pos-

sible to do message passing using the canonical parameters in the sum/product
updates (the basis of Kalman filters).

You could also have bernoulli random variables at every node (for example,
to model the spread of a contagious disease in a social network of people) and one
might be interested in building a probability distribution over the social network.
Then, with every node Xs ∼ Ber(λs) ∈ {0, 1} (canonical parametrization) and
choosing30 φst = exp {λstfst(xs, xt)} where, fst = xsxt+(1−xs)(1−xt) defined
so that it takes value 1 iff xs = xt (both are diseased or healthy) and is 0
otherwise, we have the following factorization:

p(x) =
∏
s∈V

exp {λsxs}
∏

(s,t)∈E

exp {λstfst(xs, xt)} (1.47)

If λst = 0, it indicates no coupling between the related individuals. For a
reasonably contagious disease, we expect λst to be non-negative atleast. The
value of θs indicates the belief that an individual Xs was intially diseased; higher
the value, more will be the belief. Though not directly reflecting the marginal
probability, λs is an indicator of the log-odds ratio.

Let us consider another instance - a problem of counting the vertex coverings
in a graph using the sum-product formalism. We will associate a random vari-
able Xi ∈ {0, 1} with each node in the graph. Then, the following exponential
form for p(x) will serve our purpose:

p(x, η) = exp

{
η

n∑
i=1

xi −A(η)

} ∏
(s,t)∈E

(1− (1− xs)(1− xt))

where h(x) =
∏

(s,t)∈E

(1− (1− xs)(1− xt)) ensures that we indeed have a vertex

cover and f(x) =
n∑
i=1

xi. It can be proved that as η → −∞ (which means

you are increasingly penalizing larger coverings), the distribution goes to the

minimum cardinality vertex covering (i.e.,
n∑
i=1

xi).

If a graphical model were to be used to represent a language model for spell-
checking or validity, etc. of an input string x of length upto n, you can have
a substantially fewer number of parameters than if you were to have a naive
potential over all 26 characters in an alphabet leading to a table of size 26n.
This parameter reduction can be achieved by having indicator feature functions

30Remember that in a graphical model, we are free to choose the form of the potential
functions so that they match the semantics. Here we pick edge potentials that reflect the
coupling between health of related individuals, thereby shaping the distribution.
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f(x) corresponding to interesting (and not all) substrings such as ‘ion’, ‘ing’. To
model such apriori information about ’striking patterns’, it is useful to think of
graphical models in the following reduced parametrization form, where feature
function fα can represent some such information as a feature function:

p(x, η) = h(x) exp

{∑
C∈Π

∑
α∈IC

ηαfα(xC)−A(η)

}
(1.48)

where IC is the index for clique C so that fα(xC) corresponds to only those
interesting features that are local in terms of clique C.

1.6.1 Exponential Models and Maximum Entropy

The data fitting principle of maximum entropy, which is suitable for learning
models from data leads naturally to graphical models in exponential form and
also gives nice semantics to the weights in the exponential family. There are
many problems with constraints on distributions, but where the information
is not complete. For instance, if we knew that for two binary random vari-
ables X,Y ∈ {0, 1} and for their paired observations, 2/3 times X takes value
0, 3/4 times, Y takes value 1 and if you are asked, to specify the fraction of
times (X,Y ) = (0, 0), what would you answer with the insufficient specifica-
tion? Or going back to our diseased network model, if you are given obser-
vations on healths of similarly networked people and were to translate these
observations into constraints on the moments (and/or the joint quantities), how
would you determine the parameters of the probability distribution? There
could be many distributions/parameters that are consistent with the obser-
vations. What principle should be adopted for making a good choice of the
parameters/distribution?

More concretely, say you are given some (feature) functions fα(x) with α ∈ I
and are also given some observations µ̂α on the expected values of the functions,
called empirical moments. The observations could come either from data or from
physical constraints. We are interested in the family of distributions that are
consistent with these constraints.

P(µ̂) =

{
p(.)

∣∣∣∣∣∑
x

p(x)fα(x) = µ̂α ∀α ∈ I

}
Note that the family could be an empty set if the set of constraints are incon-
sistent. However, we will assume that the constraints are consistent. We are
interested in choosing a particular p̂ from P(µ) in a principled manner. Max-
imum entropy is one such principled method. Entropy is, roughly speaking, a
measure of uncertainity or randomness. It has played a vital role in physics,
chemisty, statistics, computer science, communication31, etc.

31Entropy plays a fundamental role in deciding how far you could compress a sequence of
bits.
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Definition 15 The entropy H(p) of the distribution p on a random variable
(vector) X is given by the expected value of the log of the distribution. Depending
on whether the random variable (vector) is continuous or discrete, we will have
two different definitions of expectation (and therefore for the entropy). For
discrete random variable (vector) X,

H(p) = −
∑
x

p(x) log p(x)

whereas, for continuous valued random variable X,

H(p) = −
∫
x

p(x) log p(x)dx

It can be easily proved that H(p) ≥ 0 (convention being that 0 log 0 = 0).
H(p) = 0 if and only if X is deterministically always some a, making p(a) = 1
and p(x) = 0, ∀x 6= a. H(p) is maximal for the uniform distribution.

The principle of maximum entropy can be now defined:

Definition 16 Given P(µ̂) =

{
p(.)

∣∣∣∣∣∑
x

p(x)fα(x) = µ̂α ∀α ∈ I

}
, choose

p̂ = argmax
p∈P(µ̂)

H(p)

The intuition here is to balance across the constraints. It is also called the
principle of least commitment since the goal is to simultaneously respect the
data and not commit to anything more.

Theorem 13 The maximum entropy solution exists and is unique. The unique
solution takes the form

p(x) ∝ exp

{∑
α∈I

ηαfα(x)

}
(1.49)

Proof: The first thing to note is that P(µ̂) is a convex32 (linear), closed33 and
bounded set of distributions. Further, H(p) is continuous, and this, in con-
junction with the nature of P(µ̂), guarantees that a maximum will be attained.
Also, H(p) is strictly concave34, implying that the maximum will be unique.

The canonical parameters are actually the Langrange multipliers. Consider
the Lagrangian L(p, η, λ):

L(p, η, λ) = H(p) +
∑
α∈I

ηα

[
µ̂α −

∑
x

p(x)fα(x)

]
+ λ[1−

∑
x

p(x)]

32What if the set is empty?
33Which means the optimum cannot escape to the boundary.
34Since ∂2H

∂p2 = − 1
p
< 0.
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The KKT necessary and sufficient conditons (see (3.88) on page 242) for opti-
mality of (p̂(x), η̂, λ̂) yield:

1. ∂L
∂p = 0 ⇒ log p̂(x)−

∑
α∈I

η̂αfα(x)− λ̂ = 0. That is,

p̂(x) = exp

{∑
α∈I

η̂αfα(x)

}
eλ̂ (1.50)

2.
∑
x

p̂(x) = 1. Substituting for p(x) from (1.50), we get

eλ̂ =
1∑

x

exp

{∑
α∈I

η̂αfα(x)

}

which is a constant.

This proves that p(x) ∝ exp

{∑
α∈I

ηαfα(x)

}
. 2

This result shows how exponential families can arise in a fairly natural way.
It can be further shown that a slight generalization of the maximum entropy
principle, called the Kullkack-Leibler divergence very naturally leads to the max-
imum likelihood principle.

Definition 17 The Kullkack-Leibler (KL) divergence D(p||q) between two dis-
tributions p(.) and q(.) is given by the expectation over p(.) of the log-likelihood
ratio of p(.) over q(.).

D(p||q) =
∑
x

p(x) log
p(x)
q(x)

For distributions p(.) and q(.) over continuous valued random variables

D(p||q) =
∫
x

p(x) log
p(x)
q(x)

dx

Like any distance, the KL divergence is always non-negative. Also, p ≡ q if
and only if D(p||q) = 0. However, by inspection, we can infer that D(p||q) is
assymetric, unlike metrics. That is D(p||q) 6= D(q||p). If q(.) were the uniform
distribution D(p||q) = H(p) + c, where c is some constant.

We will next define a slight generalization of the maximum entropy principle.
Recall the definition of P(µ̂). Now let q be some additional prior or reference
distribution. The generalized definition goes as:
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Definition 18 Given P(µ̂) =

{
p(.)

∣∣∣∣∣∑
x

p(x)fα(x) = µ̂α ∀α ∈ I

}
and a ref-

erence distribution q(x), choose

p̂ = argmin
p∈P(µ̂)

D(p||q)

The interpretation here is: get as close as possible to the reference distribution,
while respecting the data in the form of the constraint set P(µ̂). For the max-
imum entropy principle, the reference distribution happened to be the uniform
distribution. Note that we have an ‘argmin’ here instead of an ‘argmax’.

Theorem 14 The solution to the minimum KL divergence problem in defini-
tion 18 exists and is unique. The unique solution takes the form

p(x) ∝ q(x) exp

{∑
α∈I

ηαfα(x)

}
The reference distribution q(x) plays the role of the function h(x) in the expo-
nential form.

Proof: The proof of existence and uniqueness here are the same as that for
the counterpart in the proof of theorem 13. The only change will be the KKT
necessary and sufficient conditions for optimality of (p̂(x), η̂, λ̂) (see (3.88) on
page 242).

Consider the Lagrangian L(p, η, λ):

L(p, η, λ) = D(p||q) +
∑
α∈I

ηα

[
µ̂α −

∑
x

p(x)fα(x)

]
+ λ[1−

∑
x

p(x)]

The KKT necessary and sufficient conditons yield:

1. ∂L
∂p = 0 ⇒ log p̂(x)−

∑
α∈I

η̂αfα(x)− λ̂− log q(x) = 0. That is,

p̂(x) = q(x) exp

{∑
α∈I

η̂αfα(x)

}
eλ̂ (1.51)

2.
∑
x

p̂(x) = 1. Substituting for p(x) from (1.50), we get

eλ̂ =
1∑

x

q(x) exp

{∑
α∈I

η̂αfα(x)

}
which is a constant.

This proves that p(x) ∝ q(x) exp

{∑
α∈I

ηαfα(x)

}
. 2
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1.7 Model fitting

Thus far we have discussed graphical models and inference in these models. But
how do learn the potential functions associated with a model or the canonical
parameters associated with the exponential form, given some data from the
real world that describes the phenomena? This opens up a new interesting
fundamental question: ‘how to infer models from data?’. We will also need a
measure of how ‘good’ a model is and this is often driven by the end goal. These
discussions forms the topic of discussion for this section.

Consider a coin tossing experiment, in which X ∼ Ber(µ) where µ =
Pr (X = 1). Let us say we observe a sequence of coin tosses: [x(1), x(2), . . . , x(m)].
Can we use this data to infer something about µ? There are two primary ways
to do this.

1. The Bayesian school of thought views the Bayes rule as the fundamental
method for inventing model from the data:

p(θ | x) =
p(x | θ)p(θ)

p(x)

where θ is the underlying model parameter, p(x | θ) is the likelihood
term, p(θ | x) is the posterior that summarizes the remaining uncertainty
in θ, given that you have observed the data x. This simple statement
has consequences on the way you might view parameters; by imposing a
distribution over θ, you are encoding the belief that the parameter itself
is a random quantity. This requires viewing all parameters as random
variables. The Bayesian technique views µ as a random quantity following
a Beta(a, b) distribution35 on [0, 1].

µ ∼ Beta(a, b) ∝ µa−1(1− µ)b−1

The Bayesian tries to model the inherent uncertainity in the statistician
about the value of the parameter (µ). The Bayesian thus has a more or
less fixed procedure for folding in the data into the model.

2. The frequentist’s way of measuring probabilities is as numbers measured
as outcomes over repeated trials as against the subjective notion of prob-
ability adopted by the Bayesians. The frequentist would object to the
Bayesian view on several counts: (i) the subjectivity of the procedure; is
there a sound justification for the choice of µ ∼ Beta(a, b) and for the par-
ticular choice of a and b? (ii) that different results for the same data set
could be obtained by different statisticians adhering to different choices of
the prior. The frequentist belief is that one should be completely objective
with the data; the data should speak so that you get the same model, no
matter who builds the model. It does not make sense for the probability

35The shape of the Beta distribution depends on the value of the parameters - it could be
either uniform or bell-shaped.
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of a coin throwing up heads to be a random variable. However, the fre-
quentist does not have any fixed procedure for inventing a model from the
data. The frequentist thus considers several estimators for the parameters.
One estimator is the sample mean of the data. Any estimator is assessed
for its properties such as bias, variability, etc. Variability asks: How much
would the estimated value vary if the data sample changed? How will the
estimate behave if we repeated the experiement several times?

Both Bayesian and frequentist views are compatible with graphical models.
Also, the two views agree that there could be different models for different
(coin-tossing) experiments. The Bayesian view often gives you a good way of
generating good procedures (that is, procedures with good properties) whereas
the frequentist view often gives you a very good way of evaluating a procedure.

1.7.1 Sufficient Statistics

Let X be a random variable. In the present discussion, we will often assume it
to correspond to a vector of observations (that is data). Any function τ(X) is
called a statistic. From the Bayesian point of view, a statistic τ(X) is sufficient
for the parameter variable θ if θ ⊥ X | τ(X). This relation can be expressed
graphically as a markov chain with V = {X, τ(X), θ}, E = {(X, τ(X)), (τ(X), θ).
Intuitively, this means that the function of the observations τ(X) is what is
essential in data to explain the characteristics of θ and that all the dependence
between X and θ is being mediated by τ(X). τ(X) is typically much smaller
than X itself.

From the frequentist point of view, θ is an unknown fixed parametrization
that we would like to estimate. The sufficiency for a frequentist is that

p(x | τ(x); θ) = p(x | τ(x))

That is, the family of distributions specified by the parametrization θ becomes
independent of θ when conditioned on the sufficient statistic τ(x); it indicates
that we have conditioned on sufficient information to capture any information
from θ.

A view of sufficiency unified across the Bayesian and frequetist perspectives
can be obtained by treating it as a statement about factorization:

p(x, τ(x), θ) = φ1(τ(x), θ)φ2(τ(x),x)

It can be proved that this is indeed a unified view of sufficiency, consistent
with the Bayesian and frequentist views. Though there is a difference in in-
terpretations, it amounts to the same factorization. Note the similarity of the
factorization here with that for general graphical models. As we will see, for the
graphical model family, sufficiency properties can be read out, just on the basis
of their factorization. Further, the sufficiency property stands our clearly for
exponential family. Given iid data36 x = (x(1),x(2), . . . ,x(n)) each from some

36This assumption is common-place because it makes computations very simple and decom-
posable. It is often not the case, since there could be dependence in the sampling.
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exponential family, and given an η (which corresponds to the θ being discussed
thus far in the context of model estimation), we can easily infer that

p(x1,m; η) =
m∏
i=1

p(x(i); η) =

(
m∏
i=1

h(x(i))

)
︸ ︷︷ ︸

φ2(τ(x),x)

exp

{
ηT

(
m∑
i=1

f(x(i))

)
−mA(η)

}
︸ ︷︷ ︸

φ1(τ(x),η)

This algebra tells us that the quantity τ(x) =
m∑
i=1

f(x(i)) is the sufficient statis-

tic. Note that φ1 can potentially depened on τ(x), though it does not depend
in this case. The key to estimating η are the sufficient statistics τ(x). We will
also realize that the prefactor h(x) does not play a significant role here.

The quantity

µ =
1
m

m∑
i=1

f(x(i)) =
∑
x

℘(x)f(x)

is called the empirical moment parameter vector, where the empirical distribu-
tion ℘(x) is obtained by placing point mass at data points.

℘(x) =
1
m

m∑
i=1

δ(x− x(i))

The empirical moment parameters are a special type of empirical moments dis-
cussed on page 55. Note that the empirical moment parameters are simply the
sufficient statistics scaled down by the number of data points. The empirical
moment parameter vector can be contrasted against the moment parameter vec-
tor µ = [E[f1(X)], E[f2(X)], . . . , E[fk(X)]] for exponential families, as defined
on page 49. The two differ in the probability distributions with respect to which
they compute their expectations; while the former computes with respect to the
empirical distribution, the latter computes with respect to the true distribution.

As an example, consider the Ising model, defined on a graph G =< V, E >,
which is a member of the exponential family. It is distribution is very similar
to that of the disease network model (1.47), only difference is that only the first
term xsxt is retained in the definition of fst(x).

p(x, η) ∝ exp

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt


By appropriately identifying the feature function vector f and η of size |V|+ |E|
each, we can determine the empirical moments to be

µ̂s =
1
m

m∑
i=1

xis
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and

µ̂st =
1
m

m∑
i=1

xisx
i
t

which are just the marginal counts.
What about empirical moments for the reduced parametrization discussed

earlier in (1.48) on page 55?

p(x, η) = h(x) exp

{∑
C∈Π

∑
α∈IC

ηαfα(xC)−A(η)

}

Given iid data x =
(
x(1),x(2), . . . ,x(m)

)
, the following factorization holds if each

x(i) follows the distribution specified by the reduced parametrization. Since the
apriori information is captured using indicative feature functions, you can have
a reduced set of sufficient statistics.

p(x1,m; η) =
m∏
i=1

p(x(i); η) =

(
m∏
i=1

h(x(i))

)
︸ ︷︷ ︸

φ2(τ(x),x)

exp

∑
α

ηα

 m∑
i=1

∑
C∈Π|α∈IC

fα(x(i))

−mA(η)

︸ ︷︷ ︸
φ1(τ(x),η)

The form of the empirical moments in this case pools over all cliques that are
relevant for a particular feature type fα (for instance, in a grid, some features
may be commonly defined/parametrized across all vertical edges while others
across all horizontal edges) and then pools over all data:

µ̂α =
m∑
i=1

∑
C∈Π|α∈IC

fα(x(i))

The reduced parametrization assumes some kind of homogenity in the model.
More precisely, it makes the statistical assumption that the parameter ηα is
independent of the exact position in G and is determined by the local graphical
structure. This parametrization assuming homogenity is often desirable since it
gets a more stable estimator with less variance even using relatively less data.
In fact, the reduced parametrization yields a new exponential family with much
lower dimensions, in which the parameters ηα enter in a purely linear way37.
The issues of when and how to pool data are important ones in modeling.

1.7.2 Maximum Likelihood

The likelihood function interests both Bayesian and frequentists alike. Recall
that likelihood p(x | θ) was one part of the Bayes rule. The frequentist inter-
pretation of this quantity is as ‘the likelihood of a fixed x as θ varies’ whereas
the Bayesian interpretation of this quantity is as ‘the conditional probability of

37A widely used different class of exponential families is called curved exponential families,
in which the parameters ηα enter in non-linear ways.
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a varying x given a fixed θ.’ The frequentist thus views likelihood as a function
of theta L(θ) that measures, in some sense, the goodness of θ as it is varied
for the particular sample of data in hand. It is often useful to talk about the
log-likelihood instead38.

Definition 19 Given a sample x =
{
x(1),x(2), . . . ,x(m)

}
, the log-likelihood

(LL) is defined as

LL(θ; x) =
1
m

log p(x | θ)

Note that the 1
m term does not really change the optimization and its usage is

conventionally just to normalize the log-likelihood.

The maximum likelihood estimate (MLE) is defined next.

Definition 20 Given a sample x =
{
x(1),x(2), . . . ,x(m)

}
, the maximum likeli-

hood estimate (MLE) θ̂MLE of θ is defined as

θ̂MLE = argmax
θ

LL(θ; x)

As the name suggests, this principle treats log-likelihood as a measure of goodness
of the parameter and picks that value which maximizes the LL. Though not
against Bayesian principles, MLE has been of greater interest to the frequentists.
The estimate θ̂MLE is called a point estimate, since the method gives you just a
single point.

Let us try to fit (that is, adjust the parameters of) a scalar GaussianN (µ, σ2)
to some data

{
x(1), x(2), . . . , x(m)

}
using the MLE principle. We will assume

that the data is iid. This will mean that the joint distribution over the data
will factorize into individual data instances, given the parameters.

LL(µ; x) =
1
m

m∑
i=1

log p(x(i) | µ) = − 1
2m

log 2π − 1
2m

M∑
i=1

(x(i) − µ)2

The LL is a quadratic in µ (that is θ), which achieves its maximum at

µ̂MLE =
1
m

m∑
i=1

x(i)

as expected. The data determines the shape of the likelihood and MLE looks
for the point µ̂MLE that maximizes the LL.

This example of parameter estimation for the simple Gaussian is one of the
motivations for using MLE; MLE corresponds to an intuitively appealing esti-
mation for the mean parameter. Secondly MLE has good asymptotic properties.

38Since it is a monotonic transformation between the likelihood and log-likelihood, it does
not really matter much whether we look at the former or the latter. It is usually more
convenient to look at the log-likelihood (LL).
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A frequentist takes more interest in the asymptotic properties of the estimator.
We can look upon θ̂MLE as a random variable, since the data x was itself ran-
dom and θ̂MLE is a function of the data. As the amount of data grows, any
reasonable estimator should behave ‘well’. One yardstick of good behaviour of
the estimator is consistency, that is, if there was some true underlying θ∗, we
would like

θ̂MLE
m→∞→ θ∗

Under most conditions, MLE estimators are consistent. Generally, it can be
worrisome if the estimator does not converge to the true answer even with
infinite amount of data.

Another yardstick of good behaviour is that asymptotically, the estimator’s
spread around the true value of the parameter must be Gaussian-like. MLE
estimators honor this feature as well; with increasing m, the distribution of
θ̂MLE tends to be Gaussian with the true mean θ∗ and the spread Σ given by
the Fisher information matrix39.

In small sample regimes (that is, if you do not have too much data), MLE
does not behave well. In such settings, the frequentist adds a penalty term,
called the regularization term (such as µ2 in the above example) to the likelihood
objective to somehow prevent the estimator from drifting away based on a small
m.

1.7.3 What the Bayesians Do

The Bayesians focus more on the posterior p(θ | x), which is the likelihood
multiplied by a prior.

p(θ | x) ∝ p(x | θ)p(θ)

For example, let x(i) ∼ N (µ, 1) for 1 ≤ i ≤ m and let µ ∼ N (ν, σ2). The param-
eter µ is a random variable, whereas the hyperparameters µ′ and σ are fixed. The
choice of the values µ′ and σ could significantly influence the posterior. There
is a class of models40 called the ‘hierarchical Bayes models’ that put a prior on
the hyper-parameters, priors again on the hyper-hyper-parameters and so on.
It stops (for pragmatic reasons) when the abstration has been sufficiently per-
formed so that it matters little what the fixed values of the hypern-parameters
are.

The posterior for this example, takes the form

p(θ | x1,m) ∝ exp

{
−1

2

m∑
i=1

(x(i) − µ)2

}
exp

{
− 1

2σ2
(µ− ν)2

}
The Bayesian is not interested just in the point estimate, but moreso in the entire
posterior distribution. In this case (a special instance of Kalman filters) the pos-
terior again turns out to be a Gaussian; µx1,m ∼ N (E(µ | x1,m), V ar(µ | x1,m)).

39Related to this is the Cramer-Rao lower bound.
40The broader area is called Robust Bayesian statistics.
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A little calculation should convince you that µx1,m ∼ N
(

mσ2

mσ2+1 µ̂MLE + 1
mσ2+1ν, V ar(µ | x1,m)

)
.

How does the posterior behave as m→∞? We can easily see that with increas-
ing amount of data, the likelihood will completely swamp the prior. That is,
E(µ | x1,m) m→∞→ µ̂MLE . So the choice of the hyper-parameters is irrelevant as
the size of the data goes to ∞. Thus, MLE behaves well asymptotically even
from the Bayesian point of view. Unlike the frequentist, the Bayesian does not
need to explicitly handle the small sample regimes.

In general, the posterior might not have a finite parametrization. In such
cases, the Bayesians do compute point estimates. Examples of point estimates
computed by Bayesians are:

1. Bayes estimate: This is the mean of the posterior:

θ̂Bayes =
∫
θp(θ | x1,m)dθ

2. MAP estimate: This is the mode of the posterior:

θ̂MAP = argmax
θ

1
m

log {p(θ | x1,m)}

The MAP estimate is very much related to the MLE. Invoking the Bayes
rule and ignoring the term involving log p(x1,m),

θ̂MAP = argmax
θ

1
m

log {p(x1,m | θ)}+
1
m

log {p(θ)} (1.52)

=
iid

argmax
θ

1
m

m∑
i=1

log
{
p(x(i) | θ)

}
+

1
m

log {p(θ)}

The first term in the decomposition is the data likelihood term, while the
second term is the prior term. Let us study this decomposition.

(a) This decomposition suggests that if the prior is uniform, θ̂MAP =
θ̂MLE .

(b) Secondly, in the asymptotic case, as m → ∞, the prior component
fades away (since it has no dependence on m in the numerator) in
contrast to the likelihood term41. In fact, as m → ∞, θ̂MAP →
θ̂MLE .

(c) If the prior is assumed to be Gaussian, then the prior term will assume
the form of a quadratic penalty. This is the same as a quadratic
regularization term for MLE. With different choices of priors on θ,
you get different regularizations. For example, a Laplacian prior on θ
results in L1 regularization. For example, Lasso is L1 regularization
for a regression problem. How the choice of regularization affects
these estimators is an area of active research.

41One could use the central limit theorem or law of large numbers to study the behaviour
of the likelihood term as m→∞.
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1.7.4 Model Fitting for Exponential Family

We will initiate the discussion of model fitting in exponential families by looking
at maximum likelihood (ML) estimation. Just as for most other properties of
exponential models, there is something crisper that we can state about the ML
properties of exponential models. The optimization conditions will turn out to
take special and easily interpretable forms.

Recall the specification of any member of the exponential family from (1.43).

p(x | η) = h(x) exp
{
ηT f(x)−A(η)

}
We will now see how the empirical moment parameters, defined on page 61 and
discussed subsequently become relevant for parameter estimation. Given iid
observations x =

{
x(1),x(2), . . . ,x(n)

}
, the normalized LL for this distribution

decouples as a sum

LL(η; x) =
1
m

log p(x | η) (1.53)

=
1
m

{
ηT

m∑
i=1

f(x(i))−mA(η)

}
+ log h(x) (1.54)

=

{
1
m
ηT

m∑
i=1

f(x(i))

}
−A(η) + log h(x) (1.55)

=
{
ηTµ(x)

}
−A(η) + log h(x) (1.56)

where µ(x) = 1
m

m∑
i=1

f(x(i)) is the vector of empirical moment parameters. Since

h(x) is not a function of the parameter (and instead, is a constant offset), it
follows that the MLE for the exponential family takes the form

µ̂ML ∈ argmax
η∈Domain(η)

{
ηTµ(x)−A(η)

}
This is a very crisp formulation of sufficiency; given data, all you need to com-
pute are µ(x), forget the data x and focus on solving the optimization problem.
Since A(η) is infinitely differentiable and since the remainder of the objective
is linear, we could make use of the first order necessary optimality conditions
from (3.44) on page 216:

∇LL(η; x) = 0

That is,
µ(x)−∇A(η) = µ(x)− E(f(X)) = 0

where, we may recall from (1.44) on page 49 that∇A(η) is the vector of moments
predicted by the model. This important condition
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µ(x) = E(f(X)) (1.57)

is called the moment matching condition42 and it states that for maximizing the
likelihood, we need to match the empirical moments to the model moments. In
general, these coupled d equations are complex and non-linear ones, that are not
very easy to solve, though there are some exceptions. The necessary conditions
suggest that the parameters should be learnt in such a way that if you drew
samples from the model, they should look like the given data.

As example, let X be a bernoulli random variable. Recollect the specification
of the bernoulli distribution as a member of exponential family from page 1.4:
η = log µ

1−µ , f(x) = x and A(η) = log {1 + eη}. This leads to the following
moment matching conditions

µ =
1
m

m∑
i=1

x(i) = A′(η) =
eη

1 + eη

The empirical moments is the fraction of heads that come up in the m coin
tosses of the experiment. The expression for η will be

η = log
(

µ

1− µ

)
which corresponds to the logs-odd ratio. When does this have a solution? It
has a solution if µ ∈ (0, 1) but not if i = 1 or i = 0, which can happen if all the
coin tosses landed up with heads or tails43. If µ ∈ (0, 1

2 ), η < 0 and if µ ∈ ( 1
2 , 1),

η > 0. So if µ = 1, strictly speaking the MLE does not exist. Note that if we
were to use the original formulation of the bernoulli distribution on page 48,
moment matching would have yielded the MLE as µ = µ. For large amounts of
data, using the weak law of large numbers, you can be convinced that this loss
can be recovered using even the exponential formulation.

As another example, let us revist the multivariate normal distribution in the
canonical form first uncovered in (1.46):

p(x, η,Ω) = exp
{
ηTx− 1

2
trace(ΩxxT ) + x

}
where

η = Σ−1µ

and
Ω = Σ−1

42This is related to moment matching rooted in classical statistics. Though not related
directly to maximum likelihood, these two boil down to the same criteria for the exponential
family.

43This is not impossible, especially if the tossing is done by some magician such as Persi
Warren Diaconis or by a machine built by him.
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Moment matching will yield the model first order and second order moments
in terms of the empirical mean and the empirical second order moment matrix
respectively. That is,

E[x] = µ =
1
m

m∑
i=1

x(i) = µ

and

E[xxT ] = Σ + µµT =
1
m

m∑
i=1

x(i)
(
x(i)
)T

Solving this system, we get ΩML as the inverse of the sample covariance matrix

ΩML =

(
1
m

m∑
i=1

x(i)
(
x(i)
)T
− µµT

)−1

(which exists if the sample covariance matrix has full rank) and

ηML = ΩMLµ

In practice (such as in text mining problems), it can happen that many fea-
tures are never observed and consequently, the corresponding empirical moment
parameters will be 0. Similarly, for the multivariate Gaussian example, if you do
not have sufficient data, the sample covariance matrix may not have full rank.
More precisely, we need to pay heed to Domain(η), since the optimal values
could reside on the boundary. This is addressed using regularization through a
penalized log-likelihood objective.

1.7.5 Maximum Likelihood for Graphical Models

For general large graphical models, the moment matching is not at all easy to
solve. It has therefore been a practice to often resort to iterative algorithms for
solving the set of moment matching equations. We will illustrate this difficulty
through the Ising model (c.f. page 61), which is a model on an undirected graph
G =< V, E >.

p(x, η) = exp

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt −A(η)


Let us say we have iid data x = (x(1),x(2), . . . ,x(m)). The empirical moments
are

µ̂s =
1
m

m∑
i=1

xis

and

µ̂st =
1
m

m∑
i=1

xisx
i
t
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The d = |V|+ |E| moment matching equations will be

∑
x∈{0,1}|V|

exp

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt −A(η)

xs = µ̂s

and ∑
x∈{0,1}|V|

exp

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt −A(η)

xsxt = µ̂st

The task is to estimate the values of the |V| + |E| sized vector η. The log-
normalization constant A(η) is in turn very complex and involves

A(η) =
∑

x∈{0,1}|V|
exp

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt −A(η)


In general, though the equations are intuitive (asserting that parameters be
picked to match the data), solving them is very very complex. What if the
graph were a tree? Then the solution can be obtained efficiently, as we will see
subsequently. Also, A(η) as well as the marginal p(x; η) could be computed in
polynomial time leading to efficient inference as well. Thus, solving the moment
matching equations is closely linked to the graph structure. In general, solv-
ing the estimation problem inevitably involves solution to the marginalization
problem, which can at least be performed efficiently for tree structured models.

Let us consider some graphical models, whose estimation problems are easy.
Consider a markov chain with V = {X1, X2, X3, X4}, E = {(X1, X2), (X2, X3), (X3, X4)}.
Though it can be thought of as a directed model, we will choose an exponential
factorization that will link it to the general exponential machinery. Let each Xi

have k possible states. Also, let

λst =
∑

i = 1, j = 1kλst,ij(δ(xs, i)δ(xt, j))

where δ(x, i)δ(y, j) is an indicator feature function for each fixed (i, j) pair and
is expressible as a k × k matrix. λst,ij ’s are the canonical parameters. We can
then adopt the exponential form

p(x;λ) = exp {λ12(x1, x2) + λ23(x2, x3) + λ34(x3, x4)}

Given data x = (x(1),x(2), . . . ,x(m)), the empirical moment parameters (suffi-
cient statistics scaled down by m) can be computed to be

µst(xs, xt) =
1
m

m∑
i=1

δ(xs = x(i)
s )δ(xt = x

(i)
t )

for (s, t) ∈ {(1, 2), (2, 3), (3, 4)} and

µs(xs) =
1
m

m∑
i=1

δ(xs = x(i)
s )
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for s ∈ {1, 2, 3, 4}.
These simply correspond to the empirical marginal probability ℘(xs, xt).

The moment matching conditions can be satisfied44 by the following assignments
to the canonical parameters:

λ̂12,12 = logµ12(x1, x2)

λ̂23,23 = log
µ23(x2, x3)
µ2(x2)

λ̂34,34 = log
µ34(x3, x4)
µ3(x3)

Thus, the canonical parameters can be computed in closed form. The task is
similarly simple for trees - the basic intuition has been captured in this markov
chain example. However, the simple solution suggested in this four node example
does not hold for a cyclic graph having 4 nodes with edges defined as E =
{(X1, X2), (X2, X3), (X3, X4), (X4, X1)}.

The task is also equally simple, with closed form solutions for the class of
decomposable graphs (which could be graphs with cycles), defined on page 31
in definition 12.

1.7.6 Iterative Algorithms

We will now move to more general graphs and describe iterative algorithms for
solving fixed point equations. We will assume that the potential functions are
defined on maximal cliques.

p(x, φ) ∝
∏
C∈Π

φC(xC) ≡ exp

{∑
C∈Π

θC(xC)

}

The general setting for maximum likelihood optimization is that we have to
solve a set of fixed point equations

F(η) = Eη[f(X)]− µ = 0

(such as µ̂α =
m∑
i=1

∑
C∈Π|α∈IC

fα(x(i)) in the case of reduced parametrization - c.f.

page 62). For this system, we will investigate an iterative solution of the form

η(t+1) = η(t) + f
(
η(t)
)

so that at the fixed point η(t∗), f
(
η(t∗)

)
= 0 and therefore η(t∗+1) = η(t∗). t is

the time step.
This general algorithm is called Iterative Proportional Fitting (IPF) and

goes as follows for a general undirected graph G =< V, E >:
44EXERCISE: Prove.
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1. Start with some initial factorization (which could be uniform)

p(x) ∝
∏
C∈Π

φ
(0)
C (xC) ≡ exp

{∑
C∈Π

θ
(0)
C (xC)

}

2. For t = 1 onwards, let C’ range stepwise over the cliques in Π. Update

φ
(t+1)
C′ (xC′) = φ

(t)
C′ (xC′)

µC′(xC′)

µ
(t)
C′ (xC′)

(1.58)

where, µ(t)
C′ (xC′) is the current model marginal, computed as45

µ
(t)
C′ (xC′) =

1
Zφ(t)

∑
xV\C′

p(x;φ(t))

While the model marginals can be computed efficiently for tree structured
or even decomposable graphs using message passing formalisms, we may
have to resort to approximate inferencing for general graphs. µC′ are the
empirical marginals that are precomputed from data x as

µC′(xC′) =
1
m

m∑
i=1

δ
(
xC′ ,x

(i)
C′

)
Equivalently one may also use the following update rule:

θ
(t+1)
C′ (xC′) = θ

(t)
C′ (xC′) + log

µC′(xC′)

µ
(t)
C′ (xC′)

(1.59)

The algorithm is called iterative proportional fitting because at every step, the
potentials are updated proportional to how well the empirical moment param-
eters fit the model moments for a clique C′.

Convergence of the iterative algorithm

It is easy to see that at the fix point t = t∗, the algorithm will yield the MLE
φ(t∗) since, for all C ∈ Π,

F(φ(t∗)) = µ
(t∗)
C (xC)− µC(xC) = 0

45You could formulate this problem using a set of δC feature functions, and λC,vC canonical
parameters, as was adopted in the example on page 69. Here, vC is a configuration vector
that could be assumed by variables on clique C.
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But we also need to show that the updates will always converge to the fix point.
We first observe that after updating using step (1.59) (or equivalently, (1.58)),
the moment matching will be achieved for clique C′.

µ
(t+1)
C′ (xC′) = µC′(xC′)

Why is this so? By definition,

µ
(t+1)
C′ (xC′) =

1
Zθ(t+1)

∑
xV\C′

p(x; θ(t+1)) =
1

Zθ(t+1)

∑
xV\C′

exp

θ(t)
C′ (xC′) +

∑
C∈Π,C6=C′

θ
(t)
C (xC)


That is, every factor that is not in C′ is not changing with respect to the previous
step. Expanding upon this, using the update equation (1.59),

µ
(t+1)
C′ (xC′) =

1
Zθ(t+1)

∑
xV\C′

exp

θ(t)
C′ (xC′) + log

µC′(xC′)

µ
(t)
C′ (xC′)

+
∑

C∈Π,C6=C′
θ

(t)
C (xC)

 =
1

Zθ(t+1)

µC′(xC′)

µ
(t)
C′ (xC′)

∑
xV\C′

exp

{∑
C∈Π

θ
(t)
C (xC)

}

since µC′(xC′) and µ(t)
C′ (xC′) are independent of the inner summation. This leads

to

µ
(t+1)
C′ (xC′) =

Zθ(t)

Zθ(t+1)

µC′(xC′)

µ
(t)
C′ (xC′)

∑
xV\C′

p(xC′ ; θ(t)

By definition,
µ

(t)
C′ (xC′) =

∑
xV\C′

p(xC′ ; θ(t)

Thus,

µ
(t+1)
C′ (xC′) =

Zθ(t)

Zθ(t+1)
µC′(xC′)

Since both empirical and model moments are expected to sum to 1 across all
cliques in the graph, we should have

1 =
∑
C′∈Π

µ
(t+1)
C′ (xC′) =

∑
C′∈Π

Zθ(t)

Zθ(t+1)
µC′(xC′) =

Zθ(t)

Zθ(t+1)

Consequently, we will have that once the update step (1.59) is applied, moment
matching will hold on C′.

µ
(t+1)
C′ (xC′) = µC′(xC′)

This takes us one step forward. But are these step updates guranteed to lead to
convergence? To see that convergence holds, we will note that the IPF algorithm
is an instance of the coordinate-wise ascent algorithm (c.f. page 247). This
becomes obvious by stating the log-likelihood objective

LL(θ; x) =
1
m

(∑
C∈Π

θCµC′(xC′)

)
−A({θC | C ∈ Π})
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and viewing it as a function of θC′

g(θC′) = LL
(
θC′ ;

{
θC = θ

(t)
C | C 6= C

′
}
,x
)

The first order necessary optimality condition for g(θC′) precisely yield the mo-
ment matching equation for C′. Since g(θC′) can be shown to be concave, the
first order necessary conditions are also sufficient. The fact that the application
of coordinate descent in this setting will lead to convergence follows from the
fact that LL(θ; x) is strongly concave.

1.7.7 Maximum Entropy Revisted

The IPF algorithm exploited the idea of matching moments in order to maximize
likelihood. Recall from Section 1.6.1, the maximum entropy principle that seeks
to find ℘(.) ∈ P(µ̂) that maximizes H(p). P is the set of all distributions that
satisfy empirical moment constraints µ̂α:

P(µ̂) =

{
p(.)

∣∣∣∣∣∑
x

p(x)fα(x) = µ̂α ∀α ∈ I

}

The problem of maximum entropy was also shown to be equivalent to the prob-
lem of minimizing the KL divergence between p and the reference uniform dis-
tribution u:

p̂ME = argmax
p∈P(µ̂)

H(p) = argmin
p∈P(µ̂)

D(p||u) (1.60)

On the other hand, the problem of maximum likelihood estimation problem is
specified as

p̂MLE = argmax
η

1
m

m∑
i=1

log p(x(i); η)

To help us establish the connection between the two, we will define the data x
driven empirical distribution as

℘x(x) =
1
m

m∑
i=1

δ(x = x(i))

This definition yields an alternative expression for the MLE as the minimizer of
the KL divergence between the empirical distribution and the model distribu-
tion.
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p̂MLE = argmax
η

(
1
m

m∑
i=1

℘x log p(x(i); η)

)
(1.61)

= argmax
η

(
1
m

m∑
i=1

℘x log p(x(i); η)

)
+

(
1
m

m∑
i=1

℘x log℘x

)
(1.62)

= argmax
η

−D (℘x||p(x; η))

= argmin
η

D (℘x||p(x; η))

= argmin
p∈E(f)

D (℘x||p(.)) (1.63)

where, E(f) is the exponential family of distributions having f as the vector of
feature functions that also figure in the specification of constraints in P (µ):

E(f) =
{
p(.)

∣∣p(x; η) ∝ exp
{
ηT f(x)

}}
We will now show the equivalence of specifications in (1.60) and (1.63). The

discussion so far will be relevant in our proof. On the one hand, we have seen in
(1.49) in theorem 13 that the constraint in E(f) is satisified by any solution to
(1.60). While on the other hand, we know that the moment matching conditions
for (1.63) in (1.57) are precisely the constraints in P(µ).

Theorem 15 p̂MLE = p̂ML for exponential families, where:

p̂MLE = argmin
p∈E(f)

D (℘x||p(.))

and
p̂ME = argmin

p∈P(µ̂)

D(p||u)

Two differences between these formulations are:

1. While p̂MLE involves optimization over the second argument in the KL
divergence, p̂ME involves optimization over the first argument.

2. The entry point of the data is also toggled in the two; while p̂ME has data
entering through constraint set P, p̂MLE has data entering through the
cost function.

This is characteristic of dual problems.

Proof: This can be proved by first showing that the problem in (1.60) is the
dual of (1.63). Next we will need to apply duality theory in Theorem 67, which
states that for convex cost function and convex inequality constraint set, the
KKT conditions are necessary and sufficient conditions for zero duality gap.
It can be proved that (1.60) is convex and that the parameters for p̂MLE are
solutions to the KKT conditions.
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The theorem can also be proved by invoking the so called pythagorean theo-
rem46 for general class of distance that includes distributions. In this particular
case, it can be shown that for all p̂ ∈ P(µ) ∩ E(f) and for all pP ∈ P(µ) and
pE ∈ E(f),

D(pP ||pE) = D(pP ||p̂) +D(p̂||pE)

If q̂, p̂ ∈ P(µ)∩E(f), then it will turn out by simple application of the theorem
that D(q̂||p̂) +D(p̂||q̂) = 0, which implies that p̂ = q̂. That is, P(µ) ∩E(f) is a
singleton and p̂ should correspond to both p̂MLE and p̂ML. 2

1.8 Learning with Incomplete Observations

Thus far, we have focussed on learning parameters for graphical models using
complete observations; the underlying model was p(x; θ) and the observations
(data) were x = (x(1),x(2), . . . ,x(n)). An example of such a learning task was
presented in the case of Markov chains on page 69. Consider the hidden markov
model from page 46 with V = {X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5} and E =
{(X1, X2), (X1, Y1), (X2, X3), (X2, Y2), (X3, X4), (X3, Y3), (X4, X5), (X4, Y4), (X5, Y5)}.
where nodes {X1, X2, X3, X4, X5} are hidden variables and nodes {Y1, Y2, Y3, Y4, Y5}
are the observed variables.

Mixture models are another set of popular example, which feature hidden
variables. Many real world problems are characterized by distinct classes/subpopulations
that the data falls into and can be modeled using mixture models.

Definition 21 Let Z ∈ {z1, z2, . . . , zk} be a multinomial variable indicating
mixture component. Let X be a random variable (vector), whose distribution is
specified, conditioned on different values zi of Z as

p(x|zi; θi) ∼ fi(x; θi)

Then the finite mixture model is defined as

p(x)
k∑
i=1

p(zi)fi(x; θi)

with k being the number of mixture components, Z called the mixture indi-
cator component, fi(x; θi) termed as the density of the ith mixture compo-
nent with parameters θi. The quantities p(zi) = πi are also called mixing
weights, representing the proportion of the population in subpopulation i. Thus,
π = [π1, π2, . . . , πk] and θ = [θ1, θ2, . . . , θk] are the paramaters of a finite mix-
ture model, with a fixed value of k. As a graphical model, the mixture model
can be represented as a two node graph: G =< V, E > with V = {X, Z} and
E = {(X, Z)}.

46The right angle here is not the conventional one, but a notional one.
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As an example, the density of each mixture component could be Gaussian with
θi = (µi,Σi).

fi(x; θi) ∼ N (µi,Σi)

The distribution p(x) is then called a mixture of Gaussians. In general, it not
Gaussian itself.

How can the parameters be learnt in the presence of incomplete data? In
the case of the HMM example, we might be provided only with observations y
for Y and expected to learn the parameters. Or in the case of mixture models,
we might be presented only with instances of X in the form of x and required to
learn parameters π and θ. We will illustrate parameter learning for the mixture
model problem.

1.8.1 Parameter Estimation for Mixture Models

It can be shown that learning for mixture models is an easy problem if the data
is fully observed in the form (x, z) =

[
(x(1), z(1)), (x(2), z(2)), . . . , (x(m), z(m))

]
.

The joint distribution can be decomposed as

p(x, z; θ) = p(z)p(x | z, θ)

If p(x | z, θ) is Gaussian and since p(z) is multinomial, the joint will be in expo-
nential form with Gaussian and multinomial sufficient statistics. The maximum
likelihood estimation will boil down to moment matching with respect to these
sufficient statistics, leading to an easy estimation problem.

In the incomplete data setting, we are given only x while observations z on
the mixture components are hidden. The likelihood can still be expressed and
maximized:

LL(π, θ; x) =
1
m

m∑
i=1

log p(x(i); θ) =
1
m

m∑
i=1

log

 k∑
j=1

πjfj(x(i); θj)



subject to the constraints that πj ≥ 0 and
k∑
j=1

πj = 1.

Unfortunately, log cannot be distributed over a summation and that creates
the main bottleneck. In case the densities are Gaussians, the objective to be
maximized will be

LL(π, µ,Σ; x) =
1
m

m∑
i=1

log

 k∑
j=1

πjN
(
x(i);µj ,Σj

)

subject to the constraints that πj ≥ 0 and
k∑
j=1

πj = 1.
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1. M-step: Writing down the KKT necessary and sufficient optimality con-
ditions (see (3.88) on page 242) for this maximization problem, subject to
its associated inequality and linear equality constraints yields:

(a) For µj

µj =

m∑
i=1

p(zj | x(i), µ,Σ)x(i)

m∑
i=1

k∑
j=1

p(zj | x(i), µ,Σ)

(1.64)

(b) And for Σj

Σ′j =

m∑
i=1

p(zj | x(i), µ,Σ)
(
x(i) − µj

)(
x(i) − µj

)T
m∑
i=1

k∑
j=1

p(zj | x(i), µ,Σ)

(1.65)

These steps are called the M − steps or the maximization steps, since
they are obtained as necessary and sufficient conditions of optimality for
a maximization problem.

2. E-step: The posterior p(zj | x(i), µ,Σ) and the prior πj in (1.65) and
(1.64) can be determined using Bayes rule as

(a)

p(zj | x(i), µ,Σ) =
πjf(x;µj ,Σj)
k∑
a=1

πaf(x;µa,Σa)

(b)

πj =
1
m

m∑
i=1

p(zj | x(i), µ,Σ)

The problem is that we do not get a closed form solution here; what we
obtain are a set of coupled, non-linear equations and need to iterate between
these steps to arrive at the fix point. This is where the expectation maximization
(EM) algoriothm comes in. We now will specify the EM algorithm in a more
general setting.
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1.8.2 Expectation Maximization

Let X be a set of observed variables and Z be a set of hidden variables for some
statistical model. Let x be m observations on X. In this general setting, we
really need not assume that the samples in x are iid (though you could). We
will assume that the MLE problem would have been easy47 if z was observed
data for the hidden variables Z (such as in the case of the mixture model). The
complete data log-likelihood would have been:

LL(θ; x, z) =
1
m

log p(x, z; θ)

Given a predictive distribution q(z|x), the expected complete data log-likelihood
is a function of the observed x and θ and is defined as

LLE(θ; x) =
∑
z

q(z|x) log p(x, z; θ) (1.66)

The expected complete data log-likelihood is an auxilliary function that gives a
lower bound on the actual log-likelihood we want to optimize for. The actual
log-likelihood in this general setting will be:

LL(θ; x) =
1
m

log

{∑
z

p(x, z; θ)

}
For example, the actual log-likelihood with iid assumption will be:

LL(θ; x) =
1
m

m∑
i=1

log

{∑
z

p(x(i), z; θ)

}

Theorem 16 For all θ and every possible distribution q(z|x), following holds:

LL(θ; x) ≥ LLE(θ; x) +
1
m
H(q) (1.67)

Equality holds if and only if

q(z|x) = p(z|x; θ)

Proof: First of all

LL(θ; x) =
1
m

log

{∑
z

q(z|x)
p(x, z; θ)
q(z|x)

}
47The trick in such a setting is to identify the model, X and Z so that you make the MLE

problem easy in the presence of complete data.
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Using the Jensen’s inequality (since log is a strictly convex function),

LL(θ; x) ≥ 1
m

∑
z

q(z|x) log p(x, z; θ)︸ ︷︷ ︸
LLE(θ;x)

− 1
m

∑
z

q(z|x) log q(z|x)︸ ︷︷ ︸
H(q)

Equality holds if and only if p(x,z;θ)
q(z|x) is a constant, that is,

q(z|x) ∝ p(x, z; θ) = p(z|x; θ)p(x; θ) ∝ p(z|x; θ)

This can happen if and only if q(z|x) = p(z|x; θ). 2

A consequence of theorem 16 is that

max
θ

LL(θ; x) = max
θ

max
q

LLE(θ; x) +
1
m
H(q) (1.68)

The EM algorithm is simply coordinate ascent on the auxilliary func-
tion LLE(θ; x) + 1

mH(q). The expectation and maximization steps at time
instance t can be easily identified for the formulation in (1.68) as

1. Expectation Step:

q(t+1) = argmax
q

LLE(θ(t); x)+
1
m
H(q) = argmax

q
−D

(
q(z|x)||p(z|x; θ(t))

)
+log

{
x; θ(t)

}
(1.69)

Since, LLE(θ(t); x) + 1
mH(q) ≤ log

{
x; θ(t)

}
by theorem 16, the maximum

value is attained in (1.69) for q(z|x) = p(z|x; θ(t)). Thus, the E-step can
be summarized by

q(t+1)(x|x) = p(z|x; θ(t)) (1.70)

The E-step can involve procedures such as sum-product for obtaining
marginals and/or conditions, if the distribution is defined on a graphi-
cal model, to obtain p(z|x; θ(t)).

2. Maximization Step:

θ(t+1) = argmax
θ

LLE(θ; x) +
1
m
H(q(t+1))

Since the maximization is over θ and since H(q) is independent of θ, we
can rewrite the M-step to be
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θ(t+1) = argmax
θ

LLE(θ; x) = argmax
θ

∑
z

q(z|x) log p(x, z; θ) (1.71)

In essence, the M-step looks very much like an ordinary maximum like-
lihood estimation problem, but using predicted values of z. The M-step
may not have a closed form solution, in which case, it may be required to
resort to iterative techniques such as IPF (1.7.6).

Let us take some examples to illustrate the generic EM procedure outlined
here. It is particularly useful if the term log p(x, z; θ) were to split up into smaller
terms (such as sum of sufficient statistics in the case of exponential models).
Consider the Gauss Markov process specified by Zt+1 = θZT +Wt, where Z0 ∼
N (0, 1) and Wt ∼ N (0, 1). Let θ ∈ < be the parameter to be estimated. The
graphical model representation is V = {Z1, Z2, Z2, . . . , Zn, X1, X2, . . . , Xn} and
E = {(Z1, Z2), (Z1, X1), (Z2, Z3), (Z2, Z2), . . . , (Zn−1, Zn), (Zn−1, Xn−1), (Zn, Xn)}.

Say what we observe are noisy, indirect observations Xt = Zt + Vt, Vt ∼
N (0, σ2) being the observation noise. Let x be a set of m iid observations for
X while Z remains hidden. Both X and Z are vectors of random variables of
size n each. Then,

LL(θ; x) =
1
m

m∑
i=1

p(x(i); θ)

=
1
m

m∑
i=1

log

{∫
z

n∏
t=1

1√
2πσ

exp

{
−1

2
(x(i)
t − zt)2

σ2
p(z; θ)dz

}}
(1.72)

which is a mess! In contrast, the lower-bound component LLE allows us to
move the integration outside the logarithm, enabling more simplification:

LLE(θ; x) =
1
m

∫
z

q(z|x) log p(xz; θ)dz

=
1
m

∫
z

q(z|x)
m∑
i=1

log p(x(i)z; θ)dz

=
1
m

∫
z

q(z|x)
m∑
i=1

[
log p(z, θ) +

n∑
t=1

log
(

1√
2πσ2

)
− 1

2σ2
(x(i)
t − zt)2

]
dz

As can be seen above, p(x(i)|z; θ) is independent of θ and therefore, the term
q(z|x) log p(x(i)|z; θ) can be brought out as a separate constant (since that part
of the integral will not change with θ). This leads to the following simplified
expression for LLE
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LLE(θ; x) =
1
m

∫
z

q(z|x) log p(xz; θ)dz

= C +
1
m

∫
z

q(z|x) [log p(z1) + log p(z2|z1; θ) + . . .+ log p(zn|zn−1; θ)] dz

= C ′ +
1
m

∫
z

q(z|x) [log p(z2|z1; θ) + . . .+ log p(zn|zn−1; θ)] dz

In the E-step, the Kalman filter can be used to compute p(z|x; θ(t+1)) in terms
of θ(t). In the M-step, first order necessary optimality conditions on LLE will
yield θ(t+1).

Recall from Section 1.7.7, equation (1.63) that the likelihood maximization
problem can be viewed as a problem of minimizing the KL divergence between
the empirical distribution and the model distribution.

p̂MLE = argmin
p∈E(f)

D (℘x||p(x; θ))

While the likelihood maximization perspective lead to a lower-bounding strategy
in the form of EM, an alternative upper-bounding strategy can also be adopted
to view EM, though it is only the older bound in disguise. Making use of
theorem 16, we can prove that for all distributios q(z|x) and any parameter θ,
the following always holds:

D (℘(x)||p(x; θ)) ≤ D (℘(x)q(z|x)||p(x, z; θ)) (1.73)

This statement says that the KL divergence between the empirical and model
distributions that maximum likelihood tries to minimize is upperbounded by
the KL divergence between the ‘completed’ empirical and model distributions.
As before, it can also be shown that the bound is tight if and only if q(z|x) =
p(z|x; θ). The E-step will remain the same as before. Only, the M-step will
slightly change:

1. KL divergence perspective of E-Step:

q(t+1)(z|x) = argmin
q

D
(
℘(x)q(z|x)||p(x, z; θ(t))

)
2. KL divergence perspective of M-Step:

θ(t+1) = argmin
θ

D
(
℘(x)q(t+1)(z|x)||p(x, z; θ)

)
These modified E and M steps correspond to coordinate descent in constrast to
the earlier perspective of coordinate ascent.
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1.9 Variational Methods for Inference

In contrast to the sampling methods, variational methods are deterministic and
fast algorithms that generate good approximations to the problems of comput-
ing marginals and MAP configurations. They are involve the reformulation of
the quantity of interest (such as log-likelihood, first order moments, marginal
distributions, etc.) as the solution of some optimization problem. They are
useful in several ways:

• The variational formulation often leads to efficient algorithms for deter-
mining exact solutions. Many algorithms discussed thus far, could be
discovered as efficient techniques for solving the variational optimization
problem.

• For many quantities that are hard to compute, the variational perspec-
tive leads to approximate solutions. Mean field and loopy sum product
algorithms can also be viewed as special cases of approximation through
variational inference.

• In contrast to approximate sampling methods, these are faster, determin-
istic and cheaper (in terms of memory).

We will motivate variational methods using two examples.

1. The first is the mean field algorithm for the Ising model defined on a graph
G =< V, E > of binary (0/1) variables, with pairwise interactions between
adjacent variables captured through their product (xsxt)

p(x, η) ∝ exp

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηstxsxt


The Gibbs sampling for the Ising model derives updates of the form

x
(t+1)
i =


1 if u ∼ uniform[0, 1] ≤ 1 + exp

−ηi +
∑

j∈N (s)

ηijx
(t)
j


0 otherwise

which correspond to a non-deterministic version of the message passing
algorithm (owing to u ∼ uniform[0, 1]). The updates are very simple and
local, making this a good choice.

The mean field method has its roots in physics. It makes a deterministic to
the Gibbs update by replacing each random variable Xi by a deterministic
mean parameter µi ∈ [0, 1] (which can be thought of as the probability of
Xi = 1) and updates µi using

µ
(t+1)
i =

1 + exp

−ηi +
∑

j∈N (s)

ηijµ
(t)
j


−1
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Thus, the mean field algorithm is exactly a message passing algorithm, but
has some semantics related to sampling techniques. We will see that the
mean field algorithm is a specific instance of variational methods and it
can be formulated as coordinate descent on a certain optimization problem
and subsequently be analysed for convergence, etc.

2. The loopy sum-product (also called the loopy belief propagation) method
is another instance of variational methods. ‘Loopy’ here means on graphs
with cycles. If the tree width were low, you could create a junction tree
and perform message passing, but what if the tree width were large, such
as with a grid. This algorithm is the most naive application of the sum-
product updates (originally developed for trees in Section 1.2.2) and apply
it to graphs with cycles. This naive procedure has had extraordinary
success in the fields of signal processing, compute vision, bioinformatics
and most importantly, in communication networks, etc.

The message passing algorithm, when applied on a tree, breaks it into
subtrees and passes messages between subtrees, which are independent
(share no variable). But the moment you add an edge connecting any two
subtrees, they are not independent any more. Passing messages around in
cycles can lead to over-counting (analogous to gossip spreading in a social
network). Thus, the message passing algorithm ceases to remain an exact
algorithm and does not even gurantee convergence.

What turns out to be actually very important is how long are the cycles
on which messages are being propagated; for long cycles, the effects of
over-counting can be weakened. More technically speaking, the behaviour
will depend on

(a) The girth of the graph (length of cycles): For larger girth, you could
run the message passing for many iterations before you land up with
overcounting.

(b) The strength of the potentials are, or in other words, how close to
independence is the model. For example, in the Ising model itself,
based on the coupling induced through terms of the form xsxt, if the
coupling is weak, almost close to independence, the algorithm will
be perfect, giving almost exact answers. There is a region of tran-
sition, based on strengthening of the coupling terms, beyond which
the algorithm breaks down.

3. The idea behind variational methods is to represent the quantity of interest
(such as the marginal or mode over a graphical model) as the solution to
an optimization problem. For example, the solution to Ax = b (as in the
case of inferencing for Kalman filters) with A � 0 and b ∈ <n can be
represented as the solution to

x̃ = argmin
x

1
2
xTAx− bTx
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This is precisely a variational formulation for the linear system Ax = b.
If the system of equations Ax = b is large48 the solution x̃ = A−1b may
not be easy to compute, in the event of which, iterative (and sometimes
approximate) solutions to the optimization problem can be helpful. One of
the most succesful techniques for solving such systems (without inverting
matrices) is the conjugate gradient method, discussed in Section 3.5.8,
that solves the system in exactly O(n) steps.

4. As will be seen on page 48 in Section 1.4, the bernoulli distribution can
be expressed as

p(x, η) = exp {ηx−A(η)}

for X ∈ {0, 1}. A(η) = log (1 + eη). We saw in Section 1.4 that the mean
is given by

µ = Eη = ∇A(η) =
eη

1 + eη
= (1 + e−η)−1

The key is in noting that µ corresponds to the ‘slope of’ a supporting
hyperplane (see Figure 3.38 on page 217) for epi(A(η)) in a (η,A(η)) space.
Thus, we are interested in all the hyperplanes that lie below epi(A(η)),
with intercept C along the axis for A(η):

µT η − C ≤ A(η)

and want to get as close to a supporting hyperplane as possible

C∗ = sup
η
{µT η −A(η)} = A∗(µ)

Borrowing ideas from duality theory (c.f. Section 3.4), we call the function
sup
η
{µT η −A(η)} as the dual function A∗(µ). C∗ is the intercept for the

supporting hyerplane. In the case of the bernoulli example, we have

A∗(µ) = sup
η
{µT η−log 1 + eη} =

{
(1− µ) log (1− µ) + µ logµ if µ ∈ (0, 1)
∞ otherwise

Under nice conditions (such as under Slaters constraint qualification dis-
cussed in definition 52 on page 236), the operation of taking duals is
symmetric ((A∗)∗ = A), that is,

A(θ) = sup
µ
{µT η −A∗(µ)}

Under the conditions of zero duality gap, it should happen that if

µ̂(η) = argmax
µ

{µT η −A∗(µ)}

48Of course, as we saw in Section 1.5, such a system comes up in the case of solution to
Kalman filters, but can be computed efficiently by exploiting the tree structure of the graph
in inverting the matrix. The discussion here is for general graphs.
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is the primal optimum, then µ̂T η − A∗(µ̂) is the supporting hyperplane
to A(η), meaning that µ̂ is the mean we were seeking. This yields a
variational representatation for the original problem of finding the mean.
The dual itself is also useful in determining the log-normalization constant
for problems such as parameter estimation. We can confirm in the simple
bernoulli case that indeed

µ̂(η) = µ(η) =
eη

1 + eη

We will now generalize the variational formulation of the bernoulli case to
the exponential family.

p(x; θ) = exp
{
θT f(x)−A(θ)

}
where, x ∈ <n and f : <n → <d. Let us say we are interested in computing the
first order moments

µ = E[f(x)] (1.74)

Following a similar line of argument as for the case of the bernoulli distribution,
we define the dual as

A∗(µ) = sup
θ

{
µT θ −A(µ)

}
The key ingredients in this calculation are to set the gradient with respect to θ
to 0, as a necessary first order condition.

µ−∇A(θ) = 0 (1.75)

This looks like the moment matching problem that results from maximum likeli-
hood estimation. The only difference is that µ need not come from data, it is the
argument to A∗(η). When will (1.75) have a solution? In the simple bernoulli
case, we already saw that we will have a solution η = − logµ − log 1− µ if
µ ∈ (0, 1). As another example, for the univariate Gaussian, f(x) = [x, x2] and
A(η) = 1

2σ2µ
2 + log σ ≡ − η2

1
4η2

+ 1
2 log (−2η2) (as seen on page 48). The system

(1.75) can be shown to have a solution only if µ2−µ2
1 > 0, that is if the variance

is positive. For two examples, the conditions under which solutions exist to
(1.75) are extremely simple - it should be possible to generate data using the
distribution.

Assuming that a solution θ(µ) exists to (1.75), and exploiting the fact that
θ(µ) satisfies moment matching conditions (1.75)

∑
x

p(x; θ(µ))f(x) = µ (1.76)
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and using the property that

A(µ) =
∑
x

A(µ)p(x; θ(µ))

the dual will have the form

A∗(µ) = θT (µ)µ−A(µ)

= θT (µ)

(∑
x

p(x; θ(µ))f(x)

)
−A(µ)

=
∑
x

p(x; θ(µ))
(
θT (µ)f(x)−A(µ)

)
=

∑
x

p(x; θ(µ)) log p(x; θ(µ))

= −H(p(x; θ(µ))) (1.77)

That is, the dual is precisely the negative entropy −H(p(x; θ(µ))) of the distri-
bution whose parameters θ(µ) are obtained by moment matching. The dual for
the bernoulli case which resembled an entropy was by no means a coincidence!
IfM is the set of all possible moments that make a solution to the system (1.75
or equivalently 1.76) feasible, that is

M =

{
µ ∈ <d

∣∣∣∣∣∑
x

p(x; θ)f(x) = µ for some p(.)

}

then the dual could also be expressed as

A∗(µ) =

{
−max H(p(x; θ(µ))) such that E[f(x)] = µ for µ ∈M
∞ otherwise

Another way of characterizing M is as the set of all first order moments that
could be generated by p(x; θ). In any case, M is often very had to characterize
and loop belief propagation etc. are often used to approximate it.

Finally, we will write down the variational problem as a reformulation of
(1.74), of which mean field, (loopy) sum-product, Gauss Seidel, Jacobi, etc can
be found to be special cases. Writing down the dual of the dual of (1.77), and
assuming zero duality gap, we get a reformulation of (1.74):

A(θ) = sup
µ∈M

{
µT θ −A∗(µ)

}
(1.78)

Again, A(θ) is a very hard function to compute, mainly becauseM is simple to
characterize. This maximumization problem is concave, since A∗(η) is concave
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and the constraint set M is convex. Under zero duality gap conditions (which
holds in this case), the optimal point will be achieved at µ̂(θ) = E[f(x)].

We will us take some examples to illustate the use of variational techniques.
For problems of estimating moments, f could be the feature functions. For
problems of estimating marginals, f can be chosen to be the indicator function.

The simplest example is for a two node chain: V = {X1, X2}, E = {(X1, X2)},
X1, X2 ∈ {0, 1} and

p(x; θ) ∝ exp {θ1x1 + θ2x2 + θ12x1x2}

The moments are: µi = E[Xi] = p(Xi = 1) and µ12 = E[X1X2] = p(X1 =
1, X2 = 1). The set M is

M =

{
µ ∈ <3

∣∣∣∣∣∑
x

p(x; θ)f(x) = µ for some p(.)

}
= {µi ∈ [0, 1], 0 ≤ µ12 ≤ min(µ1, µ2), 1 + µ12 − µ1 − µ2 ≥ 0}

Let us next write down the dual in terms of the entropy of the distribution

A∗(µ) = −H(p(x;µ)) =
∑
x1,x2

p(x1, x2) log p(x1, x2)

= µ12 logµ12 + (µ1 − µ12) log (µ1 − µ12) + (µ2 − µ12) log (µ2 − µ12)
+ (1 + µ12 − µ1 − µ2) log (1 + µ12 − µ1 − µ2) (1.79)

The corresponding variational problem will be

A(θ) = max
µ∈M

{θ1µ1 + θ2µ2 + θ12µ12 −A∗(µ)}

Though this can be solved using the method of Lagrange multipliers (c.f., Sec-
tion 3.4.1), etc., we expect the optimal solution to the variational problem to
be

µ̂1 =
1
z

∑
x1∈{0,1},x2∈{0,1}

x1 exp {θ1x1 + θ2x2 + θ12x1x2} =
exp θ1 + exp θ1 + θ2 + θ12

1 + exp θ1 + exp θ2 + exp θ1 + θ2 + θ12

There are many applications of variational inference to quantity estimation
problems that have either no exactly solutions, or that have solutions not com-
putable in polynomial time. Further, variational principles can be used to study
how the approximate algorithms behave; whether they have fix points, whether
they converge. what answers do they give, etc.. For instance, in belief prop-
agation from a variational perspective, the messages correspond to lagrange
multipliers (for active constraints in M) that are passed around.

In general, the sets M are very complex. For example, with a complete 7
node graph, there will be O(3 × 108) constraints. For an n node tree, you will
have 4(n − 1) constraints. The variational principle provides the foundation
for many approximate methods such as the Naive mean field algorithm, which
restricts optimization to a ‘tractable’ set of M, such as one for which the joint
distribution over a graphical model is factorized by treating the variables as
completely independent.
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Chapter 2

Linear Algebra

Dixit algorizmi . Or, “So said al-Khwarizmi”, being the opening
words of a 12th century Latin translation of a work on arithmetic by
al-Khwarizmi (ca. 780–840).

2.1 Linear Equations

Elementary algebra, using the rules of completion and balancing developed by
al-Khwarizmi, allows us to determine the value of an unknown variable x that
satisfies an equation like the one below:

10x− 5 = 15 + 5x

An equation like this that only involves an unknown (like x) and not its
higher powers (x2, x3), along with additions (or subtractions) of the unknown
multiplied by numbers (like 10x and 5x) is called a linear equation. We now
know, of course, that the equation above can be converted to a special form
(“number multiplied by unknown equals number”, or ax = b, where a and b are
numbers):

5x = 20

Once in this form, it becomes easy to see that x = b/a = 4. Linear algebra
is, in essence, concerned with the solution of several linear equations in several
unknowns. Here is a simple example of two equations and two unknowns x and
y, written in a uniform way, with all unknowns (variables) to the left of the
equality, and all numbers (constants) to the right:

89
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Figure 2.1: Solving linear equations: the geometric view.

2x− y = 0

−x+ 2y = 3

We woud like to find values of x and y for which these equations are true.
School geometry tells us how to visualise this: each equation is a straight line in
the xy plane, and since we want a value of x and y for which both equations are
true, we are really asking for the values of x and y that lie on both lines (that is,
the point of intersection of the two lines: see Fig. 2.1). Of course, if the lines do
not meet at a point, then there are no values of x and y that satisfy the equations.
And we can continue to solve problems like these geometrically: more unknowns
means lines become higher-dimensional flat surfaces (“hyperplanes”), and more
equations means we are looking for the single point of intersection of all these
surfaces. Visually though, this is challenging for all but a small minority of us,
geared as we are to live in a world of three spatial dimensions.
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Linear algebra, an extension of elementary algebra, gives us a way of looking
at the solution of any number of linear equations, with any number of variables
without suffering from this visual overload. In effect, equations are once again
converted to the simple form we just saw, that is, Ax = b, although A and b are
no longer just numbers. In fact, we will see that A is a matrix , and that x and
b are vectors (and in order not to confuse them with variables and numbers, we
will from now on use the bold-face notation x and b). Linear algebra, shows us
that solutions, if they exist, can be obtained in three different ways:

1. A direct solution, using techniques called elimination and back substitu-
tion.

2. A solution by “inverting” the matrix A, to give the solution x = A−1b.

3. A vector space solution, by looking at notions called the column space and
nullspace of A.

Understanding each of these requires a minimal understanding of vectors and
matrices, which we give in a somewhat compressed form here.

2.2 Vectors and Matrices

It is easiest to think of a vector as a generalisation of a single number. A
pair of numbers can be represented by a two-dimensional vector . Here is the
two-dimensional vector representation of the pair (2,−1):

u =

[
2
−1

]
This kind of vector is usually called a “column” vector. Geometrically, such a
vector is often visualised by an arrow in the two-dimensional plane as shown
on the left in Fig. ??. Multiplying such a vector by any particular number, say
2, multiplies each component by that number. That is, 2u represents the pair
(4,−2). Geometrically, we can see that multiplication by a number—sometimes
called scalar multiplication—simply makes gives a vector with a “longer” arrow
as shown on the right in the figure (assuming, of course, that we are not dealing
with zero-length vectors). In general, multiplication of a (non-zero) vector u
by different (non-zero) numbers a result in lines either in the direction of u (if
a > 0) or in the opposite direction
Suppose we now consider a second vector v corresponding to the pair (−1, 2),
and ask: what is u + v. This simply adds the individual components. In our
example:

u =

[
2
−1

]
v =

[
−1
2

]
u + v =

[
2− 1
−1 + 2

]
=

[
1
1

]
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Geometrically, the addition of two vectors gives a third, which can visualised as
the diagonal of the parallelogram formed by u and v (Fig. ??, left). It should be
straightforward to visualise that any point on the plane containing the vectors u
and v can be obtained by some linear combination au + bv, and that the space
of all linear combinations is simply the full two-dimensional plane containing u
and v (Fig. ??, right). For the two-dimensional example here, this plane is just
the usual xy plane (we will see that this is the vector space <2).
Although we have so far only looked at vectors with two components, linear
algebra is more general. It allows us to use the same operations with vectors of
any size. Suppose our vectors u and v are three-dimensional. Linear combina-
tions now still fill a plane containing the two vectors. But, this is no longer the
xy plane, since the vectors generated by the linear combinations are points in
three-dimensional space (we will see later, that is some “subspace” of the vector
space <3). Addition of a third vector w will also not necessarily result in a
point on this plane, and the space of linear combinations au + bv + cw could
fill the entire three-dimensional space.

Let us return now to the two equations that we saw in the previous section:

2x− y = 0

−x+ 2y = 3

It should be easy to see how these can be written in “vector” form:

x

[
2
−1

]
+ y

[
−1
2

]
=

[
0
3

]
(2.1)

That is, we are asking if there is some linear combination of the column vectors
[2,−1] and [−1, 2] that gives the column vector [0, 3]. And this is the point of
departure with the usual geometric approach: we visualise solutions of equations
not as points of intersections of surfaces, but as linear combination of vectors
(of whatever dimension): see Fig. 2.2.

To get it into a form that is even more manageable, we need the concept of
a “coefficient matrix”. A matrix is simply a rectangular array of numbers, and
the coefficient matrix for the left hand side of the linear combination above is:

A =

[
2 −1
−1 2

]

This is a 2 × 2 (“two by two”) matrix, meaning it has 2 rows and 2 columns.
You can see that the columns of the matrix are simply the column vectors of
the linear combination. Let:
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Figure 2.2: Solving linear equations: the geometric view from linear algebra.
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x =

[
x

y

]
and b =

[
0
3

]

Then, the matrix equation representing the same linear combination is:

Ax = b (2.2)

This, as you can see, is just as simple, at least in form. as the very first equation
we started with (5x = 20). We still need to know what Ax means. Comparing
Equations 2.2 and 2.2, Ax = x (column 1 of A) + y (column 2 of A).

This extends easily enough to equations with more variables. Here are three
linear equations in three unknowns:

2x− y = 0

−x+ 2y − z = −1

−3y + 4z = 4

The coefficient matrix A is:

A =

 2 −1 0
−1 2 −1
0 −3 4


The right hand side of the matrix equation is:

b =

 0
−1
4


What we are trying to do is to find values of x, y and z such that:

x(column 1 of A) + y(column 2 of A) + z(column 3 of A) =

 0
−1
4
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It is easy to see now that the solution we are after is x = 0, y = 0, z = 1. Or, in
vector form, the solution to the matrix equation Ax = b is:

x =

 0
0
1


In general, things are not so obvious and it may be the case that for some

values of A and b, no values of x, y and z would solve Ax = b. For example,
b may be a point in 3-dimensional space that could not be “reached” by any
linear combinations of the vectors comprising the columns of A. Here is a simple
example:

A =

 1 0 1
0 1 1
0 0 0

 b =

 0
0
1


Seqences of mathematical operations—algorithms, if you will—have been

devised to check if solutions exist, and obtain these solutions mechanically when
they exist. There are three such approaches we will look at: obtaining solutions
by elimination (the simplest), obtaining solutions by matrix inversion (a bit
more complex), and finally, a vector space solution (the hardest). We look at
each of these in turn.

2.3 Solution of Linear Equations by Elimination

We will now examine a systematic method as “elimination”—first presented by
Gauss, for solving a linear system of equations. The basic idea is to progressively
eliminate variables from equations. For example, let us look once again at the
two equations we saw earlier:

2x− y = 0

−x+ 2y = 3

Elimination first multiplies both sides of the second equation by 2 (this clearly
leaves it unchanged):

−2x+ 4y = 6

We can also add equal amounts to the left and right sides without changing the
equation. So, adding the left hand side of the first equation to the left hand
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side of this new equation, and the right hand side of the first equation to the
right hand side of this new equation also does not alter anything:

(−2x+ 4y) + (2x− y) = 6 + 0 or 3y = 6

So, the two original equations are the same as:

2x− y = 0
3y = 6

You can see that x has been “eliminated” from the second equation and the set
of equations have been said to be transformed into an upper triangular form.
In this form, it is easy to see that y = 6/3 = 2. The value of x can then
be obtained by substituting back this value for y in the first equation, to give
2x − 2 = 0 or x = 1. The different steps in the elimination process can be
expressed clearly using matrices, which we do now. As a running example, we
will use the following set of 3 equations:

x+ 2y + z = 2

3x+ 8y + z = 12

4y + z = 2

We now know what the coefficient matrix for these equations is:

A =

 1 2 1
3 8 1
0 4 1


A point of notation. The entry in row 1, column 1 of A will be denoted a11; row
1, column 2 will be a12 and so on. So, in the matrix above, a11 = 1, a12 = 2
etc.. In general, the entry in row i, column j will be denoted aij .

Before we plunge into the details of the matrix operations, let us just go
through the procedure mechanically (taking on faith for the moment that the
steps are indeed valid ones). Our first elimination step is to eliminate x from the
second equation. We multiply the first equation by a multiplier and subtract it
from the second equation with the goal of eliminating the x coefficient in the
second equation. We will call it the (2, 1) step. The first element of the first
row a11 determines the value of the multiplier (3 in this case) and it is called a
pivot. For reasons that will become clear, pivots should not be 0. The resultant
coefficient matrix is:
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A1 =

 1 2 1
0 2 −2
0 4 1


The next step will be to get a 0 in the first column of the third row (a31) of A1.
Since this is already the case, we do not really need to do anything. But, just
to be pedantic, let us take it as giving a coefficient matrix A2, which is just the
same as A1:

A2 =

 1 2 1
0 2 −2
0 4 1


We now move on to eliminating a32 in A2. Using a22 in A2 as the next pivot,
we subtract from the third row a multiple (2) of the second row. The resultant
coefficient matrix is now:

A3 =

 1 2 1
0 2 −2
0 0 5


A3 is called an upper triangular matrix for obvious reasons (and sometimes
denoted by U). We will see shortly that with the sequence of operations that
we have just done, the left hand side of the original matrix equation Ax is
transformed into A3x by progressively multiplying by a sequence of matrices
called “elimination matrices”.

2.3.1 Elimination as Matrix Multiplication

Let us go back to the original matrix equation:

 1 2 1
3 8 1
0 4 1


 x

y

z

 =

 2
12
2


We take a step back and look again at the first elimination step (“multiply
equation 1 by 3 and subtract from equation 2”). The effect of this step is to
change the right-hand side second equation from 12 to 12− 3× 2 = 6 and leave
the right-hand sides of all other equations unchanged. In matrix notation, the
right hand side, after the first elimination step, is:
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b1 =

 2
6
2


A little calculation should be sufficient to convince yourself that b1 can be
obtained by pre-multiplying b by the matrix:

E =

 1 0 0
−3 1 0
0 0 1


That is, b1 = Eb. You can check this by doing the usual linear combination of
the columns of E with the components of b, but the following “row-by-column”
view—which is simply the linear combination expanded out—may be even more
helpful:

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 b1

b2

b3

 =

 a11b1 + a12b2 + a13b3

a21b1 + a22b2 + a23b3

a31b1 + a32b2 + a33b3


So, if the elimination step multiplies the left-hand side of of the matrix equation
Ax = b by the matrix E, then to make sure nothing is changed, we have to do
the same to the left-hand side. That is, the elimination step changes the left-
hand side to EAx. But now we are stuck—EA is a product of two matrices,
which we have not come across before. What does this mean?

Well, we know what we would like EA to mean. We would like EA = A1.
That is:

 1 0 0
−3 1 0
0 0 1


 1 2 1

3 8 1
0 4 1

 =

 1 2 1
0 2 −2
0 4 1

 (2.3)

Taking a vector as simply being a matrix with a single column, we would like to
extend the old matrix-vector multiplication (Ax) idea to general matrix-matrix
multiplication. Suppose B is a matrix comprised of the column vectors b1, b2

and b3. Then AB is a matrix that has columns Ab1, Ab2, and Ab3. So, in the
example above, EA is a matrix that has columns Ea1, Ea2 and Ea3 (where a1,
a2 and a3 are the columns of A). Let us work out what these are:
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Ea1 =

 1 0 0
−3 1 0
0 0 1


 1

3
0

 =

 1× 1 + 0× 3 + 0× 0
−3× 1 + 1× 3 + 0× 0
0× 1 + 0× 3 + 1× 0

 =

 1
0
0


This is the first column of the matrix A1 on the right-hand side of Equation
2.3.1. You can check that Ea2 and Ea3 do indeed give the other two columns
of A1. Once again, there is a “row-by-column” view of multiplying two matrices
that you will often find helpful: a11 a12 a13

a21 a22 a23

a31 a32 a33


 b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

 a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33

a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33


At this point, it is important that you are aware of some properties of matrix
multiplication. First, multiplying matrices A and B is only meaningful if the
number of columns of A is the same as the number of rows of B. If A is an
m× n matrix, and B is an n× k matrix, then AB is an m× k matrix. Second,
just like with ordinary numbers, matrix multiplication is “associative”; that is,
(AB)C = A(BC) (with numbers, (3×4)×5 = 3× (4×5). But, unlike ordinary
numbers, matrix multiplication is not “commutative”. That is AB 6= BA (but
with numbers, 3× 4 = 4× 3).

It is the associativity of matrix multiplication that allows us to build up
a sequence of matrix operations representing elimination. Let us return once
again to the matrix equation we started with:

 1 2 1
3 8 1
0 4 1


 x

y

z

 =

 2
12
2


We have seen, how, by multiplying both sides by the elimination matrix E
(which we will now call E21, for reasons that will be obvious), gives:

E21(Ax) = (E21A)x = E21b

or:

A1x = E21b
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where A1 = E21A. Without more elaboration, we now simply present the elim-
ination matrices E31 and E32 that correspond to the remaining two elimination
steps.

E31 =

 1 0 0
0 1 0
0 0 1

 E32 =

 1 0 0
0 1 0
0 −2 1


The general rule for constructing an elimination matrix is this. If we are look-
ing at n equations in m unknowns, and an elimination step involves multiplying
equation j by a number q and subtracting it from equation i, then the elimi-
nation matrix Eij is simply the n ×m “identity matrix” I, with aij = 0 in I
replaced by −q. For example, with 3 equations in 3 unknowns, and an elimina-
tion step that “multiplies equation 2 by 2 and subtracts from equation 3”:

I =

 1 0 0
0 1 0
0 0 1

 E32 =

 1 0 0
0 1 0
0 −2 1


Each elimination step therefore results in a multiplication of both sides of
Ax = b by the corresponding elimination matrix. In our example, the three
elimination steps give:

E32E31E21(Ax) = E32E31E21b

which, using the property of associativity of matrix multiplication is:

(E32(E31(E21A)))x = (E32E31E21)b

Or:

Ux = (E32E31E21)b = c (2.4)

where U is the upper triangular matrix E32A2 = E32(E31A1 = E32(E31(E21A)).
Here:

U =

 1 2 1
0 2 −2
0 0 5

 c =

 2
6
−10

 (2.5)
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Before we leave this section, there is one aspect of elimination that we have
not yet considered. Let us look at the same equations as before, but in the
following order:

4y + z = 2
x+ 2y + z = 2

3x+ 8y + z = 12
The coefficient matrix A is then:

A =

 0 4 1
1 2 1
3 8 1

 (2.6)

Now clearly, no amount of elimination can get this matrix into an upper tri-
angular form, since that would require a non-zero entry for a11. Since there
is no reason to keep the equations in this particular order, we can exchange
their order until we reach the one we had in the previous section. Just as a
single elimination step can be expressed as multiplication by an elimination
matrix, exchange of a pair of equations can be expressed by multiplication by a
permutation matrix.

The general rule for constructing a permutation matrix is this. If we are
looking at m equations in n unknowns, and we want to exchange equations i
and j, then the permutation matrix Pij is simply the m × n “identity matrix”
I, with rows i and j swapped:

I =

 1 0 0
0 1 0
0 0 1

 P12 =

 0 1 0
1 0 0
0 0 1


Multiplying a matrix A by P12 will swap rows 1 and 2 of A:

 0 1 0
1 0 0
0 0 1


 0 4 1

1 2 1
3 8 1

 =

 1 2 1
0 4 1
3 8 1


What happens if, in spite of all exchanges, elimination still results in a 0 in
any one of the pivot positions? Then we consider the process to have failed,
and the equations do not have a solution. Assuming this does not happen,
we will reach a point where the original equation Ax = b is transformed into
Ux = c (as we did in Equation 2.4). The final step is that of back-substitution,
in which variables are progressively assigned values using the right-hand side of
this transformed equation (in Equation 2.3.1, z = −2, back-substituted to give
y = 1, which finally yields x = 2).
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2.4 Solution of Linear Equations by Matrix In-
version

So, it is possible to represent the steps leading to the solution of a set of linear
equations by elimination entirely as a sequence of matrix multiplications. We
now look at obtaining the solution by considering matrix “inversion”. What
we are trying to do is to really find a matrix analog for division with ordinary
numbers. There, with an equation like 5x = 20, we are able to get the answer
immediately using division: x = 20/5. Can we not do the same with matrices?
That is, given Ax = b, can we not get x = b/A. Well, not quite. But we can
get close: we find x = A−1b, where A−1 is the matrix equivalent of 1/A, and is
called the inverse of the matrix.

2.4.1 Inverse Matrices

The starting point is just the same as with numbers. We know a/a = aa−1 = 1
for a non-zero number a. For matrices, we want to find A−1 such that AA−1 = I
where I is the identity matrix. Actually, with matrices, we can ask for inverses
in two different ways: AA−1 and A−1A, called for obvious reasons, right and
left inverses of A (recall that since matrix multiplication does not necessarily
commute, these could be different).

Let us start with m× n (“square”) matrices. Our definition of an inverse is
simply this: if there exists a matrix A−1

L such that A−1
L A = I, where I is the

N × N identity matrix, then A−1
L is called the left inverse of A. On the other

hand, if there exists a matrix A−1
R such that AA−1

R = I, then A−1
R is called the

right inverse of A. Now, for square matrices, it is easy to see that the left and
right inverses are the same:

A−1
L (AA−1

R ) = (AA−1
L )A−1

R

Or,

A−1
L = A−1

R

So, for square matrices at least, we can simply talk about “the inverse” A−1.
The question that now concerns us is: do all square matrices have an inverse?
The short answer is “no”. Here is a matrix that is not invertible:

A =

[
1 3
2 6

]
(2.7)

We can see the conditions under which an inverse exists by referring back to the
matrix equation that formed the basis of solution by elimination:
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Ax = b

Let us assume that A−1 exists. Then, the solution reached by elimination would
simply be:

x = A−1b (2.8)

Therefore, if the inverse exists, then elimination must produce an upper trian-
gular matrix with non-zero pivots. In fact, the condition works both ways—if
elimination produces non-zero pivots then the inverse exists (you can see very
quickly that elimination applied to the matrix A in Equation 2.4.1 would give
give a row of 0s). Otherwise, the matrix is not invertible, or singular . Another
way to look at this is that the matrix will be singular if its “determinant” is 0.
We will look at what this means later (in Section 2.10), but it is related to the
elimination producing non-zero pivots.

If the inverse exists, then the only solution to the matrix equation Ax = b
is x = A−1b. This gives another way to test for the singularity of a matrix:
if there are solutions other than x = 0 to Ax = 0. For example, with A in
Equation 2.4.1, the vector x = [3,−1] is a solution to Ax = 0.

A final observation may be evident from the example in Equation 2.4.1. A
matrix is singular if the columns (or rows) are not linearly independent.

Now let us consider a slight variant of the matrix A in Equation 2.4.1:

A =

[
1 3
2 7

]

We believe that this matrix is invertible. How can we determine it’s inverse?
Let the inverse be

A−1 =

[
a c

b d

]
(2.9)

The system of equations AA−1 = I can be written as:

[
1 3
2 7

][
a c

b d

]
=

[
1 0
0 1

]
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Again, recall the view of matrix multiplication in which each column on the
right hand side is a linear combination of the columns of A:

[
1 3
2 7

][
a

b

]
=

[
1
0

]

and

[
1 3
2 7

][
c

d

]
=

[
0
1

]

So, once we solve these two sets of linear equations, we can assemble A−1 from
the values of a, b, c, and d. We are back, therefore, to solving linear systems of
equations— the Gaussian elimination procedure for a single set of linear equa-
tions with a single column vector on the right-hand side has to be generalised.
The process used is called the Gauss-Jordan procedure.

2.4.2 Gauss-Jordan Elimination

The Guass-Jordan elimination method addresses the problem of solving several
linear systems Axi = bi (1 ≤ i ≤ N) at once, such that each linear system has
the same coefficient matrix A but a different right hand side bi.

From Section 2.3, we know that Gaussian elimination is nothing more than
multiplication by elimination matrices, that transforms a coefficient matrix A
into an upper-triangular matrix U :

U = E32(E31(E21A)) = (E32E31E21)A

Here Eij is an elimination matrix constructed as we described before (replacing
the appropriate 0 in the identity matrix with a non-zero number). Of course,
we might, in general, be required to perform row permutation operations and
they will simply as appear as multiplication by permutation matrices. But, let
us ignore this complication for the moment. Suppose now we applied further
elimination steps until U was transformed into the identity matrix. This means
multiplication by more matrices:

I = E13(E12(E23(E32(E31(E21A))))) = (E13E12E23E32E31E21)A = BA
(2.10)
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By definition B = (E13E12E23E32E31E21) must be A−1. And this is what
Gauss-Jordan does: it simply runs the elimination steps further until the upper-
triangular matrix is converted into the identity matrix. So, A−1 can be com-
puted by applying the same sequence of elimination steps to the identity matrix.
A standard technique for carrying out the same elimination steps on two ma-
trices A and B is to create an augmented matrix [A B] and carry out the
elimination on this augmented matrix. Gauss-Jordan can therefore be sum-
marised in a single line: perform elimination steps on the augmented matrix
[A I] (representing the equation AB = I) to give the augmented matrix [I A−1]
(representing the equation IB = A−1). Or, in matrix multiplication terms: We
illustrate the process with the example matrix we looked at earlier:

[
1 3 1 0
2 7 0 1

]
Row2−2×Row1=⇒

[
1 3 1 0
0 1 −2 1

]
Row1−3×Row2=⇒

[
1 0 7 −3
0 1 −2 1

]

One could verify that the inverse of A is given by

A−1 =

[
7 −3
−2 1

]
(2.11)

Gauss-Jordan therefore gives us a method to construct the inverse of a co-
efficient matrix A, and therefore directly solve Ax = b as x = A−1b.

What if A is not a square matrix but rather a rectangular matrix of size
m × n, such that m 6= n. Does there exist a notion of A−1? The answer
depends on the rank of A.

• If A is full row rank and n > m, then AAT is a full rank m ×m matrix
and therefore (AAT )−1 exists. The matrixAT (AAT )−1 yields the identity
matrix when multiplied to A on its right, i.e., AAT (AAT )−1 = I and is
called the right inverse of A. When the right inverse of A is multiplied
on its left, we get the projection matrix AT (AAT )−1A, which projects
matrices onto the row space of A.

• If A is full column rank and m > n, then ATA is a full rank n× n matrix
and therefore (ATA)−1 exists. The matrix (ATA)−1AT yields the identity
matrix when multiplied to A on its left, i.e., (AAT )−1ATA = I and is
called the left inverse of A. When the left inverse of A is multiplied on its
right, we get the projection matrix A(ATA)−1AT , which projects matrices
onto the column space of A.

What if A is neither full row rank nor full column rank? In Section 2.13, we
define the pseudoinverse of any m × n matrix, without any restrictions on its
rank.
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2.5 Solution of Linear Equations using Vector
Spaces

We now turn to the third approach for solving linear equations. This is, in
some sense, the most abstract, and involves the idea a vector spaces. A vector
space is a collection of vectors that, informally speaking, may be multiplied by a
number and added. More formally, a vector space is a set of vectors on which two
operations are defined: vector addition and scalar multiplication. Additionally,
these two operations satisfy certain natural conditions which we will elaborate
shortly. A well-known example is the vector space <2. This consists of all 2
dimensional column vectors with real-valued components (this is also just the
entire xy plane). Similarly, the space <n comprises all n dimensional column
vectors with real-valued components.

More generally, if a set of vectors V is to qualify as a “vector space” then two
vector operations—addition and scalar multiplication—have to be defined, and
they have to result in vectors within the set V. The set, or space V is then said
to be “closed” under the operations of addition and scalar multiplication. Now,
given vectors u and v in a vector space, all scalar multiples of vectors au and
bv are in the space, as is their sum au + bv. That is, all linear combinations of
elements in the space are also elements of the space ((V ) is closed under linear
combination). If a subset (VS) of any such space is itself a vector space (that
is, (VS) is also closed under linear combination) then (VS) is called a subspace
of (V ). All this may seem a bit abstract, and some examples may help:

1. The set of vectors <2 consisting of all two-dimensional vectors with real-
valued components is a vector space. Adding any two vectors in the set
gives a vector that is also in the set. Scalar multiplication of any vector in
the set is a vector also in <2 (you may find these easy to see by visualising
the vectors in the xy plane).

2. The set of vectors (<2)+ consisting of all two-dimensional vectors in the
positive quadrant is not a vector space. Adding a pair of vectors in (<2)+
results in a vector in (<2)+). But, unfortunately, multiplying by a scalar
may not. For example, every vector −3v (v ∈ (<2)+) does not belong to
(<2)+.

3. The subset <3
S of <3 consisting of vectors of any length through the origin

(0, 0, 0) is a subspace of <3. Adding vectors in <3
S clearly results in an

element of the set, as does multiplication by a scalar. It is important that
the origin (0, 0, 0) is included: otherwise, multiplication of a vector by 0
would result in a vector not in the subset.

2.5.1 Vector Spaces and Matrices

Our condition on vector spaces has nothing really to do with vectors: all we
need is that a pair of operations, addition and scalar multiplication be defined
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on a set of elements. So, we are now ready to go a further step, and drop the
restriction that vector spaces consist only of vectors. We can, for example, talk
of a “vector” space M consisting of all 2× 2 matrices. It is easy to check that
this is indeed closed under (matrix) addition and scalar multiplication (we have
not come across this before: it is simply the multiplication of every element
of the matrix by the number comprising the scalar). Just as with vectors, a
subspace of M is then some subset that is also a vector space.

Vector spaces of matrices provide a novel way of looking at the solution of
Ax = b. Recall that Ax is simply a linear combination of the columns of the
matrix A. All possible linear combinations of the columns produce a set of all
possible column vectors (in effect, all possible b’s). This set is called the column
space of A, or C(A). Given b, therefore, when we ask: is there a solution to
Ax = b, we are really asking if the particular b we are given is in the column
space of A. An example may help. Consider the matrix A:

A =


1 1 2
2 1 3
3 1 4
4 1 5


The column space C(A) is a subspace of <4 (are you sure you understand why

this is so?). We can ask an number of questions now. What is in this subspace?
Obviously, each column of A is in C(A). Additionally, C(A) contains all linear
combinations of the columns of A. Is C(A) the entire 4−dimensional space <4?
If not, how much smaller is C(A) compared to <4?

Equivalently, we can pose this problem as follows. Consider the linear system
Ax = b. For which right hand sides b does a solution x always exist? A
solution x definitely does not exist for every right hand side b, since there are
4 equations in 3 unknowns. Let us analyse this further by writing down the
system of equations

Ax =


1 1 2
2 1 3
3 1 4
4 1 5


 x1

x2

x3

 =

 b1

b2

b3

 (2.12)

Our first point is that there are many vectors b which cannot be expressed
as the linear combination of the columns of A. That leads to the question, which
right hand side b allows the equation to be solved. One value of b for which the
equation can be solved is the zero vector, for which the corresponding solution
is x = 0. Three other trivial values of b are the values corresponding to every
column of A. In particular, we can solve Ax = b whenever b is in the column
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space C(A). When b is a combination of columns of A, the combination tells
us what exactly x must be.

Do all the columns of A contribute something ‘new’ to the space C(A)1? In
other words, can we get the same space C(A) using less than three columns of
A? In this particular example, the third column of A is a linear combination of
the first two columns of A. C(A) is therefor a 2−dimensional subspace of <4.
In general, if A is an m× n matrix, C(A) is a subspace of <m.

2.5.2 Null Space

The null space of a matrix A, referred to as N(A), is the space of all solutions
to the equation Ax = 0. The null space of an m× n matrix A is a subspace of
<n.

Cosinder the example matrix A discussed in the previous section. Its null
space is a subspace of <3. We will try to figure out the null space of the matrix
A by observing the following system of equations:

Ax =


1 1 2
2 1 3
3 1 4
4 1 5


 x1

x2

x3

 =

 0
0
0

 (2.13)

One obvious solution to the system is the zero vector. The null space will
always contain the zero vector. Making use of the observation that the columns
of A are linearly dependent, we find a second solution to the system as:

x∗ =

 1
1
−1

 (2.14)

Thus, x∗ is in the null space N(A). Every multiple of x∗ is also in the null
space. Each element of the null space N(A) is of the form

c.x∗ =

 c

c

−c

 (2.15)

1In subsequent sections, we will refer to these columns as pivot columns.
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where c ∈ <. Thus, the null space N(A) is the line passing through the zero
vector [0 0 0] and [1 1 − 1].

Do solutions to Ax = 0 always yield a vector space? The answer is yes and
this can be proved by observing that if Av = 0 and Aw = 0, then A(v+w) = 0
and A(pv) = 0 where p ∈ <. In general, there are two equivalent ways of
specifying a subspace.

1. The first way is to specify a bunch of vectors whose linear combinations
will yield the subspace.

2. The second way is to specify a system of equations of the form Ax = 0
and any vector x the satisfies the system is an element of the subspace.

What about the set of all solutions to the equation Ax = b - do elements
of this set form a space? The answer is a no. An easy way to see this is that
the zero vector is not a solution to this system (unless b is the zero vector) and
hence the solutions cannot form a space.

2.6 Elimination for Computing the Null Space
(Ax = 0)

In the last section we defined the null space of a matrix A. In this section,
we will turn the definition into an algorithm using the elimination technique
discussed in Section 2.3. We will take as an example, the following rectangular
matrix A

A =

 1 2 2 2
2 4 6 8
3 6 8 10

 (2.16)

2.6.1 Pivot Variables and Row Echelon Form

We note rightaway that column 2 of A is a multiple of column 1 - it is in the same
direction as column 1 and is therefore not indepedent. We expect to discover
that in the elimination process for computing the null space N(A). In terms
of rows, we observe that the third row is the sum of the first two rows. Thus,
the rows are also not independent - and again we hope to discover that in the
elimination process.

In essence, what elimination does is change the matrix A and consequently
its column space, while leaving the null space of A intact. We first choose the
element in position [1, 1] as the pivot element and perform the steps (2, 1) and
(3, 1) (recall the definition of a step from Section 2.3) to get the transformed
matrix A1.
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A1 =

 [1] 2 2 2
0 0 2 4
0 0 2 4

 (2.17)

We have got the first column in the desirable form. So next, we try to use
the element in position [2, 2] as the pivot element. But unfortunately it is a 0.
We look below it position [3, 2] hoping for a non-zero element so that we can do
a row exachange. But there is a zero below as well! That tells us that second
column is dependent on the first column.

Since we have nothing to do with the second column, we move to the thrid
column and choose the entry [2, 3] as the pivot. We perform the next elimination
step (3, 2), and obtain a third row of zeros. We will denote the resultant matrix
by U . Note that the pivots are marked in boxes.

U =

 [1] 2 2 2
0 0 [2] 4
0 0 0 0

 (2.18)

The matrix U is in the row echelon form. A matrix is said to be in row
echelon form if it satisfies the following requirements:

1. All nonzero rows are above any rows of all zeroes.

2. The leading coefficient of a row is always strictly to the right of the leading
coefficient of the row above it.

While reducing from the matrix A to U , we used only two pivots. In fact,
we have already discovered the most important number about the matrix A.
The number of pivots is 2 - which is also the rank of the matrix.

Fact: The rank of a matrix is the number of pivots used while reducing it to the
row echelon form using elimination.

We can now solve Ux = 0, which has the same solution as Ax = 0 (since
the elimination steps on zero vector always yield a zero vector). Thus, the null
space of U is the same as that of A. How do we describe these solutions? We
will first write down the equations corresponding to Ux = 0.

x1 + 2x2 + 2x3 + 2x4 = 0

2x3 + 4x4 = 0

We will descrie the solution by first separating out the two columns contain-
ing the pivots, referred to as pivot columns and the remaining columns, referred
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to as free columns. Variables corresponding to the free columns are called free
variables, since they can be assigned any value. Variables corresponding to the
pivot columns are called pivot variables, and their values can be determined
based on the values assigned to the free variables. In our example, variables x2

and x4 are free variables while x1 and x3 are the pivot variables.
Let us say we use the following assignment of values to free variables: x2 = 1,

x4 = 0. Then, by back substition, we get the following values: x1 = −2 and
x3 = 0. Thus, the following vector x′ is a solution to the system Ux = 0 (and
consequently the solution to Ax = 0) and therefore lies in N(A).

x′ =


−2
1
0
0

 (2.19)

This solution reiterates our first observation, viz., that column 2 is a multiple
of column 1.

We will find some more vectors in the null space. Any multiple c.x′, c< is
also in N(A). Note that c.x′ is a line. Are these the only vectors in N(A)?
Actually, no – we obtained this set of vectors by assigning only one set of values
to the free variables x2 and x4. We assign another set of values x2 = 0, x4 = 1,
and obtain the values of x1 and x3 by back-substitution to get another vector
x′′ in N(A).

x′′ =


2
0
−2
1

 (2.20)

Now we are in a position to specify all vectors in N(A). The null space will
contain all linear combinations of the two special solutions x′ and x′′. Every
vector in N(A) therefore has the form given in (2.21):

ax′ + bx′′, a ∈ <, b ∈ < (2.21)

What is the number of special (linearly independent) solutions for Ax = 0
if A is an m × n matrix? As we saw earlier, the rank r of a matrix equals the
number of pivots. The number of free variables is given by

no. of free variables = n− r
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The number of special solutions is exactly equal to the number of free vari-
ables. In the above example, we had n = 4, r = 2 and therefore number of free
variables was 2. The steps for characterizing the null space of a matrix A can
be summarized as follows:

1. Reduce A to the row echelon form.

2. If r is the number of pivots, find the k = n− r free variables.

3. Make k different assignments to the free variables. For each assignment,
use backsubstitution (using the row echelon form) to find the values of the
pivot variables. Each assignemt to the free variables yields a vector in the
null space.

2.6.2 Reduced Row Echelon Form

We will take a second look at the matrix U that we obtained by elimination.

U =

 [1] 2 2 2
0 0 [2] 4
0 0 0 0

 (2.22)

The last row of U is composed of zeroes. This is because row 3 of A was a linear
combination of rows 1 and 2 and this fact was discovered by elimination. How
can we clean U up further? We can do elimination upwards to get zeros above
as well as below the pivots. Elimination step (2, 1) on U yields the matrix U ′.

U ′ =

 [1] 2 0 −2
0 0 [2] 4
0 0 0 0

 (2.23)

Further, we will make all pivot elements equal to 1 by dividing the corre-
sponding row by the pivot element. This yields the matrix R.

R =

 [1] 2 0 −2
0 0 [1] 2
0 0 0 0

 (2.24)

The matrix R has zeroes above and below each pivot. This matrix is called
the reduced row echelon form (rref) of A. Matlab has the function rref(A) that
returns the reduced row echelon form of A. The system of equations Rx = 0 is
given as
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x1 + 2x2 − 2x4 = 0

x3 + 2x4 = 0

The solution to this system is the same the solution to the original system of
equations Ax = 0. By simple back-substitution, the vector x can be expressed
as:

x =


x1

x2

x3

x4

 =


−2 2
1 0
0 −2
0 1


[
x2

x4

]
(2.25)

Note that the specification of the null space in equation 2.25 is the same as
that in equation 2.21.

Let us suppose that we have already got a matrix A in the reduced row
echelon form (rref) R. Further, let us pretend that the pivot columns I come
before the free columns F . The matrix R can be written as

R =

[
I F

0 0

]
(2.26)

This block matrix is a very typical rref. We can easily do all the special
solutions at once. We will create a null basis N whose columns are the special
solutions; i.e., RN = 0. The following N satisfies this system:

N =

[
−F
I

]
=


−2 2
0 −2
1 0
0 1

 (2.27)

In fact there is a Matlab command null(A) that returns the null basis of A.
It first computes the rref of A and then composes N using the free columns of
A as well as the identity matrix of size equal to the rank of A.

Next, we will llustrate the same sequence of steps on the transpose matrix
At to obtain its row echelon form U and observe the pivots, rank and null space.
The solution to Atx = 0 is a column vector of size 3. Notice that the rank of
the transpose is again 2 and is the same as the number of pivot columns. There
is a single free column corresponding to the free variable x3.
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[1] 2 3
2 4 6
2 6 8
2 8 10

 E2,1,E3,1,E4,1
=⇒


1 2 3
0 0 0
0 2 2
0 4 4

 P2,3=⇒


1 2 3
0 [2] 2
0 0 0
0 4 4

 E4,2=⇒


[1] 2 3
0 [2] 2
0 0 0
0 0 0


(2.28)

Suppose we make the following assignment to the free variable x3 = −c.
Then the solution is given by

 −c−c
c

 = c

 −1
−1
1

 (2.29)

Thus, the null space of At is a line. Taking the elimination steps forward,
we can get the reduced row echelon form (as a block matrix) R for matrix At.


[1] 2 3
0 [2] 2
0 0 0
0 0 0

 E1,2=⇒


[1] 0 1
0 [2] 2
0 0 0
0 0 0

 (Row2
2 )

=⇒


[1] 0 1
0 [1] 1
0 0 0
0 0 0

 of the form⇐⇒

[
I F

0 0

]

(2.30)

The null basis N is

N =

[
−F
I

]
=

[
−F
I

]
=

 −1
−1
1

 (2.31)

2.6.3 Solving Ax = b

In this sub-section we will illustrate how to completely solve the system Ax = b,
if there is a solution. If there is no solution, we will need to identify this fact
and if there is some solution, we need to identify how many solutions it has.
Our running example will be a system of equations with the same coefficient
matrix A that was considered in the previous section (2.6).
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Ax =

 1 2 2 2
2 4 6 8
3 6 8 10



x1

x2

x3

x4

 =

 b1

b2

b3

 (2.32)

The third row is the sum of rows 1 and 2. In other words, if we add the left
hand sides, we get the third left hand sides. So we can predict right away what
elimination will discover about the right hand side. What is the condition that
b1, b2 and b3 satisfy so that there is a solution? Since the sum of the first two
left hand sides equals the third left hand side, we require that b1 + b2 = b3.

Let us see how elimination discovers this fact. If some combination on the
left hand side gives zeros, the same combination on the right hand side should
give zeros. Tacking on the vector of b’s as another column to the matrix A, we
get the augmented matrix [A b]. Applying the elimination steps E2,1 and E3,1

to the augmented matrix, followed by the elimination step E3,2, we get:

[A b] =

 1 2 2 2 b1

2 4 6 8 b2

3 6 8 10 b3

 E2,1,E3,1
=⇒

 [1] 2 2 2 b1

0 0 [2] 4 b2 − 2b1
0 0 2 4 b3 − 3b1


E3,2
=⇒

 [1] 2 2 2 b1

0 0 [2] 4 b2 − 2b1
0 0 0 0 b3 − b1 − b2

(2.33)

The condition for solvability is therefore b3 − b1 − b2 = 0. Thus, the system
of equations will have a solution for b = [5 1 6]T .

We will now discuss the solvability conditions on the right hand side of a
system of equations to ensure that the system of equations Ax = b is solvable.
We will provide a definition in terms of the column space.

The system of equations Ax = b is solvable when b is in the column space
C(A).

Another way of describing solvability is:
The system of equations Ax = b is solvable if a combination of the rows of

A produces a zero row, the requirement on b is that the same combination of
the components of b has to yield zero.

It is not immediately apparent that the two systems of equations are equiv-
alent. We will come back to discuss this in a later part of the course. We will
proceed to the case when the system of equations does have a solution.

Assuming that the systems of equations Ax = b is solvable, what is the
algorithm (or sequence of steps) to find the complete solution? We will start by
finding one particular solution.
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1. xparticular2: Set all free variables (corresponding to columns with no piv-
ots) to 0. In the example above, we should set x2 = 0 and x4 = 0.

2. Solve Ax = b for pivot variables.

This leaves us with the equations

x1 + 2x3 = b12x3 = b2 − 2b1

Adopting the normal back substitution method, we get

x3 =
b2 − 2b1

2
x1 = b2 + 3b1 (2.34)

Thus the particular solution is

xparticular =


b2 + 3b1

0
b2−2b1

2

0


For example, if we choose b = [5 1 6]T , we get

xparticular =


−2
0
3
2

0


The sequence of steps is (a) check for solvability conditons (b) substitute

some values for the free variables and obtain values for pivot variables. How
do we find the complete solution to Ax = b? It is easy to see that any vector
xnullspace in the null space of the matrix A can be added to xparticular and the
resultant vector will still remain a solution. Thus, a general solution to the
system Ax = b is

xcomplete = xparticular + xnullspace (2.35)

Let us write out the complete solution to this example (recall the null space
for this matrix from Equation 2.25).

2Since there are many solutions, one could have one’s own way of finding one solution.
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xcomplete =


−2
0
3
2

0

+


−2 2
1 0
0 −2
0 1


[
c1

c2

]
(2.36)

This pattern shows up in all of mathematics, whenever we have linear equa-
tions. The reason for this is that

Axcomplete = A(xparticular + xnullspace) = b + 0 = b

In words, this means that if we have one solution, we can add on anything
in the null space. This gives us the ‘complete’ solution. Note that while the
null vector can be scaled arbitrarily, the same does not hold for the particular
solution.

Let us say we want to plot all solutions to this equation. The plot should
be in <4 because there are 4 unknowns. Does the set of solutions to Ax = b
form a subspace? No, because the space of solutions to this system is not closed
under the scaling operation. The null space is a 2-dimensional3 subspace inside
<4. The set of solutions to Ax = b does not however pass through the origin,
because it must pass through xparticular and then onward. It is like a sub-space
shifted away from the origin!

In summary, the algorithm is to go through elimination, find a particular
solution and then a special solution. We will now visualize the bigger picture
by answering some questions. Consider an m× n matrix A of rank r.

Q1. What is the relationship between m and r? We know certainly that
r ≤ m and r ≤ n. This because, each row as well as column can contain only
one pivot and therefore the number of pivots should be less than the number of
rows as also less than the number of columns.

Q2. What happens when the rank r is as big as it can be? There are two
possibilities here, depending on what the numbers m and n are.

Q3. In the case that A is full column rank, i.e., r = n, what can we infer
about the null space and the complete solution? Full column rank implies that
there is a pivot in every column, that is, there are n pivots. As a result,there
are no free variables. The implication is that the null space will only have the
0 vector. Therefore, the complete solution is just xparticular; there is just one
solution, if there is one at all. Thus, the number of solutions is either 0 or 1.
There are many applications in reality where the columns are independent and
have nothing to look for in the null space, leading to just a particular solution.

We will illustrate by squeezing in an example.

3The dimension of the subspace corresponds to the number constants you can choose.
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A =


1 3
2 1
6 1
5 1

 (2.37)

The rank of this matrix is 2; elimination will yield exactly 2 pivots. Carrying
out the elimination process to the end, we can get the following reduced row
echelon form for this matrix:

Arref =


1 0
0 1
0 −17
0 −14

 (2.38)

The first two rows are not independent, but the other rows are combinations
of the first two rows. It is a case of full column rank. Ax = b is a system of
four equations in two unknowns. If the right hand side is not consistent with
the 4 equations, we will get zero solutions. The right hand side b = [4 3 7 6]T

is consistent with the equations and yields one solution. Similarly, the right
hand side b which is the sum of the two independent columns of A also gives
one unique solution x = [1 1]T . We will maintain the natural symmetry of this
discussion by next looking at full row rank.

Q4. In the case that A is full row rank, i.e., r = m, what can we infer about
the null space and the complete solution? Elimination will lead to m pivots;
every row will have a pivot. What is the implication on solvability, i.e., for
which right hand sides will we have a solution to Ax = b? Since we do not
have any zero rows, we can solve the system for every right hand side b. This
resolves the question about the existence of a solution. How many free variables
will we have? Since n ≥ r, we will be left with n− r = n−m free variables.

An easy way to obtain an example here (matrix B) is to transpose the above
full column rank example matrix A.

B = AT =

[
1 2 6 5
3 1 1 1

]
(2.39)

Elimination yields the following row reduced echelon form with two pivots:

[
1 0 4 3
0 1 −11 −8

]
(2.40)
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Figure 2.3: Summary of the properties of the solutions to the system of equations
Ax = b.

The number of free variables is 2.
Q5. In the case that A is full rank, i.e., r = m = n, what can we infer about

the null space and the complete solution?
This is the most important case of all. We will illustrate with an example.

A =

[
1 2
3 1

]
(2.41)

The reduced row echelon form for this matrix is

A =

[
1 0
0 1

]
(2.42)

The matrix is invertible; invertible matrices come out naturally in the rref
which is the identity matrix. Which are the satisfiable right hand sides b for the
system Ax = b? Since there are no zero rows, there are no constraints on the
right hand side. What is the null space of A? It is the zero vector only. Since
the rank is also m, the only solution is the particular solution, and is therefore
a unique solution.

Figure 2.3 summarizes the properties of the solutions to the system of equa-
tions Ax = b for different inequality constraints between m, n and r. The rank
summarizes the possible solutions, except the exact entries in the solutions.

2.7 Independence, Basis, and Dimension

In this section, we will develop the ideas of linear independence of vectors, the
space vectors span, basis for vector spaces and finally the dimension of vector
spaces. We will assign clear meanings to these terms.
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To set the appropriate background, we will begin with a highly important
fact which was mentioned earlier. Let us say we have the system Ax = 0, where
A is an m × n matrix and m < n. That is, we have more unknowns than
equations. The conclusion is that there there are some non-zero vectors in the
null space of A. If we perform elimination on A, we will get some pivots and
some free columns that do not have pivots because there will be n − m free
variables. We can assign non-zero values to the free variables and automatically
obtain values for the pivot variables. We will resume from this point.

2.7.1 Independence

Independence Vectors x1,x2, . . . ,xn are independent if no linear combination
gives the zero vector, except the zero combination. That is, ∀c1, c2, . . . , cn ∈

<, such that not all of the ci’s are simultaneously 0,
n∑
i

cixi 6= 0 .

For example, in a two dimensional space, a vector x and twice the vector 2x
are dependent, because (−2)× x + (1)× 2x = 0. As another example, suppose
we have the vectors v1 and a zero vector vector v2, they are dependent because
(0)× v1 + (100)× v2 = 0.

On the other hand, two non-zero vectors v1 and v2 in a two dimensional
space that make an angle 0 < θ < π

2 with each other will be independent. If
we however add a third vector v3 from the two dimensional space to the set,
the three vectors will now be dependent. How do we determine the truth of the
above two statements? We could do this as follows. We construct a matrix A
with the vectors as three columns A = [v1 v2 v3]. This matrix is a 2× 3 matrix.
Does there exist a non-zero solution to the following system?

Ac =
[

v1 v2 v3

] c1

c2

c3

 =

[
0
0

]
(2.43)

It can be easily proved that a non-zero vector [c1 c2 c3]T exists. We will
restate the definition for independence in terms of the columns v1,v2, . . . ,vn of
a matrix A.

Independence The columns v1,v2, . . . ,vn of a matrix A are independent if
the null-space of A is the zero vector. The columns of A are dependent
only if Ac = 0 for some c 6= 0.

In other words, the rank of the matrix A, whose columns are independent is
the number of columns n. And in the reduced echelon form, all columns will be
pivot columns with no free variables. If the columns are dependent, the rank of
A will be less than n, and there will be free variables.
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What does it mean for a bunch of vectors to span a space? Recall that
we could take all combinations of the columns of a matrix to yield the column
space. This column space is the space spanned by the columns of the matrix.

Space spanned by vectors: Vectors v1,v2, . . . ,vn span a space means that
the space consists of all linear combinations of the vectors. Thus, the space
spanned by the columns v1,v2, . . . ,vn of a matrix A, is the column space
of A.

2.7.2 Basis and Dimension

The vectors v1,v2, . . . ,vn, need not be independent in order to span a space.
We are specifically interested in a set of vectors that span a space and are at
the same time linearly independent. This set of vectors is in some sense, the
right number of vectors; even without a single vector from this set, the space
cannot be defined. This set is called the basis.

Basis for a space: The basis for a space is a set of vectors v1,v2, . . . ,vn
with two properties, viz., (1) The vectors v1,v2, . . . ,vn are independent
and (2) These vectors span the space.

The definition of basis is hinged on the preceeding two definitions - the basis
is the set of vectors that is necessary and sufficient for spanning the space. As
an example, one basis for the four dimensional space <4 is:


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 (2.44)

It is easy to verify that the above vectors are independent; if a combination
of the vectors using the scalars in [c1, c2, c3, c4] should yield the zero vector, we
must have c1 = c2 = c3 = c4 = 0. Another way of proving this is by making the
four vectors the columns of a matrix. The resultant matrix will be an identity
matrix. The null space of an identity matrix is the zero vector. The above basis
is often called the standard basis for <4.

This is not the only basis of <4. Consider the following three vectors


2
0
0
0

 ,


0
0
2
0

 ,


0
0
0
2

 (2.45)
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These vectors are certainly independent. But they do not span <4. This can
be proved by showing that the following vector in <4 cannot be expressed as a
linear combination of these vectors.


0
2
0
0

 (2.46)

In fact, if this vector is added to the set of three vectors in (2.45), together,
they define another basis for <4. And this could be proved by introducing them
as columns of a matrix A, subject A to row reduction and check if there are any
free variables (or equivalently, whether all columns are pivot columns). If there
are no free variables, we can conclude that the vectors form a basis for <4. This
is also equivalent to the statement that if the matrix A is invertible, its columns
form a basis for its column space. This statement can be generalized to <n: if
an n× n matrix A is invertible, its coulumns for a basis for <n.

While there can be many bases for a space, a commonality between all the
bases is that they have exactly the same number of vectors. This unique size of
the basis is called the dimension of the space.

Dimension: The number of vectors in any basis of a vector space is called the
dimension of the space.

Do the vectors in (2.45), form a basis for any space at all? The vectors are
independent and therefore span the space of all linear combinations of the three
vectors. The space spanned by these vectors is a hyperplane in <4. Let A be
any matrix. By definition, the columns of A span the column space C(A) of A.
If there exists a c 6= 0 such that, Ac = 0, then the columns of A are not linearly
independent. For example, the columns of the matrix A given below are not
linearly independent.

A =

 1 2 3 1
2 3 5 2
3 4 7 3

 (2.47)

A choice of c = [−1 0 0 1]T gives Ac = 0. Thus, the columns of A do not
form a basis for its columns space. What is a basis for C(A)? A most natural
choice is the first two columns of A; the thid column is the sum of the first and
second columns, while the fourth column is the same as the first column. Also,
column elimination4 on A yields pivots on the first two columns. Thus, a basis
for C(A) is

4Column elimination operations are very similar to row elimination operations.
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 1
2
3

 ,
 2

3
4

 (2.48)

Another basis for C(A) consists of the first and third columns. We note that
the dimension of C(A) is 2. We also note that the rank of A is the number of
its pivots columns, which is exactly the dimension of C(A). This gives us a nice
theorem.

Theorem 17 The rank of a matrix is the same as the dimension of its column
space. That is, rank(A) = dimension (C(A)).

What about the dimension of the null space? We already saw that c =
[−1 0 0 1]T is in the null space. Another element of the null space is c′ =
[1 1 − 1 0]T . These vectors in the null space specify combinations of the columns
that yield zeroes. The two vectors c and c′ are obviously independent. Do these
two vectors span the entire null space? The dimension of the null space is the
same as the number of free variables, which happens to be 4 − 2 = 2 in this
example. Thus the two vectors c and c′ must indeed span the null space. In
fact, it can be proved that the dimension of the null space of an m× n matrix
A is n− rank(A).

The space spanned by the rows of a matrix is called the row space. We can
also define the row space of a matrix A as the column space of its transpose AT .
Thus the row space of A can be specified as C(AT ). The null space of A, N(A)
is often called the right null space of A, while the null space of AT , N(AT ) is
often referred to as its left null space. How do we visualize these four spaces?
N(A) and C(AT ) of an m× n matrix A are in <n, while C(A) and N(AT ) are
in <m. How can we construct bases for each of the four subspaces? We note
that dimensions of C(A) and the rank of C(AT ) should be the same, since row
rank of a matrix is its column rank. The bases of C(A) can be obtained as the
set of the pivot columns.

Let r be the rank of A. Recall that the null space is constructed by linear
combinations of the special solutions of the null space (2.5.2) and there is one
special solution for each assignment of the free variables. In fact, the number
of special solutions exactly equals the number of free variables, which is n− r.
Thus, the dimension of N(A) will be n− r. Similarly, the dimension of N(AT )
will be m− r.

Let us illustrate this on the sample matrix in (2.47).

 1 2 3 1
2 3 5 2
3 4 7 3

 E2,1,E3,1=⇒

 1 2 3 1
0 −1 −1 0
0 −2 −2 0

 E3,2=⇒ (R =)

 1 2 3 1
0 −1 −1 0
0 0 0 0


(2.49)
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The reduced matrix R has the same row space as A, by virtue of the nature
of row reduction. In fact, the rows of A can be retrieved from the rows of R
by reversing the linear operations involved in row elimination. The first two
rows give a basis for the row space of A. The dimension of C(AT ) is 2, which
is also the rank of A. To find the left null space of A, we look at the system
yTA = 0. Recall the Gauss-Jordan elimination method from Section 2.4.2 that
augments A with an m ×m identity matrix, and performs row elimination on
the augmented matrix.

[A Im×m]
rref
=⇒ [R Em×m]

The rref will consist of the reduced matrix augmented with the elimination
matrix reproduced on its right. For the example case in 2.49, we apply the same
elimination steps to obtain the matrix E below:

 1 0 0
0 1 0
0 0 1

 E2,1,E3,1=⇒

 1 0 0
−2 1 0
−3 0 1

 E3,2=⇒ (E =)

 1 0 0
−2 1 0
1 −2 1

 (2.50)

Writing down EA = R,

 1 0 0
−2 1 0
1 −2 1


 1 2 3 1

2 3 5 2
3 4 7 3

 =

 1 2 3 1
0 −1 −1 0
0 0 0 0

 (2.51)

We observe that the last row of E specifies a linear combination of the rows
of A that yields a zero vector (corresponding to the last row of R). This is the
only vector that yields a zero row in R and is therefore the only element in the
basis of the left null space of A, that is, N(AT ). The dimension of N(AT ) is 1.

As another example, consider the space S of vectors v ∈ <3 where v =
[v1 v2 v3]T such that v1 +v2 +v3 = 0. What is the dimension of this subspace?
Note that this subspace is the right null space N(A) of a 1×3 matrix A = [1 1 1],
since Av = 0. The rank, r = rank(A) is 1, implying that the dimension of
the right null space is n − r = 3 − 1 = 2. One set of basis vectors for S is
[−1 1 0], [−1 0 1]. The column space C(A) is <1 with dimension 1. The left
null space N(AT ) is the singleton set {0} and as expected, has a dimension of
m− r = 1− 1 = 0.

2.8 Matrix Spaces

We will extend the set of examples of vector spaces discussed in Section 2.5 with
a new vector space, that of allm×nmatrices with real entries, denoted by <m×n.
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It is easy to verify that the space of all matrices is closed under operations of
addition and scalar multiplication. Additionally, there are interesting subspaces
in the entire matrix space <m×n, viz.,

• set S of all n× n symmetric matrices

• set U of all n× n upper triangular matrices

• set L of all n× n lower triangular matrices

• set D of all n× n diagonal matrices

LetM = <3×3 be the space of all 3× 3 matrices. The dimension ofM is 9.
Each element of this basis has a 1 in one of the 9 positions and the remaining
entries as zeroes. Of these basis elements, three are symmetric (those having
a 1 in any of the diagonal positions). These three matrices form the basis for
the subspace of diagonal matrices. Six of the nine basis elements of M form the
basis of U while six of them form the basis of L.

The intersection of any two matrix spaces is also a matrix space. For ex-
ample, S ∩ U is D, the set of diagonal matrices. However the union of any two
matrix spaces need not be a matrix space. For example, S ∪ U is not a matrix
space; the sum S +U, S ∈ S, U ∈ U need not belong to S ∪U . We will discuss
a special set comprising all linear combinations of the elements of union of two
vector spaces V1 and V2 (i.e., V1 ∪ V2), and denote this set by V1 ⊕ V2. By
definition, this set is a vector space. For example, S+U =M, which is a vector
space.

A property fundamental to many properties of matrices is the expression for
a rank 1 matrix. A rank 1 matrix can be expressed as the product of a column
vector with a row vector (the row vector forming a basis for the matrix). Thus,
any rank 1 matrix X can be expressed as

Xm×n = uT v =



u1

u2

u3

.

.

um


[
v1 v2 . . . vn

]
(2.52)

LetMm×n be the set of all m×n matrices. Is the subset ofMm×n matrices
with rank k, a subspace? For k = 1, this space is obviously not a vector space
as is evident from the sum of rank 1 matrices, A1 and B1, which is not a rank
1 matrix. In fact, the subset of Mm×n matrices with rank k is not a subspace.

A1 +B1 =

 1 2 1
2 4 1
1 2 1

+

 4 4 2
2 2 1
4 4 2

 =

 5 6 3
4 6 2
5 6 3

 (2.53)
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2.9 Orthogonality and Projection

In this section we will discuss the orthogonality of subspaces. Two vectors x
and y are said to be orthogonal iff, their dot product is 0. In the eucledian
space, the dot product of the two vectors is xT y. The condition xT y = 0 is
equivalent to the pythagorous condition between the vectors x and y that form
the perpendicular sides of a right triangle with the hypotenuse given by x + y.
The pythagorous condition is ||x||2 + ||y||2 = ||x + y||2, where the norm is the
eucledian norm, given by ||x||2 = xTx. This equivalence can be easily proved
and is left to the reader as an exercise. By definition, the vector 0 is orthogonal
to every other vector.

We will extend the definition of orthogonality to subspaces; a subspace U is
orthogonal to subspace V iff, every vector in U is orthogonal to every vector in
V. As an example:

Theorem 18 The row space C(AT ) of an m× n matrix A is orthogonal to its
right null space N(A).

Proof: Ax = 0, ∀x ∈ N(A). On the other hand, ∀ y ∈ C(AT ), ∃ z ∈
<m, s.t., y = AT z. Therefore, ∀ y ∈ C(AT ), x ∈ N(A),yTx = zTAx =
z.0 = 0. 2

Not only are C(AT ) and the right null space N(A) orthogonal to each other,
but they are also orthogonal complements in <n, that is, N(A) contains all
vectors that are orthogonal to some vector in C(AT ).

Theorem 19 The null space of A and its row space are orthogonal comple-
ments.

Proof: We note, based on our discussion in Section 2.7.2 that the dimensions of
the row space and the (right) null space add up to n, which is the number of
columns of A. For any vector y ∈ C(AT ), we have ∃ z ∈ <m, s.t., y = AT z.
Suppose ∀ y ∈ C(AT ), yTx = 0. That is, ∀ z ∈ <m, zTAx = 0. This is
possible only if Ax = 0. Thus, necessarily, x ∈ N(A). 2

Along similar lines, we could prove that the column space C(A) and the left
null space N(AT ) are orthogonal complements in <m. Based on theorem 19,
we prove that there is a one-to-one mapping between the elements of row space
and column space.

Theorem 20 If x ∈ C(AT ), y ∈ C(AT ) and x 6= y, then, Ax 6= Ay.

Proof: Note that Ax and Ay are both elements of C(A). Next, observe that
x − y ∈ C(AT ), which by theorem 19, implies that x − y /∈ N(A). Therefore,
Ax−Ay 6= 0 or in other words, Ax 6= Ay. 2

Similarly, it can be proved that if x ∈ C(A), y ∈ C(A) and x 6= y, then,
ATx 6= ATy. The two properties together imply a one-to-one mapping between
the row and column spaces.
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2.9.1 Projection Matrices

The projection of a vector t on a vector s is a vector p = cs, c ∈ < (in the same
direction as s), such that t − cs is orthogonal to s. That is, sT (t − cs) = 0 or
sT t = csT s). Thus, the scaling factor c is given by c = sT t

sT s
. The projection of

the vector t on a vector s is then

p = s
tT s
sT s

(2.54)

Using the associative property of matrix multiplication, the expression for p
can be re-written as

p = P t (2.55)

where, P = ssT 1
sT s

is called the projection matrix.
The rank of the projection matrix is 1 (since it is a column mutiplied by

a row). The projection matrix is symmetric and its column space is a line
through s. For any d ∈ <, P (ds) = ds, that is, the projection of any vector in
the direction of s is the same vector. Thus, P 2 = P .

2.9.2 Least Squares

In Section 2.6.3, we saw a method for solving the system Ax = b (A being an
m × n matrix), when a solution exists. Howevever, a solution may not exist,
especially when m > n, that is when the number of equations is greater than
the number of variables. In Section 2.6.3, we saw that the rref looks like [I 0]T ,
where I is an n × n identity matrix. It could happen that the row reduction
yields a zero submatrix in the lower part of A, but the corresponding elements
in b are not zeroes. In other words, b may not be in the column space of A.
In such cases, we are often interested in finding a ‘best fit’ for the system; a
solution x̂ that satisfies Ax = b as well as possible.

We define the best fit in terms of a vector p which is the projection of b
onto C(A) and solve Ax̂ = p. We require that b − p is orthogonal to C(A),
which means

AT (b−Ax̂) = 0 (2.56)
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The vector e = b − Ax̂ is the error vector and is in N(AT ). The equation
(2.9.2) can be rewritten as

(ATA)x̂ = ATb (2.57)

A matrix that plays a key role in this problem is ATA. It is an n × n
symmetric matrix (since (ATA)T = ATA). The right null space N(ATA) is the
same as N(A)5. It naturally follows that the ranks of ATA and A are the same
(since, the sum of the rank and dimension of null space equal n in either case).
Thus, ATA is invertible exactly if N(A) has dimension 0, or equivalently, A is
a full column rank.

Theorem 21 If A is a full column rank matrix (that is, its columns are inde-
pendent), ATA is invertible.

Proof: We will show that the null space of ATA is {0}, which implies that the
square matrix ATA is full column (as well as row) rank is invertible. That is,
if ATAx = 0, then x = 0. Note that if ATAx = 0, then xTATAx = ||Ax|| = 0
which implies that Ax = 0. Since the columns of A are linearly independent,
its null space is 0 and therefore, x = 0. 2

Assuming that A is full column rank, the equation (2.9.2) can be rewritten
as

x̂ = (ATA)−1ATb. (2.58)

Therefore the expression for the projection p will be

p = A(ATA)−1ATb (2.59)

This expression is the n-dimensional equivalent of the one dimensional ex-
pression for projection in (2.9.1). The projection matrix in (2.59) is given by
P = A(ATA)−1AT . We will list the solution for some special cases:

• If A is an n×n square invertible matrix, its column space is the entire <n
and the projection matrix will turn out to be the identity matrix.

• Also, if b is in the column space C(A), then b = At for some t in<n and
consequently, Pb = A(ATA)−1(ATA)t = At = b.

5The proof is left as an exercise.



2.9. ORTHOGONALITY AND PROJECTION 129

• On the other hand, if b is orthogonal to C(A), it will lie in N(AT ), and
therefore, ATb = 0, implying that p = 0.

Another equivalent way of looking at the best fit solution x̂ is a solution that
minimizes the square of the norm of the error vector

e(x̂) = ||Ax− b||2 (2.60)

Setting de(x̂)
dx = 0, we get the same expression for x̂ as in (2.9.2). The solution

in 2.9.2 is therefore often called the least squares solution. Thus, we saw two
views of finding a best fit; first was the view of projecting into the column space
while the second concerned itself with minimizing the norm squared of the error
vector.

We will take an example. Consider the data matrix A and the coefficient
matrix b as in (2.61).

Ax =

 2 −1
−1 2
1 1

[ x̂1

x̂2

]
=

 1
3
3

 (2.61)

The matrix A is full column rank and therefore ATA will be invertible. The
matrix ATA is given as

ATA =

[
6 −3
−3 6

]

Substituting the value of ATA in the system of equations (2.9.2), we get,

6x̂1 − 3x̂2 = 2− 3x̂1 + 6x̂2 = 8

The solution of which is, x1 = 4
5 , x2 = 26

15 .

2.9.3 Orthonormal Vectors

A collection of vectors q1,q2, . . . ,qn is said to be orthonormal iff the following
condition holds ∀ i, j:

qTi qj

{
0 if i 6= j

1 if i = j
(2.62)
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A large part of numerical linear algebra is built around working with or-
thonormal matrices, since they do not overflow or underflow. Let Q be a matrix
comprising the columns q1 through qn. It can be easily shown that

QTQ = In×n

When Q is square, Q−1 = QT . Some examples of matrices with orthonormal
columns are:

Qrotation =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, Qreflection =

[
cos(θ) sin(θ)
sin(θ) −cos(θ)

]
,

QHadamard =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , Qrect =

 1 0
0 1
0 0

(2.63)

The matrix Qrotation when multiplied to a vector, rotates it by an angle θ,
whereas Qreflection reflects the vector at an angle of θ/2. These matrices present
standard varieties of linear transformation, but in general, premultiplication by
an m × n matrix transforms from an input space in <m to an input space in
<n. The matrix QHadamard is an orthonormal matrix consisting of only 1’s and
−1’s. Matrices of this form exist only for specific dimensions such as 2, 4, 8,
16, etc., and are called Hadamard matrices6. The matrix Qrect is an example
rectangular matrix whose columns are orthonormal.

Suppose a matrix Q has orthonormal columns. What happens when we
project any vector onto the column space of Q? Substituting A = Q in (2.59),
we get7:

p = Q(QTQ)−1QTb = QQTb (2.64)

Making the same substitution in (2.9.2),

x̂ = (ATQ)−1QTb = QTb (2.65)

The ith component of x, is given by xi = qTi b.
LetQ1 be one orthonormal basis andQ2 be another orthonormal basis for the

same space. Let A be the coefficient matrix for a set of points represented using
Q1 and B be the coefficient matrix for the same set of points represented using
Q2. Then Q1A = Q2B, which implies that B can be computed as B = QT2 Q1A.
This gives us the formula for changing basis.

6An exhaustive listing of different types of matrices can be found at http://en.wikipedia.
org/wiki/List_of_matrices.

7Note that QTQ = I. However, QQT = I only if Q is a square matrix.
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2.9.4 Gram-Schmidt Orthonormalization

The goal of the Gram-Schmidt orthonormalization process is to generate a
set of orthonormal vectors q1,q2, . . . ,qn, given a set of independent vectors
a1,a2, . . . ,an. The first step in this process is to generate a set of orthogonal
vectors t1, t2, . . . , tn from a1,a2, . . . ,an. To start with, t1 is chosen to be a1.
Next, the vector t2 is obtained by removing the projection of a2 on t1, from a2,
based on (2.9.1). That is,

t2 = a2 −
1

aT1 a1
a1aT1 a2 (2.66)

This is carried out iteratively for i = 1, 2, . . . , n, using the expression below:

ti = ai −
1

tT1 t1
t1tT1 ai −

1
tT2 t2

t2tT2 ai − . . .−
1

tTi−1ti−1
ti−1tTi−1ai (2.67)

This gives us the orthogonal vectors t1, t2, . . . , tn. Finally, the orthonormal
vectors q1,q2, . . . ,qn are obtained by the simple expression

qi =
1
||ti||

ti (2.68)

Let A be the matrix with columns a1,a2, . . . ,an and Q, the matrix with
columns q1,q2, . . . ,qn. It can be proved that C(V ) = C(Q), that is, the ma-
trices V and Q have the same column space. The vector ai can be expressed
as

ai =
n∑
k=1

(aTi qk)qk (2.69)

The ith column of A is a linear combination of the columns of Q, with
the scalar coefficient aTi qk for the kth column of Q. By the very construction
procedure of the Gram-Schmidt orthonormalization process, ai is orthogonal to
qk for all k > i. Therefore, (2.69) can be expressed more precisely as

ai =
i∑

k=1

(aTi qk)qk (2.70)

Therefore, matrix A can be decomposed into the product of Q with a upper
triangular matrix R; A = QR, with Rk,i = aTi qk. Since aTi qk = 0, ∀ k > i, we
can easily see that R is upper traingular.



132 CHAPTER 2. LINEAR ALGEBRA

2.9.5 Fourier and Wavelet Basis

The hermetian inner product of a complex vector x with another complex vector
y is xTy, and is also denoted by xHy. A complex matrix Q is called orthonormal
if Q

T
Q = I. Consider the complex number c = cos( 2π

n ) + icos( 2π
n ). Then,

wn = 1. The fourier matrix Fn is defined as

Fn =
1
n



1 1 . . . 1
1 c . . . cn−1

. . . . . .

1 ck−1 . . . c(k−1)(n−1)

. . . . . ,

1 cn−1 . . . c(n−1)(n−1)


(2.71)

The (hermetian) inner products of distinct columns Fn are 0, while the
inner product of a column with itself is 1. Therefore, the columns of Fn are
orthonormal and form a basis for <n. Consequently, the inverse of Fn is its
conjugate transpose F

T

n .
Further, F2k , k ≥ 1 can expressed as

F2k ==

[
I D

I −D

][
F2k−1 02k−1

02k−1 F2k−1

]


0 1 0 0 . . . 0 0
0 0 0 1 . . . 0 0
. . . . . . . . .

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .

0 0 0 0 . . . 1 0


︸ ︷︷ ︸

P

(2.72)

where, D = diag(1, c, c2, . . . , c2
k

) and 02k is a 2k×2k matrix of 0’s. This factor-
ization, applied recursively, can reduce the time for computing F2k from O(n2)
to O(n log n). This is the idea behind the fast fourier transform algorithm.
Though the factorization discussed here, applies to only to powers of 2, there
exist FFT algorithms [?] for any number (including primes).

An advantage of representing a vector in <n (for example, a
√
n×
√
n sub-

block of an image matrix) using the fourier basis is that certain basis components
of the representation could be ignored to achieve minimally lossy compression
of matrices such as image matrices. Another orthogonal basis that is used for
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minimally lossy matrix compression is the wavelet basis. A sample wavelet basis
matrix W for <8 is

W =



1 1 1 0 −1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 −1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 −1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 −1
1 −1 0 −1 0 0 0 −1


(2.73)

The discrete wavelet transform can be computed efficiently using a fast wavelet
transform algorithm which is less computationally complex, taking O(n) time
as compared to O(nlogn) for the fast fourier transform.

2.10 Determinants

Every square matrix A has a real number associated with it, called its deter-
minant and it is denoted by det(A). In this sequel, we will often refer to the
following n× n matrix A:

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

ak1 ak2 . . . akn

. . . . . .

an1 an2 . . . ann


(2.74)

We will describe four fundamental properties of the determinant, which es-
sentially define the determinant.

1. The determinant of the identity matrix I is 1. That is, det(I) = 1.

2. When two rows of A are permuted (c.f. Section 2.3.1), the sign of the de-
terminant changes. That is det (Perm(A, j, k)) = −det(A), where Perm(A, j, k)
returns a matrix formed by exchanging the jth and kth rows of A for any
1 ≤ j, k ≤ n.

3. If any row of A is scaled by t ∈ <, the determinant also gets scaled by t.
Thus, if
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S(A, k, t) =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

tak1 tak2 . . . takn

. . . . . .

an1 an2 . . . ann


(2.75)

then

det (S(A, k, t)) = t× det(A) (2.76)

The function S(A, k, t) returns a matrix eaxactly with all the entries of A,
except for the kth row, which is scaled by t ∈ <.

4. The sum of the determinants of two n × n matrices, A and B, with all
(n − 1) rows the same, except for the kth row, 1 ≤ k ≤ n, equals the
determinant of an n×n matrix C that has the same n−1 rows from A/B,
but with the kth row being the sum of the kth rows of A and B. Thus, if

B =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

bk1 bk2 . . . bkn

. . . . . .

an1 an2 . . . ann


(2.77)

and,

C =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

ak1 + bk1 ak2 + bk2 . . . akn + bkn

. . . . . ,

an1 an2 . . . ann


(2.78)
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then
det(C) = det(A) + det(B)

Using these basic properties of determinants, we infer some derived prop-
erties:

1. If a matrix A has two equal rows, its determinant must be 0.

Proof: Let B be the matrix obtained by permuting the two equal rows of
A. By the second property of determinants, det(B) = −det(A). Since the
permuted rows are the same, B = A, which implies that det(B) = det(A).
The two equalities on determinants of A and B imply that det(A) = 0. 2

2. The determinant of A obtained by subtracting ρ ∈ < times the jth row
from the kth row leaves the determinant unaltered. Therefore, if

E =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

ak1 − ρaj1 ak2 − ρaj2 . . . akn − ρajn
. . . . . .

an1 an2 . . . ann


(2.79)

we will have
det(E) = det(A)

Proof:

det(E) = det(A) + det





a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

−ρaj1 −ρaj2 . . . −ρajn
. . . . . .

an1 an2 . . . ann





= det(A)− ρ× det





a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

aj1 aj2 . . . ajn

. . . . . .

an1 an2 . . . ann




= det(A) (2.80)
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The first step follows from the fourth fundamental property of determi-
nants, the second follows from the third fundamental property, while the
third step is a consequence of the first derived property of determinants.
2

This property shows that the row elimination steps discussed in Sec-
tion 2.3.1, leave the determinant unchanged.

3. If any kth row of A is 0, then det(A) = 0 Proof: Consider a matrix A′

that has the same rows as A for all 1 ≤ i ≤ n, except for the i = k. Let
the kth row of A′ be the same as its jth row, for some 1 ≤ j ≤ n, such
that j 6= k. Note that by the first derived property, det(A′) = 0. The
matrix A can be obtained from A′ by subtracting the jth row of A′ from
its kth row. By the second derived property, det(A) = det(A′). Thus,
det(A) = 0. Another simpler proof is that S(A, k, 0) = A which implies
that det(A) = det (S(A, k, 0)) = 0 × det(A) = 0 (by third fundamental
property of determinants). 2

4. The determinant of an upper triangular matrix U is the product of its
diagonal entries.
Proof: Row elimination operations can be performed on an upper train-
gular matrix U to yield a diagonal matrix D (c.f. Section 2.4.2 on Gauss-
Jordan elimination), while neither performing any row exchanges nor al-
tering the diagonal entries of U . By the second derived property of de-
terminants, det(D) = det(U). Using the first fundamental property of
determinants, det(D) can be proved to be the product of its diagonal
entries, which is also the product of the diagonal entries of U . 2

In fact, most mathematical softwares compute the determinant of a matrix
A by first reducing it to an upper triangular matrix U by row elimination
on A (which preserves the determinant, by virtue of the second derived
property) and then compute the product of the diagonal entries (which
also happen to be the pivots) of U . If some α row exchanges are performed
during the reduction of A to U , the product of the diagonal entries, multi-
plied by (−1)α yields the determinant of A. As an example, consider the
2× 2 matrix A2:

A2 =

[
a11 a12

a21 a22

]
(2.81)

Using the derived property (2), the matrix A
′

2 can proved to have same
determinant as A.

A
′

2 =

[
a11 a12

0 a22 − a21∗a12
a11

]
(2.82)
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A
′

2 is an upper triangular matrix with det(A
′

2) given by

det(A
′

2) = a11a22 − a21 ∗ a12 (2.83)

Therefore,

det(A) = a11a22 − a21 ∗ a12 (2.84)

5. The determinant of a matrix A is 0 iff A is singular (or non-invertible).

Proof Sketch: We will consider the proof in two parts. When A is singular,
elimination, with some possible permutations, yields (as discussed in Sec-
tion 2.4.1) an upper traingular matrix with some diagonal (pivot) entries
that are 0s. Therefore, by the derived property (4), det(A) = 0. When
A is non-singular, elimination yields an upper triangular matrxi with no
zero entries. Consequently, we will have det(A) 6= 0. 2

6. The determinant of the product of two matrices A and B is the product
of their determinants8, i.e., det(AB) = det(A)× det(B).

A corollary of this property is that det(A−1) = 1
det(A) because det(A−1)det(A) =

det(I) = 1. Similarly, det(An) = (det(A))n and det(A1A2 . . . An) =
det(A1)det(A2) . . . det(An).

In this context, it will be appropriate to point out that determinants also
have relationship with volumes of solids. The determinant of matrix A in
(2.74), is the volume of an n−dimensional parallelotope, with corners at
(0, 0, . . . , 0), (a11, a12, . . . , a1n), . . ., (an1, an2, . . . , ann). The parallelotope
corresponding to In×n is an n−dimensional unit hypercube in n dimen-
sions and has a volume of 1. An orthonormal matrix Q represents a hy-
percube in n dimensions and has volume given by det(Q) =

√
det(I) = 1.

If Q is orthogonal (and not necessarily orthonormal), its volume is
n∏
i=1

si,

where si is the factor by which the ith row of Q should be scaled, so that
the row has unit norm. Determinants make easy the task of computing
areas of parallelotopes. If the parallelotope does not have any corner at
the origins, the coordinates of the corners can be computed relative any
one of the corners and the area can be computed using determinants.

7. The determinant of a square matrix A equals the determinant of its trans-
pose, i.e., det(A) = det(AT ).

8Recall that determinant does not have the linear additive property.
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Proof Sketch: We can decompose A as a LU , where L is a lower traingular
matrix and U is an upper traingular matrix. That is A = LU . Conse-
quently, AT = UTLT . By derived property (6), det(A) = det(L)det(U)
and det(AT ) = det(UT )det(LT ). Since the diagonal entries of LT and UT

are the same as the diagonal entries of L and U respectively, and since de-
rived property (4) states that the determinants of L, LT , U and UT are just
products of their respective diagonal entries, we have det(A) = det(AT ).
2

By virtue of this property, all the properties of determinants discussed so
far with respect to scaling or exchanging rows hold for similar manipula-
tions on the columns, since column operations on A are row operations on
AT .

2.10.1 Formula for determinant

In (2.84), we showed the formula for the determinant of a 2 × 2 matrix A2.
The formula can also be obtained by using the basic property (4), decomposing
det(A2) into the sum of determinants of 4 matrices, with one surviving element
per row. We will use the notation |.| instead of det ([.]) to denote the determinant
of a matrix.

det(A2) =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ =

∣∣∣∣∣ a11 0
a21 0

∣∣∣∣∣+

∣∣∣∣∣ a11 0
0 a22

∣∣∣∣∣
+

∣∣∣∣∣ 0 a12

a21 0

∣∣∣∣∣+

∣∣∣∣∣ 0 a12

0 a22

∣∣∣∣∣ = a11a22 − a12a21 (2.85)

Of these, there are only two nonzero terms; the terms with zero columns
or zero rows have 0 determinant. The determinant of a 3 × 3 matrix can be
similarly computed, by decomposing the determinant as the sum of 3×3×3 = 27
determinants. However, many of the determinants in the sum turn out to be 0,
either because of zero rows or zero columns. Each of the non-zero terms have
exactly one entry for each row and each column. Thus, the determinant of a
3× 3 matrix can be expressed as
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det(A3) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a11 0 0
0 a22 0
0 0 a33

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
a11 0 0
0 0 a23

0 a32 0

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
0 a12 0
0 0 a23

a31 0 0

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0 a12 0
a21 0 0
0 0 a33

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
0 0 a13

0 a22 0
a31 0 0

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0 0 a13

a21 0 0
0 a32 0

∣∣∣∣∣∣∣
= a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 − a13a22a31 + a13a21a32

= a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31) + a13 (a21a32 − a22a31)

= a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣︸ ︷︷ ︸
cofactor of a11

+a12 (−1)

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣︸ ︷︷ ︸
minor of a12︸ ︷︷ ︸

cofactor of a12

+a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣︸ ︷︷ ︸
cofactor of a13

(2.86)

In (2.86), the determinant of A3 is decomposed into the sum of signed deter-
minants of smaller 2×2 matrices called co-factors, each scaled by a correspond-
ing factor. The sign of the co-factors depend on the number of row permutations
required to get the matrix in a diagonal form; the sign is (−1)num perms which
happens to be (−1)i+j . In general, for an n× n matrix A, the minor of a term
aij is the determinant of an (n− 1)× (n− 1) sub-matrix of A that has the row
i and column j removed, while its co-factor is the minor multiplied by (−1)i+j .
The minor for aij is denoted by Mij and its co-factor by Cij . Minors of the
form Mii are called principal minors.

The general formula for the determinant of an n × n matrix contains n!
terms, corresponding to all permutations of the choice of the column index for
the non-zero entries corresponding to each row index. That is,

det(A) =
∑

(p1,p2,...,pn)∈Perm(1,2,...,n)

a1p1a2p2 . . . apn (2.87)

In terms of co-factors, the formula for determinant is

det(A) =
n∑
k=1

aikCik (2.88)

for any 1 ≤ i ≤ n.
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2.10.2 Formula for Inverse

Let A be an n×n invertible matrix. In Section 2.4.1, we saw an elegant algorithm
for computing A−1. In (2.89), we present a closed form expression for A−1 in
terms of the co-factors of A, even though the expression is very expensive to
compute.

A−1 =
1

det(A)



C11 C12 . . . C1n

C21 C22 . . . C2n

. . . . . .

Ck1 Ck2 . . . Ckn

. . . . . .

Cn1 Cn2 . . . Cnn



T

=
1

det(A)
CT (2.89)

We denote the matrix in (2.89) consisting of the co-factors of A, by C. It can
be easily verified that the expression in (2.89) is indeed A−1.

AA−1 =
1

det(A)



n∑
j=1

a1jC1j

n∑
j=1

a1jC2j . . .

n∑
j=1

a1jCnj

n∑
j=1

a2jC1j

n∑
j=1

a2jC2j . . .

n∑
j=1

a2jCnj

. . . . . .

. .

n∑
j=1

aijCij .

. . . . . .
n∑
j=1

anjC1j

n∑
j=1

anjC2j . . .

n∑
j=1

anjCnj



=
1

det(A)



det(A) 0 . . . 0
0 det(A) . . . 0
. . . . . .

. . det(A) .

. . . . . .

0 0 . . . det(A)


= In×n(2.90)

Recall from (2.88) that det(A) =
n∑
j=1

aijCij for any 1 ≤ i ≤ n. However,

n∑
j=1

aijCkj = 0, if i 6= k. This is because, for i 6= k,
n∑
j=1

aijCkj is the determinant
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of a matrix that has identical ith and kth rows and hence equals 0, by the derived
property (1) for matrices.

The formula (2.89) for matrix inverse (if it exists) can be substituted in
(2.4.1) to yield the Cramer’s rule for solving the system Ax = b. The Cramer’s
rule is:

x = A−1b =
1

det(A)



n∑
j=1

bjC1j

n∑
j=1

bjC2j

.

.
n∑
j=1

bjCnj



=
1

det(A)


det(B1)
det(B2)

.

.

det(Bn)

 (2.91)

Bi is a matrix obtained by replacing the ith column of A with the vector b
and keeping all other columns unaltered. This rule is never used in practical
computations; the explicit formula only helps in analysis or derivation.

2.11 Eigenvalues and Eigenvectors

Let A be an n× n square matrix. Consider the function f : <n → <n, defined
as f(x) = Ax. Suppose we are interested in vectors x, for which, f returns a
vector in the same direction as x. Such vectors are called eigenvectors of A.

Eigenvector: Vector x ∈ <n is called an eigenvector of an n× n matrix A, iff

Ax = λx, ∃ λ ∈ < (2.92)

The scalar λ is called an eigenvalue of A, corresponding to the eigenvec-
tor x.

We will consider some special examples of eigenvectors and eigenvalues.
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• For the simple case of λ = 0, any x ∈ N(A) is an eigenvalue of A. Thus,
if A is singular, so that N(A) 6= {}, λ = 0 and x ∈ N(A) are a valid
eigenvalue-eigenvector pair.

• If A happens to be a projection matrix, (c.f., Section 2.9.1), i.e.,

A = ssT
1

sT s

for some s ∈ <n. Recall that, Ax = x for any x in the column space of
A. Therefore, x = ρs is an eigenvector of A for any ρ ∈ <, with 1 as the
corresponding eigenvalue. As discussed above, any x ∈ N(A) is also an
eigenvector of A with a corresponding eigenvalue of 0. However, for any
other x /∈ C(A), Ax = cs and therefore x is not an eigenvector.

Consider the permutation matrix P23 in (2.93):

P23 =

 1 0 0
0 0 1
0 1 0

 (2.93)

By inspection, we find that P23 has atleast three eigenvectors, viz., x1 =
[1 0 0] with eigenvalue λ1 = 1, x2 = [0 1 1] with eigenvalue λ2 = 1,
and x3 = [0 − 1 1] with eigenvalue λ3 = −1. Does P23 have any more
eigenvectors? The answer is no. It turns out that any n× n matrix has exactly
n orthonormal eigenvectors. Moreover, the trace of a matrix (i.e., the sum of
its diagonal entries) always equals the sum of the eigenvalues corresponding to
the orthonormal eigenvectors.

tr(A) =
n∑
i=1

λi

Thus, if we knew n − 1 eigenvalues of a matrix, we could easily determine
its nth eigenvalue. We will defer this discussion to a later part of this chapter.

2.11.1 Solving for Eigenvalues

The equation (2.92) defining the criterion for an eigenvalue x can we re-written
as in (2.94).

(A− λI)x = 0 (2.94)
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For a solution x to exist, A − λI must be singular (i.e., non-invertible) and x
must lie in the null space N(A−λI). Therefore, det(A−λI) = 0 is a necessary
and sufficient condition for λ to be an eigenvalue. Once the eigenvalue λ is
determined, the corresponding eigenvectors can be determined by computing
N(A − λI), a procedure that has been already discussed in Section 2.5.2. We
will therefore first discuss the procedure for computing the solution to

det(A− λI) = 0 (2.95)

As an example, when we apply the criterion in (2.95), to the matrix P23, we
get solutions as shown in (2.96):

det(P23 − λI) = (1− λ)λ2 = 0
⇒ λ = 1 or λ = −1 (2.96)

Substituting these two values into the system (A − λI)x = 0, we get one
matrix for each possible value of λ. It can be verified that the basis for the null
space of (A−λI) obtained using the elimination process discussed in Section 2.6
(particularly, equation 2.27) is indeed [1 0 0]T and [0 1 1]T for eigenvalue
λ1 = 1, and [0 − 1 1] for eigenvalue λ3 = −1.

2.11.2 Some Properties of Eigenvalues and Eigenvectors

How are the eigenvectors and eigenvalues of a matrix affected when transforma-
tions are performed on the matrix? Below, we list some properties of eigenvalues
with respect to matrix transformations.

1. If Ax = λx, then (A + kI)x = (λ + k)x. That is, the eigenvalues of
A+λI are the eigenvalues of A, incremented by k, without any change in
corresponding eigenvectors.

2. Consider the matrix R in (2.97):

R =

[
0 3
−2 0

]
(2.97)

The eigenvalues of R can be found as follows: det(R − λI) = λ2 + 6 =
0 ⇒ λ = ±

√
6i. The eigenvalues of a matrix could be complex numbers

as this example illustrates. In fact, eigenvalues always appear as complex
conjugates, as in this example.
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3. Let λ be an eigenvalue of A and x its corresponding eigenvector, i.e.,
Ax = λx. It can be shown that the complex conjugates λ and x also form
an eigenvalue-eigenvector pair for A. Thus, Ax = λx. If A happens to
have only real entries, then, Ax = λx.

4. The eigenvalues of upper and lower traingular matrices can be computed
very easily. By derived property (4) of determinants, the determinant of
an upper traingular matrix is the product of its diagonal entries. Let U be
an n× n upper traingular matrix, with uij being the entry corresponding
to the ith row and jth column. First we note that U − λI will also be
upper traingular, since I is upper traingular and since the sum of upper
traingular matrices is also upper traingular (the space of upper traingular
matrices is a vector space, as shown in Section 2.8). Now, det(U − λI) =
n∏
i=1

(uii−λ) = 0. The eigenvalues correspond to solutions of this equation;

they are λi = uii, 1 ≤ i ≤ n. The eigenvectors can be computed by solving
the systems (U −λiI)xi = 0 by simple back-subtitutions, as illustrated in
Section 2.3.1.

5. If x is an eigenvector of A with a corresponding eigenvalue λ, we have Ax =
λx. Therefore, A2x = A(Ax) = λAx = λ2x. Thus, x is an eigenvector of
A2 as well, with a corresponding eigenvalue of λ2. This statement can be
generalized: If x is an eigenvector of A with a corresponding eigenvalue
λ, x is also an eigenvector of Ak, with corresponding eigenvector λk.

6. The eigenvectors v1,v2, . . . ,vn of a matrix A are linearly independent
if all its eigenvalues λ1, λ2, . . . , λn are different. This can be proved by
contradiction9 However, the eigenvectors, could be independent even if
eigenvalues are repeated; but it is not always true. For instance, any
traingular matrix having some identical diagonal elements (as in the case
of the identity matrix) has linearly independent eigenvectors, even though
some eigenvalues are identical.

7. In many engineering problems, we are faced with the system of equations

bi+1 = Abi, ∀ i ≥ 0 (2.98)

That is, bi = Aib0. If A has n linearly independent eigenvectors (so that
they span <n), these systems can be solved efficiently, by expressing b0

as a linear combination of the eigenvectors v1,v2, . . . ,vn of A.

b0 =
n∑
k=1

ckvk

9Exercise.
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where, ck ∈ <, ∀ 1 ≤ k ≤ n. Consequently, any bi, i ≥ 0 can be computed
efficiently as

bi =
n∑
i=k

λikckvk (2.99)

8. Consider the fibonacci sequence fi+2 = fi + fi+1i ≥ 0, with f0 = 0 and
f1 = 1. The recurrance relation can be written as a linear system (2.100).

[
fi+2

fi+1

]
︸ ︷︷ ︸

bi+1

=

[
1 1
1 0

]
︸ ︷︷ ︸

A

=

[
fi+1

fi

]
︸ ︷︷ ︸

bi

(2.100)

Note that b0 = [0 1]T . The system of equations (2.100) is of the same form
bi+1 = Abi, ∀ 0 ≤ i ≤ n discussed above and therefore, the expression for
bi can be derived using (2.99), after computing values of λ1, v1, c1 and λ2,
v2 and c2. The values of λ1 = 1

2 (1 +
√

5) = 1.6180 and λ2 = 1
2 (1−

√
5) =

−0.6180 can be computed by solving det(A− λI) = 0. Substituting these
values of λ, eigenvectors v1 and v2 can be obtained as in (2.101).

v1 =

[
−0.8507
−0.5257

]
,v2 =

[
0.5257
−0.8507

]
(2.101)

A closed form expression is bi = c1(1.6180)i[−0.8507 −0.525]T−c2(0.6180)i[0.525 −
0.8507]T .

Another application of this general technique is in differential equations.
Let us say we are given the differential equation x′′+a1x

′+a2x = 0. This
equation can be equivalently expressed as

y′ =

[
−a1 −a2

1 0

]
︸ ︷︷ ︸

A

y (2.102)

where, y = [x′ x]T . The nth derivative of x can expressed in a closed
form by determining the eigenvalues and eigenvectors of A.
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9. If λ is an eigenvalue of a matrix A, then it is also an eigenvalue of AT .
This is because det(A − λI) = det

(
(A− λI)T

)
= det(AT − λI). The

eigenvectors for the same eigenvalues could however differ between A and
AT .

10. Another general property of any square matrix is that the sum of its
eigenvalues equals its trace. Additionally, the product of its eigenvalues
equals its determinant. Consequently, for any 2× 2 matrix, if the trace is
negative and the determinant positive, the real parts of both its eigenvalues
must be negative.

11. A Markov matrix10 M is an n× n matrix such that (1) all its entries are
≥ 0 and (2) the sum of all entries in each column is 1. An example Markov
matrix M3 is

M =


0.1 0.25 0.3 0.35
0.2 0.25 0.3 0.05
0.3 0.25 0.4 0.15
0.4 0.25 0 0.45

 (2.103)

A very special property of markov matrices is that exactly one eigenvalue
of any markov matrix equals 1 and the rest of its eigenvalues are strictly
less than 0. For example, theM3 has following eigenvalues: 1.0000,−0.2168, 0.3428, 0.0740.
The first part of this property can be proved as follows. The matrix
M −I is singular, because the sum of the rows is a zero vector. Therefore,
det(M − I) = 0. Thus, λ = 1 must be an eigenvalue of M .

In probabilistic models, we often have systems of the form pi+1 = Api, ∀ i ≥
0, similar to equation (2.98). A closed form solution can be obtained using
the idea of (2.99)

pi =
n∑
i=k

λikckvk

where, v1,v2, . . . ,vn are the eigenvectors of M and its eigenvalues are
λ1, λ2, . . . , λn. If λ1 = 1, then λi < 1,∀ 2 ≤ i ≤ n. Hence, as i → ∞,
pi → c1v1.

12. If A is an n × n matrix with real valued entries and is symmetric, i.e.,
A = AT , then, its eigenvalues are real. Further, the eigenvectors of a
symmetric matrix can be chosen to be orthogonal. In mathematics, this
is called the spectral theeorem while in mechanics it is called the principal
axis theorem.

10The matrix entries of a markov entries represent probabilities of transitions
within/between states.
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Theorem 22 If A is symmetric then (1) all its eigenvalues are real and
(2) there exists and orthonormal basis Q of A, consisting of its eigenvec-
tors.

Proof for part (1): Let λ be an eigenvalue of A and x be its corresponding
eigenvector; Ax = λx. Then, premultiplying both sides by xT , we get

xTAx = λxTx (2.104)

As mentioned earlier, the complex conjugates λ and x also form an eigenvalue-
eigenvector pair for a real matrix A; Ax = λx. This implies that xTAT =
xTA = λxT and therefore,

xTAx = λxTx (2.105)

We note that the left hand sides of (2.104) and (2.105) are the same.
Equating the right hand sides of these equations,

λxTx = λxTx (2.106)

xTx is always real and non-negative. It is 0 only if x = 0. Therefore,
λ = λ⇒ λ ∈ <. 2

13. If A is a real symmetric matrix, the number of positive pivots and number
of negative pivots are respectively equal to the number of positive and
negative eigenvalues.

14. Two n×n matrices A and B are called similar if there exists an invertible
n×n matrix M such that M−1BM = A. A property of similar matrices is
that they have same determinants, since det(A) = det(M−1)det(B)det(M) =

1
det(M)det(B)det(M) = det(B). A more fundamental property is that sim-
ilar matrices have the same eigenvalues, though they could differ in their
eigenvectors.

Theorem 23 If A and B are similar matrices, they have the same eigen-
values.

Proof: Let λ be an eigenvalue of A. Since A and B are similar, there
exists an invertible matrix M such that, M−1BM = A. Ax = λx ⇒
(MAM−1)Mx = λMx⇒ B(Mx) = λ(Mx), that is, if λ is an eigenvalue
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of A and x is the corresponding eigenvector, then λ is an eigenvalue of B
and Mx is its corresponding eigenvector.

Similarly, Bx = λx ⇒ (M−1AM)M−1x = λM−1x ⇒ B(M−1x) =
λ(M−1x), that is, if λ is an eigenvalue of B and x is the corresponding
eigenvector, then λ is an eigenvalue of A and M−1x is its corresponding
eigenvector. 2

At this point, we state the observation that matrices of the form kIn×n are
only similar to themselves, since, for any invertible matrixM , M−1(kIn×n)M =
kIn×n.

2.11.3 Matrix Factorization using Eigenvectors

Let A be an n×n matrix, with n eigenvectors v1,v2, . . . ,vn and corresponding
eigenvalues λ1, λ2, . . . , λ1. Let V be a matrix with the eigenvectors as columns.
Postmultiplying A by V , we get

AV = [λ1v1 λ2v2 . . . λnvn] = [v1 v2 . . . vn]



λ1 0 . . . 0
0 λ2 . . . 0
. . . . . .

. . λk .

. . . . . .

0 0 . . . λn


︸ ︷︷ ︸

Eigenvalue matrix Λ

= V Λ

that is, AV = V Λ. The diagonal matrix Λ consists of eigenvalues along its
diagonal and is called the eigenvalue matrix.

If the eigenvectors are linearly independent, V is invertible. Premultiplying
AV by V −1,

V −1AV = Λ

Another equivalent equation is

A = V ΛV −1 (2.107)

This procedure of premultiplying a matrix by the inverse of its eigenvector
matrix and post-multipyling it by the eigenvector matrix to obtain a diago-
nal matrix of its eigenvalues, is called diagonalization. Diagonalization can be
generalized to powers of k:

Ak = V ΛkV −1

Thus, eigenvalues and eigenvectors provide a great way to understand the powers
of a matrix. Further, if |λi| < 1, Λk → 0, as k → ∞. Therefore, if |λi| < 1,



2.12. POSITIVE DEFINITE MATRICES 149

Ak → 0, as k → ∞. As another example, if we define eρA =
∞∑
n=0

1
n!

(Aρ)n,

where ρ ∈ <, then using the above property, it can be shown that eρA =
V eρΛV −1 = V diag(eρλ1 , eρλ2 , . . . , eρλn)V −1, where diag(c1, c2, . . . , cn) returns
an n× n diagonal matrix with the ith diagonal entry as ci.

If A is symmetric, the eigenvector matrix V could be chosen to be a matrix
of orthonormal vectors, denoted by Q. Note that Q−1 = QT . Thus, for a
symmetric A, the equation (2.107) can be re-written as:

A = QΛQT =
n∑
i=1

λi(qiqTi ) (2.108)

From Section 2.9.1, we recall that (qiqTi ) is a projection matrix. Moreover, if
i 6= j, (qiqTi ) is orthogonal to (qjqTj ). This gives us another perspective of
symmetric matrices - as a linear combination of orthogonal projection matrices.
Also, since Q is of rank 1 and invertible, we can infer that A is similar to Λ.
The diagonal matrix Λ can be thought of as a canonical form for the family
of matrices similar to A. However, if A is not a full rank matrix, there exists
an ‘almost diagonal form’, called the Jordan form [?], which is similar to A,
containing the eigenvalues of A along its diagonal, with the only other non-zero
entries being along the super-diagonal.

One more illustration of the utility of matrix factorization using eigenvec-
tors is the interpretation of level sets involving the quadratic form xTAx =
xTQΛQTx for a symmetric matrix A. The level set of a real-valued function f
of x ∈ <n is a set of the form {x|f(x) = c}, where c is a constant. Using the
eigenvalue factorization of matrices, the level set {x|xTQΛQTx = c} can be in-
terpreted as an ellipsoid in n dimensions, with each eigenvector-eigenvalue pair
specifying the direction and the length respectively of an axis of the ellipsoid.

2.12 Positive Definite Matrices

Positive definite matrix: A positive definite (p.d.) matrix is a symmetric
matrix with all positive eigenvalues. That M is a p.d. matrix is also
denoted by M > 0.

By virtue of property of symmetric matrices, all the pivots in the rref of a p.d.
matrix are also positive. Since the determinant of matrix equals the product of
its eigenvalues, the determinant of a p.d. matrix is also positive; however, it is
not necessary that a matrix with positive determinant is also p.d.

A matrix is called positive semi-definite (p.s.d.), if all its eigenvalues are
non-negative. That M is p.s.d. is also denoted by M ≥ 0.
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2.12.1 Equivalent Conditions

We will list down some necessary and sufficient conditions for a matrix A to be
positive definite or positive semi-definite:

1. A matrix A is p.d. iff all its principal minors (c.f. Section 2.10.1) are
positive. As an example, if A is a 2× 2 matrix, we must have a11 > 0 and
a11a22 − a12a21 > 0 in order for A to be p.d. On the other hand, if all its
principal minors are non-negative, the matrix is p.s.d.

2. Another equivalent definition for positive definiteness is: A matrix A is
p.d. iff, ∀ x 6= 0, xTAx > 0. This condition can be rewritten as ∀ x 6=

0,
n∑
i=1

n∑
j=1

aijxixj > 0. If ∀ x 6= 0, xTAx ≥ 0, A is p.s.d.

3. The condition ∀ x 6= 0,
n∑
i=1

n∑
j=1

aijxixj > 0 involves a quadratic expres-

sion. The expression is guaranteed to be greater than 0 ∀ x 6= 0 iff it can

be expressed as
n∑
i=1

λi

i−1∑
j=1

βijxij + xii

2

, where λi ≥ 0. This is possible

iff A can be expressed as LDLT , where, L is a lower traingular matrix with
1 in each diagonal entry and D is a diagonal matrix of all positive diago-
nal entries. Or equivalently, it should be possible to factorize A as RRT ,
where R = LD1/2 is a lower traingular matrix. Note that any symmetric
matrix A can be expressed as LDLT , where L is a lower traingular matrix
with 1 in each diagonal entry and D is a diagonal matrix; positive definite-
ness has only an additional requirement that the diagonal entries of D be
positive. This gives another equivalent condition for positive definiteness:
Matrix A is p.d. if and only if, A can be uniquely factored as A = RRT ,
where R is a lower traingular matrix with positive diagonal entries. This
factorization of a p.d. matrix is reffered to as Cholesky factorization.

Recall that Guass elimination on a matrix A yields its factorization as
A = LU and the diagonal entries of L are pivots. Therefore, if A is
symmetric matrix such that Guass elimination on it yields positive pivots,
A is positive definite.

To illustrate the equivalence of the above definitions of positive definiteness,
consider the matrix P below:

P =


1 1 2 1
1 10 14 4
2 14 21 9
1 4 9 20

 (2.109)
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The matrix is positive definite and this can be proved by showing any of the
following properties:

1. All the eigenvalues of P , viz., λ1 = 0.1644, λ2 = 0.9371, λ3 = 14.4091, λ4 =
36.4893 are positive. and therefore P > 0.

2. The principal minors of P are 1, 9, 9 and 81. All the four principal minors
are positive and thus P > 0.

3. Matrix P can be factorized as LLT , where

L =


1 0 0 0
1 3 0 0
2 4 1 0
1 1 3 3

 (2.110)

Since L is lower traingular and since all its diagonal entries are positive, P > 0.

2.12.2 Some properties

We will list some properties of positive definite matrices, using an appropriate
definition of positive definiteness as required.

1. If matrices A > 0 and B > 0, then A + B > 0. This follows from the
fact that ∀ x 6= 0, xTAx > 0 and ∀ x 6= 0, xTBx > 0 implies that
∀ x 6= 0, xT (A+B)x > 0. Similarly, AB > 0 and for any c > 0, cA > 0.

2. If A > 0, then ∀ x 6= 0, xTAx > 0 implies (xTAx)T = xTATx > 0, that
is, AT > 0.

3. Let A be an m×n matrix. Recall from Section 2.9.2, the important matrix
ATA which happened to be an n × n matrix. If A is full column rank,
the only vector in its null space is 0. Note that ∀ x 6= 0, xTATAx =
||Ax||2 > 0. Thus, ATA is always p.d. if A is non-singular.

4. Every p.d. matrix is invertible and its inverse is also p.d. That is, if A > 0
then A−1 exists and A−1 > 0.

5. If A > 0, the diagonal entries of A are real and positive. Consequently,
the trace tr(A) is also positive.

Testing for positive definiteness of a matrix arises in several applications,
including optimization. Determining the local minimum of a function f(x), x ∈
D, D ⊆ <k involves determining points x̂ at which ∇f(x̂) = 0 and ∇2f(x̂) > 0
(positive curvature at x̂).
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2.13 Singular Value Decomposition

In Section 2.11.3, we discussed that a full rank symmetric matrix can be factor-
ized into QΛQT , where, Q is an orthonormal matrix and Λ is a diagonal matrix.
This factorization can be extended to any matrix and it is called Singular Value
Decomposition, abbreviated as SVD. The singular value decomposition of any
m × n matrix A is factorization of A as UΣV T , where Σ is a diagonal matrix
and U and V are orthonormal matrices.

We will contruct the matrices U and V as follows. Let r be the rank of A
and let

• u1,u2, . . . ,ur be an orthonormal basis for the column space of A.

• vr+1,vr+2, . . . ,vn be an orthonormal basis for the null space of A.

• ur+1,ur+2, . . . ,um be an orthonormal basis for the null space of AT .

• v1,v2, . . . ,vr be such that xi = ATui and vi = 1
||xi||xi.

The relationship between ui and vi is therefore ATui = σiivi, with

σii =

{
||ATui|| if i ≤ r

0 if i > r
(2.111)

This system of equations can written in matrix form as

ATU = V Σ (2.112)

where, u1,u2, . . . ,um are the columns of U and v1,v2, . . . ,vn are the columns
of V . Σ is an n× n diagonal matrix with its ijth entry given by σij , such that

σij =


0 if i 6= j

||ATui|| if i = j and i ≤ r
0 if i = j and i > r

(2.113)

It can be shown that v1,v2, . . . ,vr are orthonormal and form a basis for the
row space of A. Theorem 19 stated that the row space C(AT ) and right null
space N(A) are orthogonal complements. Similarly, the column space C(A) and
left null space N(AT ) are orthogonal complements. Therefore, u1,u2, . . . ,um
is an orthonormal basis for <m, while v1,v1, . . . ,vn is an orthonormal basis for
<n.

Since U−1 = UT , we can rewrite (2.112) as
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A = UΣV T (2.114)

Furthermore, AAT = UΣ2UT and ATA = V Σ2V T , which are spectral decom-
positions, implying that the columns of U and V and eigenvectors of AAT and
ATA respectively and the diagonal entries of Σ are square roots of the eigenval-
ues of AAT (or equivalently ATA).

As an example, if P is the full rank, symmetric matrix in (2.109), the ma-
trices U , Σ and V are

U =


−165/2423 76/4167 637/688 −892/2403
−467/1012 373/992 −577/1726 −757/1036
−367/508 48/133 318/1909 869/1536
−172/337 −407/477 −329/5765 −211/2328

 (2.115)

Σ =


1715/47 0 0 0

0 11657/809 0 0
0 0 477/509 0
0 0 0 265/1612

 (2.116)

V =


−165/2423 76/4167 637/688 −892/2403
−467/1012 373/992 −577/1726 −757/1036
−367/508 48/133 318/1909 869/1536
−172/337 −407/477 −329/5765 −211/2328

 (2.117)

On the other hand, if P is a singular matrix of rank 2, given by

P =

 1 3 1
2 3 1
3 6 2

 (2.118)

then P can be decomposed into the following matrices:

U =

 −1301/3398 794/1101 −780/1351
−450/1039 −715/1033 −780/1351
−337/413 203/6999 780/1351

 (2.119)
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Σ =

 2565/299 0 0
0 687/1076 0
0 0 0

 (2.120)

V =

 −799/1854 −647/717 0
−1814/2119 453/1108 −228/721
−567/1987 151/1108 684/721

 (2.121)

Notice that, since P is singular and of rank 2, its null space has dimension
1 and one of its eigenvalues is 0.

2.13.1 Pseudoinverse

The SVD of a matrix that is not full rank (such as P in (2.118)) can be used to
compute its so-called Moore-Penrose pseudoinverse.

Pseudoinverse: The pseudoinverse A+ of an m×n matrix A is a unique n×m
matrix, satisfying all the following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)
T

= AA+

4. (A+A)
T

= A+A

The pseudoinverse of a non-singular square matrix is the same as its inverse.
A pseudoinverse of a rectangular matrix of full column rank is the left inverse,
while a pseudoinverse of a rectangular matrix of full row rank is the right inverse
(c.f. Section 2.4.2).

Consider an n× n diagonal matrix Σ having rank k.

Σ =



σ11 0 . . . 0 0 . . . 0
0 σ22 . . . 0 0 . . . 0
. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . σkk 0 . . . 0
0 0 . . . 0 0 . . . 0
. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 0 0 . . . 0


(2.122)
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The pseudoinverse Σ+ of Σ is:

Σ+ =



1
σ11

0 . . . 0 0 . . . 0
0 1

σ22
. . . 0 0 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 1
σkk

0 . . . 0
0 0 . . . 0 0 . . . 0
. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 0 0 . . . 0


(2.123)

The pseudoinverse P+ of any non full rank matrix P can be computed
using its singular value decomposition UΣV T and the pseudoinverse Σ+ of the
diagonal matrix Σ as:

P+ = V Σ+U (2.124)
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Chapter 3

Convex Optimization

3.1 Introduction

3.1.1 Mathematical Optimization

The problem of mathematical optimization is to minimize a non-linear cost
function f0(x) subject to inequality constraints fi(x) ≤ 0, i = 1, . . . ,m and
equality constraints hi(x) = 0, i = 1, . . . , p. x = (x1, . . . , xn) is a vector of
variables involved in the optimization problem. The general framework of a
non-linear optimization problem is outlined in (3.1).

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
variable x = (x1, . . . , xn)

(3.1)

It is obviously very useful and arises throughout engineering, statistics, es-
timation and numerical analysis. In fact there is the tautology that ‘everything
is an optimization problem’, though the tautology does not convey anything
useful. The most important thing to note first is that the optimization problem
is extremely hard in general. The solution and method is very much dependent
on the property of the objective function as well as properties of the functions
involved in the inequality and equality constraints. There are no good methods
for solving the general non-linear optimization problem. In practice, you have
to make some compromises, which usually translates to finding locally optimial
solutions efficiently. But then you get only suboptimial solutions, unless you are
willing to do global optimizations, which is for most applications too expensive.

There are important exceptions for which the situation is much better; the
global optimum in some cases can be found efficiently and relaibly. Three best
known exceptions are

157
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1. least-squares

2. linear programming

3. convex optimization problems - more or less the most general class of
problems that can be solved efficiently.

Least squares and linear programming have been around for quite some time
and are very special types of convex optimization problems. Convex program-
ming was not appreciated very much until last 15 years. It has drawn attention
more recently. In fact many combinatorial optimization problems have been
identified to be convex optimization problems. There are also some exceptions
besides convex optimization problems, such as singular value decomposition
(which corresponds to the problem of finding the best rank-k approximation to
a matrix, under the Frobenius norm) etc., which has an exact global solution.

We will first introduce some general optimization principles. We will sub-
sequently motivate the specific class of optimization problems called convex
optimization problems and define convex sets and functions. Next, the theory
of lagrange multipliers will be motivated and duality theory will be introduced.
As two specific and well-studied examples of convex optimization, techniques
for least squares and linear programming will be discussed to contrast them
against generic convex optimization. Finally, we will dive into techniques for
solving general convex optimization problems.

3.1.2 Some Topological Concepts in <n

The definitions of some basic topological concepts in <n could be helpful in the
discussions that follow.

Definition 22 [Balls in <n]: Consider a point x ∈ <n. Then the closed ball
around x of radius ε is defined as

B[x, ε] = {y ∈ <n|||y − x|| ≤ ε}

Likewise, the open ball around x of radius ε is defined as

B(x, ε) = {y ∈ <n|||y − x|| < ε}

For the 1-D case, open and closed balls degenerate to open and closed intervals
respectively.

Definition 23 [Boundedness in <n]: We say that a set S ⊂ <n is bounded
when there exists an ε > 0 such that S ⊆ B[0, ε].

In other words, a set S ⊆ <n is bounded means that there exists a number ε > 0
such that for all x ∈ S, ||x|| ≤ ε.

Definition 24 [Interior and Boundary points]: A point x is called an in-
terior point of a set S if there exists an ε > 0 such that B(x, ε) ⊆ S.
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In other words, a point x ∈ S is called an interior point of a set S if there
exists an open ball of non-zero radius around x such that the ball is completely
contained within S.

Definition 25 [Interior of a set]: Let S ⊆ <n. The set of all points lying
in the interior of S is denoted by int(S) and is called the interior of S.
That is,

int(S) = {x|∃ε > 0 s.t. B(x, ε) ⊂ S}

In the 1−D case, the open interval obtained by excluding endpoints from an
interval I is the interior of I, denoted by int(I). For example, int([a, b]) = (a, b)
and int([0,∞)) = (0,∞).

Definition 26 [Boundary of a set]: Let S ⊆ <n. The boundary of S, de-
noted by bnd(S) is defined as

bnd(S) =
{
y|∀ ε > 0, B(y, ε) ∩ S 6= ∅ and B(y, ε) ∩ SC 6= ∅

}
For example, bnd([a, b]) = {a, b}.

Definition 27 [Open Set]: Let S ⊆ <n. We say that S is an open set when,
for every x ∈ S, there exists an ε > 0 such that B(x, ε) ⊂ S.

The simplest examples of an open set are the open ball, the empty set ∅ and
<n. Further, arbitrary union of opens sets is open. Also, finite intersection of
open sets is open. The interior of any set is always open. It can be proved that
a set S is open if and only if int(S) = S.

The complement of an open set is the closed set.

Definition 28 [Closed Set]: Let S ⊆ <n. We say that S is a closed set
when SC (that is the complement of S) is an open set.

The closed ball, the empty set ∅ and <n are three simple examples of closed
sets. Arbitrary intersection of closed sets is closed. Furthermore, finite union of
closed sets is closed.

Definition 29 [Closure of a Set]: Let S ⊆ <n. The closure of S, denoted
by closure(S) is given by

closure(S) = {y ∈ <n|∀ ε > 0,B(y, ε) ∩ S 6= ∅}

Loosely speaking, the closure of a set is the smallest closed set containing the set.
The closure of a closed set is the set itself. In fact, a set S is closed if and only if
closure(S) = S. A bounded set can be defined in terms of a closed set; a set S is
bounded if and only if it is contained inside a closed set. A relationship between
the interior, boundary and closure of a set S is closure(S) = int(S) ∪ bnd(S).
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3.1.3 Optimization Principles for Univariate Functions

Maximum and Minimum values of univariate functions

Let f be a function with domain D. Then f has an absolute maximum (or global
maximum) value at point c ∈ D if

f(x) ≤ f(c), ∀x ∈ D

and an absolute minimum (or global minimum) value at c ∈ D if

f(x) ≥ f(c), ∀x ∈ D
If there is an open interval I containing c in which f(c) ≥ f(x), ∀x ∈ I,

then we say that f(c) is a local maximum value of f . On the other hand, if
there is an open interval I containing c in which f(c) ≤ f(x), ∀x ∈ I, then we
say that f(c) is a local minimum value of f . If f(c) is either a local maximum
or local minimum value of f in an open interval I with c ∈ I, the f(c) is called
a local extreme value of f .

The following theorem gives us the first derivative test for local extreme
value of f , when f is differentiable at the extremum.

Theorem 24 If f(c) is a local extreme value and if f is differentiable at x = c,
then f ′(c) = 0.

Proof: Suppose f(c) ≥ f(x) for all x in an open interval I containing c and that
f ′(c) exists. Then the difference quotient f(c+h)−f(c)

h ≤ 0 for small h ≥ 0 (so
that c + h ∈ I). This inequality remains true as h → 0 from the right. In the
limit, f ′(c) ≤ 0. Also, the difference quotient f(c+h)−f(c)

h ≥ 0 for small h ≤ 0
(so that c+ h ∈ I). This inequality remains true as h→ 0 from the left. In the
limit, f ′(c) ≥ 0. Since f ′(c) ≤ 0 as well as f ′(c) ≥ 0, we must have f ′(c) = 01.
2

The extreme value theorem is one of the most fundamental theorems in cal-
culus concerning continuous functions on closed intervals. It can be stated as:

Theorem 25 A continuous function f(x) on a closed and bounded interval
[a, b] attains a minimum value f(c) for some c ∈ [a, b] and a maximum value
f(d) for some d ∈ [a, b]. That is, a continuous function on a closed, bounded
interval attains a minimum and a maximum value.

We must point out that either or both of the values c and d may be attained
at the end points of the interval [a, b]. Based on theorem (24), the extreme value
theorem can extended as:

Theorem 26 A continuous function f(x) on a closed and bounded interval [a, b]
attains a minimum value f(c) for some c ∈ [a, b] and a maximum value f(d)
for some d ∈ [a, b]. If a < c < b and f ′(c) exists, then f ′(c) = 0. If a < d < b
and f ′(d) exists, then f ′(d) = 0.

1By virtue of the squeeze or sandwich theorem
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Figure 3.1: Illustration of Rolle’s theorem with f(x) = 9 − x2 on the interval
[−3,+3]. We see that f ′(0) = 0.

Next, we state the Rolle’s theorem.

Theorem 27 If f is continuous on [a, b] and differentiable at all x ∈ (a, b) and
if f(a) = f(b), then f ′(c) = 0 for some c ∈ (a, b).

Figure 3.1 illustrates Rolle’s theorem with an example function f(x) = 9−x2

on the interval [−3,+3].
The mean value theorem is a generalization of the Rolle’s theorem, though

we will use the Rolle’s theorem to prove it.

Theorem 28 If f is continuous on [a, b] and differentiable at all x ∈ (a, b),
then there is some c ∈ (a, b) such that, f ′(c) = f(b)−f(a)

b−a .

Proof: Define g(x) = f(x)− f(b)−f(a)
b−a (x− a) on [a, b]. We note rightaway that

g(a) = g(b) and g′(x) = f ′(x) − f(b)−f(a)
b−a . Applying Rolle’s theorem on g(x),

we know that there exists c ∈ (a, b) such that g′(c) = 0. Which implies that
f ′(c) = f(b)−f(a)

b−a . 2

Figure 3.2 illustrates the mean value theorem for f(x) = 9 − x2 on the
interval [−3, 0]. We observe that the tanget at x = −1 is parallel to the secant
joining −3 to 0. One could think of the mean value theorem as a slanted version
of Rolle’s theorem. A natural corollary of the mean value theorem is as follows:

Corollary 29 Let f be continuous on [a, b] and differentiable on (a, b) with
m ≤ f ′(x) ≤ M, ∀x ∈ (a, b). Then, m(x − t) ≤ f(x) − f(t) ≤ M(x − t), if
a ≤ t ≤ x ≤ b.

Let D be the domain of function f . We define

1. the linear approximation of a differentiable function f(x) as La(x) =
f(a) + f ′(a)(x − a) for some a ∈ D. We note that La(x) and its first
derivative at a agree with f(a) and f ′(a) respectively.
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Figure 3.2: Illustration of mean value theorem with f(x) = 9−x2 on the interval
[−3, 0]. We see that f ′(−1) = f(0)−f(−3)

3 .

Figure 3.3: Plot of f(x) = 1
x , and its linear, quadratic and cubic approximations.

2. the quadratic approximatin of a twice differentiable function f(x) as the
parabola Qa(x) = f(a) + f ′(a)(x − a) + 1

2f
′′(a)(x − a)2. We note that

Qa(x) and its first and second derivatives at a agree with f(a), f ′(a) and
f ′′(a) respectively.

3. the cubic approximation of a thrice differentiable function f(x) is Ca(x) =
f(a)+f ′(a)(x−a)+ 1

2f
′′(a)(x−a)2 + 1

6f
′′′(a)(x−a)3. Ca(x) and its first,

second and third derivatives at a agree with f(a), f ′(a), f ′′(a) and f ′′′(a)
respectively.

The coefficient2 of x2 in Qa(x) is 1
2f
′′(a). Figure 3.3 illustrates the linear,

quadratic and cubic approximations to the function f(x) = 1
x with a = 1.

2The parabola given by Qa(x) is strictly convex if f ′′(a) > 0 and is strictly concave if
f ′′(a) < 0. Strict convexity for functions of single variable will be defined on page 168.



3.1. INTRODUCTION 163

In general, an nth degree polynomial approximation of a function can be
found. Such an approximation will be used to prove a generalization of the
mean value theorem, called the Taylor’s theorem.

Theorem 30 The Taylor’s theorem states that if f and its first n derivatives
f ′, f ′′, . . . , f (n) are continuous on the closed interval [a, b], and differentiable on
(a, b), then there exists a number c ∈ (a, b) such that

f(b) = f(a)+f ′(a)(b−a)+
1
2!
f ′′(a)(b−a)2+. . .+

1
n!
f (n)(a)(b−a)n+

1
(n+ 1)!

f (n+1)(c)(b−a)n+1

Proof: Define

pn(x) = f(a) + f ′(a)(x− a) +
1
2!
f ′′(a)(x− a)2 + . . .+

1
n!
f (n)(a)(x− a)n

and

φn(x) = pn(x) + Γ(x− a)n+1

The polynomials pn(x) as well as φn(x) and their first n derivatives match
f and its first n derivatives at x = a. We will choose a value of Γ so that

f(b) = pn(b) + Γ(b− a)n+1

This requires that Γ = f(b)−pn(b)
(b−a)n+1 . Define the function g(x) = f(x) − φn(x)

that measures the difference between function f and the approximating function
φn(x) for each x ∈ [a, b].

• Since g(a) = g(b) = 0 and since g and g′ are both continuous on [a, b], we
can apply the Rolle’s theorem to conclude that there exists c1 ∈ [a, b] such
that g′(c1) = 0.

• Similarly, since g′(a) = g′(c1) = 0, and since g′ and g′′ are continuous
on [a, c1], we can apply the Rolle’s theorem to conclude that there exists
c2 ∈ [a, c1] such that g′′(c2) = 0.

• In this way, Rolle’s theorem can be applied successively to g′′, g′′′, . . . , g(n−1)

to imply the existence of ci ∈ (a, ci−1) such that g(i)(ci) = 0 for i =
3, 4, . . . , n + 1. Note however that g(n+1)(x) = f (n+1)(x) − 0 − (n + 1)!Γ
which gives us the value of Γ as f(n+1)(cn+1)

(n+1)! .

Thus,

f(b) = f(a)+f ′(a)(b−a)+
1
2!
f ′′(a)(b−a)2+. . .+

1
n!
f (n)(a)(b−a)n+

f (n+1)(cn+1)
(n+ 1)!

(x−a)n+1

2
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Figure 3.4: The mean value theorem can be violated if f(x) is not differentiable
at even a single point of the interval. Illustration on f(x) = x2/3 with the
interval [−3, 3].

Note that if f fails to be differentiable at even one number in the interval,
then the conclusion of the mean value theorem may be false. For example, if
f(x) = x2/3, then f ′(x) = 2

3 3√x and the theorem does not hold in the interval
[−3, 3], since f is not differentiable at 0 as can be seen in Figure 3.4.

We will introduce some definitions at this point:

• A function f is said to be increasing on an interval I in its domain D if
f(t) < f(x) whenever t < x.

• The function f is said to be decreasing on an interval I ∈ D if f(t) > f(x)
whenever t < x.

These definitions help us derive the following theorem:

Theorem 31 Let I be an interval and suppose f is continuous on I and dif-
ferentiable on int(I). Then:

1. if f ′(x) > 0 for all x ∈ int(I), then f is increasing on I;

2. if f ′(x) < 0 for all x ∈ int(I), then f is decreasing on I;

3. if f ′(x) = 0 for all x ∈ int(I), iff, f is constant on I.

Proof: Let t ∈ I and x ∈ I with t < x. By virtue of the mean value theorem,
∃c ∈ (t, x) such that f ′(c) = f(x)−f(t)

x−t .

• If f ′(x) > 0 for all x ∈ int(I), f ′(c) > 0, which implies that f(x)−f(t) > 0
and we can conclude that f is increasing on I.

• If f ′(x) < 0 for all x ∈ int(I), f ′(c) < 0, which implies that f(x)−f(t) < 0
and we can conclude that f is decreasing on I.
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Figure 3.5: Illustration of the increasing and decreasing regions of a function
f(x) = 3x4 + 4x3 − 36x2

• If f ′(x) = 0 for all x ∈ int(I), f ′(c) = 0, which implies that f(x)−f(t) = 0,
and since x and t are arbitrary, we can conclude that f is constant on I.

2

Figure 3.5 illustrates the intervals in (−∞,∞) on which the function f(x) =
3x4 + 4x3 − 36x2 is decreasing and increasing. First we note that f(x) is dif-
ferentiable everywhere on (−∞,∞) and compute f ′(x) = 12(x3 + x2 − 6x) =
12(x − 2)(x + 3)x, which is negative in the intervals (−∞,−3] and [0, 2] and
positive in the intervals [−3, 0] and [2,∞). We observe that f is decreasing in
the intervals (−∞,−3] and [0, 2] and while it is increasing in the intervals [−3, 0]
and [2,∞).

There is a related sufficient condition for a function f to be increasing/decreasing
on an interval I, stated through the following theorem:

Theorem 32 Let I be an interval and suppose f is continuous on I and dif-
ferentiable on int(I). Then:

1. if f ′(x) ≥ 0 for all x ∈ int(I), and if f ′(x) = 0 at only finitely many
x ∈ I, then f is increasing on I;

2. if f ′(x) ≤ 0 for all x ∈ int(I), and if f ′(x) = 0 at only finitely many
x ∈ I, then f is decreasing on I.

For example, the derivative of the function f(x) = 6x5 − 15x4 + 10x3 vanishes
at 0, and 1 and f ′(x) > 0 elsewhere. So f(x) is increasing on (−∞,∞).

Are the sufficient conditions for increasing and decreasing properties of f(x)
in theorem 31 also necesssary? It turns out that it is not the case. Figure 3.6
shows that for the function f(x) = x5, though f(x) is increasing in (−∞,∞),
f ′(0) = 0.

In fact, we have a slightly different necessary condition for an increasing or
decreasing function.
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Figure 3.6: Plot of f(x) = x5, illustrating that though the function is increasing
on (−∞,∞), f ′(0) = 0.

Theorem 33 Let I be an interval, and suppose f is continuous on I and dif-
ferentiable in int(I). Then:

1. if f is increasing on I, then f ′(x) ≥ 0 for all x ∈ int(I);

2. if f is decreasing on I, then f ′(x) ≤ 0 for all x ∈ int(I).

Proof: Suppose f is increasing on I, and let x ∈ int(I). Them f(x+h)−f(x)
h >

0 for all h such that x+h ∈ int(I). This implies that f ′(x) = lim
h→0

f(x+h)−f(x)
h ≥

0. For the case when f is decreasing on I, it can be similarly proved that
f ′(x) = lim

h→0

f(x+h)−f(x)
h ≤ 0. 2

Next, we define the concept of critical number, which will help us derive the
general condition for local extrema.

Definition 30 [Critical number]: A number c in the domain D of f is called
a critical number of f if either f ′(c) = 0 or f ′(c) does not exist.

The general condition for local extrema is stated in the next theorem; it
extends the result in theorem 24 to general non-differentiable functions.

Theorem 34 If f(c) is a local extreme value, then c is a critical number of f .

That the converse of theorem 34 does not hold is illustrated in Figure 3.6;
0 is a critical number (f ′(0) = 0), although f(0) is not a local extreme value.
Then, given a given critical number c, how do we discern whether f(c) is a local
extreme value? This can be answered using the first derivative test:

Procedure 1 [First derivative test]: Let c be an isolated critical number of
f . Then,
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Figure 3.7: Example illustrating the derivative test for function f(x) = 3x5 −
5x3.

1. f(c) is a local minimum if f(x) is decreasing in an interval [c− ε1, c]
and increasing in an interval [c, c+ε2] with ε1, ε2 > 0, or equivalently,
the sign of f ′(x) changes from negative in [c − ε1, c] to positive in
[c, c+ ε2] with ε1, ε2 > 0.

2. f(c) is a local maximum if f(x) is increasing in an interval [c− ε1, c]
and decreasing in an interval [c, c+ε2] with ε1, ε2 > 0, or equivalently,
the sign of f ′(x) changes from positive in [c − ε1, c] to negative in
[c, c+ ε2] with ε1, ε2 > 0.

3. If f ′(x) is positive in an interval [c − ε1, c] and also positive in an
interval [c, c − ε2], or f ′(x) is negative in an interval [c − ε1, c] and
also negative in an interval [c, c− ε2] with ε1, ε2 > 0, then f(c) is not
a local extremum.

As an example, the function f(x) = 3x5 − 5x3 has the derivative f ′(x) =
15x2(x+1)(x−1). The critical points are 0, 1 and −1. Of the three, the sign of
f ′(x) changes at 1 and −1, which are local minimum and maximum respectively.
The sign does not change at 0, which is therefore not a local supremum. This
is pictorially depicted in Figure 3.7 As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,

f ′(x) =

{
−1 if x < 0
0 if x > 0

Note that f(x) is discontinuous at x = 0, and therefore f ′(x) is not defined at
x = 0. All numbers x ≥ 0 are critical numbers. f(0) = 0 is a local minimum,
whereas f(x) = 1 is a local minimum as well as a local maximum ∀x > 0.
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Figure 3.8: Plot for the strictly convex function f(x) = x2 which has f ′′(x) =
2 > 0, ∀x.

Strict Convexity and Extremum

We define strictly convex and concave functions as follows:

1. A differentiable function f is said to be strictly convex (or strictly concave
up) on an open interval I, iff, f ′(x) is increasing on I. Recall from theo-
rem 31, the graphical interpretation of the first derivative f ′(x); f ′(x) > 0
implies that f(x) is increasing at x. Similarly, f ′(x) is increasing when
f ′′(x) > 0. This gives us a sufficient condition for the strict convexity of
a function:

Theorem 35 If at all points in an open interval I, f(x) is doubly differ-
entiable and if f ′′(x) > 0, ∀x ∈ I, then the slope of the function is always
increasing with x and the graph is strictly convex. This is illustrated in
Figure 3.8.

On the other hand, if the function is strictly convex and doubly differen-
tiable in I, then f ′′(x) ≥ 0, ∀x ∈ I.

There is also a slopeless interpretation of strict convexity as stated in the
following theorem:

Theorem 36 A differentiable function f is strictly convex on an open
interval I, iff

f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2) (3.2)

whenver x1, x2 ∈ I, x1 6= x2 and 0 < a < 1.
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Proof: First we will prove the necessity. Suppose f ′ is increasing on I.
Let 0 < a < 1, x1, x2 ∈ I and x1 6= x2. Without loss of generality
assume that x1 < x2

3. Then, x1 < ax1 + (1 − a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t with
x1 < s < ax1 + (1−a)x2 < t < x2, such that f(ax1 + (1−a)x2)−f(x1) =
f ′(s)(x2 − x1)(1 − a) and f(x2) − f(ax1 + (1 − a)x2) = f ′(t)(x2 − x1)a.
Therefore,

(1− a)f(x1)− f(ax1 + (1− a)x2) + af(x2) =
a [f(x2)− f(ax1 + (1− a)x2)]− (1− a) [f(ax1 + (1− a)x2)− f(x1)] =

a(1− a)(x2 − x1) [f ′(t)− f ′(s)]

Since f(x) is strictly convex on I, f ′(x) is increasing I and therefore,
f ′(t) − f ′(s) > 0. Moreover, x2 − x1 > 0 and 0 < a < 1. This implies
that (1 − a)f(x1) − f(ax1 + (1 − a)x2) + af(x2) > 0, or equivalently,
f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2), which is what we wanted to
prove in 3.2.

Next, we prove the sufficiency. Suppose the inequality in 3.2 holds. There-
fore,

lim
a→0

f(x2 + a(x1 − x2))− f(x2)
a

≤ f(x1)− f(x2)

that is,

f ′(x2)(x1 − x2) ≤ f(x1)− f(x2) (3.3)

Similarly, we can show that

f ′(x1)(x2 − x1) ≤ f(x2)− f(x1) (3.4)

Adding the left and right hand sides of inequalities in (3.3) and (3.4), and
multiplying the resultant inequality by −1 gives us

(f ′(x2)− f ′(x1)) (x2 − x1) ≥ 0 (3.5)

Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1) such
that

3For the case x2 < x1, the proof is very similar.
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f(x2)− f(x1) = f ′(z)(x2 − x1) (3.6)

Since 3.5 holds for any x1, x2 ∈ I, it also hold for x2 = z. Therefore,

(f ′(z)− f ′(x1))(x2 − x1) =
1
t
(f ′(z)− f ′(x1))(z − x1) ≥ 0

Additionally using 3.6, we get

f(x2)−f(x1) = (f ′(z)−f ′(x1))(x2−x1)+f ′(x1)(x2−x1) ≥ f ′(x1)(x2−x1)
(3.7)

Suppose equality holds in 3.5 for some x1 6= x2. Then equality holds in
3.7 for the same x1 and x2. That is,

f(x2)− f(x1) = f ′(x1)(x2 − x1) (3.8)

Applying 3.7 we can conclude that

f(x1) + af ′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1)) (3.9)

From 3.2 and 3.8, we can derive that

f(x1 + a(x2 − x1)) < (1− a)f(x1) + af(x2) = f(x1) + af ′(x1)(x2 − x1)
(3.10)

However, equations 3.9 and 3.10 contradict each other. Therefore, equality
in 3.5 cannot hold for any x1 6= x2, implying that

(f ′(x2)− f ′(x1)) (x2 − x1) > 0

that is, f ′(x) is increasing and therefore f is convex on I. 2

2. A differentiable function f is said to be strictly concave on an open interval
I, iff, f ′(x) is decreasing on I. Recall from theorem 31, the graphical
interpretation of the first derivative f ′(x); f ′(x) < 0 implies that f(x) is
decreasing at x. Similarly, f ′(x) is monotonically decreasing when f ′′(x) >
0. This gives us a sufficient condition for the concavity of a function:
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Figure 3.9: Plot for the strictly convex function f(x) = −x2 which has f ′′(x) =
−2 < 0, ∀x.

Theorem 37 If at all points in an open interval I, f(x) is doubly differ-
entiable and if f ′′(x) < 0, ∀x ∈ I, then the slope of the function is always
decreasing with x and the graph is strictly concave. This is illustrated in
Figure 3.9.

On the other hand, if the function is strictly concave and doubly differen-
tiable in I, then f ′′(x) ≤ 0, ∀x ∈ I.

There is also a slopeless interpretation of concavity as stated in the fol-
lowing theorem:

Theorem 38 A differentiable function f is strictly concave on an open
interval I, iff

f(ax1 + (1− a)x2) > af(x1) + (1− a)f(x2) (3.11)

whenver x1, x2 ∈ I, x1 6= x2 and 0 < a < 1.

The proof is similar to that for theorem 36.

Figure 3.10 illustrates a function f(x) = x3 − x + 2, whose slope decreases
as x increases to 0 (f ′′(x) < 0) and then the slope increases beyond x = 0
(f ′′(x) > 0). The point 0, where the f ′′(x) changes sign is called the inflection
point; the graph is strictly concave for x < 0 and strictly convex for x > 0. Along
similar lines, we can diagnose the function f(x) = 1

20x
5 − 7

12x
4 + 7

6x
3 − 15

2 x
2;

it is strictly concave on (−∞,−1] and [3, 5] and strictly convex on [−1, 3] and
[5,∞]. The inflection points for this function are at x = −1, x = 3 and x = 5.

The first derivative test for local extrema can be restated in terms of strict
convexity and concavity of functions.
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Figure 3.10: Plot for f(x) = x3 + x + 2, which has an inflection point x = 0,
along with plots for f ′(x) and f ′′(x).

Procedure 2 [First derivative test in terms of strict convexity]: Let c be
a critical number of f and f ′(c) = 0. Then,

1. f(c) is a local minimum if the graph of f(x) is strictly convex on an
open interval containing c.

2. f(c) is a local maximum if the graph of f(x) is strictly concave on
an open interval containing c.

If the second derivative f ′′(c) exists, then the strict convexity conditions for
the critical number can be stated in terms of the sign of of f ′′(c), making use
of theorems 35 and 37. This is called the second derivative test.

Procedure 3 [Second derivative test]: Let c be a critical number of f where
f ′(c) = 0 and f ′′(c) exists.

1. If f ′′(c) > 0 then f(c) is a local minimum.

2. If f ′′(c) < 0 then f(c) is a local maximum.

3. If f ′′(c) = 0 then f(c) could be a local maximum, a local maximum,
neither or both. That is, the test fails.

For example,

• If f(x) = x4, then f ′(0) = 0 and f ′′(0) = 0 and we can see that f(0) is a
local minimum.

• If f(x) = −x4, then f ′(0) = 0 and f ′′(0) = 0 and we can see that f(0) is
a local maximum.

• If f(x) = x3, then f ′(0) = 0 and f ′′(0) = 0 and we can see that f(0) is
neither a local minimum nor a local maximum. (0, 0) is an inflection point
in this case.
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• If f(x) = x + 2 sinx, then f ′(x) = 1 + 2 cosx. f ′(x) = 0 for x = 2π
3 ,

4π
3 ,

which are the critical numbers. f ′′
(

2π
3

)
= 2 sin 2π

3 = −
√

3 < 0⇒ f
(

2π
3

)
=

2π
3 +
√

3 is a local maximum value. On the other hand, f ′′
(

4π
3

)
=
√

3 > 0
⇒ f

(
4π
3

)
= 4π

3 −
√

3 is a local minimum value.

• If f(x) = x + 1
x , then f ′(x) = 1 + 1

x2 . The critial numbers are x = ±1.
Note that x = 0 is not a critical number, even though f ′(0) does not exist,
because 0 is not in the domain of f . f ′′(x) = 2

x3 . f ′′(−1) = −2 < 0 and
therefore f(−1) = −2 is a local maximum. f ′′(1) = 2 > 0 and therefore
f(1) = 2 is a local minimum.

Global Extrema on Closed Intervals

Recall the extreme value theorem (theorem 25). An outcome of the extreme
value theorem is that

• if either of c or d lies in (a, b), then it is a critical number of f ;

• else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of a continuous
function f on a closed bounded interval I:

Procedure 4 [Finding extreme values on closed, bounded intervals]: 1.
Find the critical points in int(I).

2. Compute the values of f at the critical points and at the endpoints of
the interval.

3. Select the least and greatest of the computed values.

For example, to compute the maximum and minimum values of f(x) =
4x3 − 8x2 + 5x on the interval [0, 1], we first compute f ′(x) = 12x2 − 16x + 5
which is 0 at x = 1

2 ,
5
6 . Values at the critical points are f( 1

2 ) = 1, f( 5
6 ) = 25

27 .
The values at the end points are f(0) = 0 and f(1) = 1. Therefore, the minimum
value is f(0) = 0 and the maximum value is f(1) = f( 1

2 ) = 1.
In this context, it is relevant to discuss the one-sided derivatives of a function

at the endpoints of the closed interval on which it is defined.

Definition 31 [One-sided derivatives at endpoints]: Let f be defined on
a closed bounded interval [a, b]. The (right-sided) derivative of f at x = a
is defined as

f ′(a) = lim
h→0+

f(a+ h)− f(a)
h

Similarly, the (left-sided) derivative of f at x = b is defined as

f ′(b) = lim
h→0−

f(b+ h)− f(b)
h
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Essentially, each of the one-sided derivatives defines one-sided slopes at the
endpoints. Based on these definitions, the following result can be derived.

Theorem 39 If f is continuous on [a, b] and f ′(a) exists as a real number or
as ±∞, then we have the following necessary conditions for extremum at a.

• If f(a) is the maximum value of f on [a, b], then f ′(a) ≤ 0 or f ′(a) = −∞.

• If f(a) is the minimum value of f on [a, b], then f ′(a) ≥ 0 or f ′(a) =∞.

If f is continuous on [a, b] and f ′(b) exists as a real number or as ±∞, then
we have the following necessary conditions for extremum at b.

• If f(b) is the maximum value of f on [a, b], then f ′(b) ≥ 0 or f ′(b) =∞.

• If f(b) is the minimum value of f on [a, b], then f ′(b) ≤ 0 or f ′(b) = −∞.

The following theorem gives a useful procedure for finding extrema on closed
intervals.

Theorem 40 If f is continuous on [a, b] and f ′′(x) exists for all x ∈ (a, b).
Then,

• If f ′′(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b] is either
f(a) or f(b). If, in addition, f has a critical number c ∈ (a, b), then f(c)
is the maximum value of f on [a, b].

• If f ′′(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b] is either
f(a) or f(b). If, in addition, f has a critical number c ∈ (a, b), then f(c)
is the minimum value of f on [a, b].

The next theorem is very useful for finding global extrema values on open
intervals.

Theorem 41 Let I be an open interval and let f ′′(x) exist ∀x ∈ I.

• If f ′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f ′(c) = 0,
then f(c) is the global minimum value of f on I.

• If f ′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f ′(c) = 0,
then f(c) is the global maximum value of f on I.

For example, let f(x) = 2
3x− secx and I = (−π2 , π2 ). f ′(x) = 2

3 − secx tanx =
2
3 −

sin x
cos2 x = 0 ⇒ x = π

6 . Further, f ′′(x) = − secx(tan2 x + sec2 x) < 0 on
(−π2 , π2 ). Therefore, f attains the maximum value f(π6 ) = π

9 −
2√
3

on I.
As another example, let us find the dimensions of the cone with minimum

volume that can contain a sphere with radius R. Let h be the height of the
cone and r the radius of its base. The objective to be minimized is the volume
f(r, h) = 1

3πr
2h. The constraint betwen r and h is shown in Figure 3.11; the

traingle AEF is similar to traingle ADB and therefore, h−R
R =

√
h2+r2

r . Our
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Figure 3.11: Illustrating the constraints for the optimization problem of finding
the cone with minimum volume that can contain a sphere of radius R.

first step is to reduce the volume formula to involve only one of r24 or h. The
algebra involved will be the simplest if we solved for h. The constraint gives
us r2 = R2h

h−2R . Substituting this expression for r2 into the volume formula, we

get g(h) = πR2

3
h2

(h−2R) with the domain given by D = {h|2R < h <∞}. Note

that D is an open interval. g′ = πR2

3
2h(h−2R)−h2

(h−2R)2 = πR2

3
h(h−4R)
(h−2R)2 which is 0

in its domain D if and only if h = 4R. g′′ = πR2

3
2(h−2R)3−2h(h−4R)(h−2R)2

(h−2R)4 =
πR2

3
2(h2−4Rh+4R2−h2+4Rh)

(h−2R)3 = πR2

3
8R2

(h−2R)3 , which is greater than 0 in D. There-
fore, g (and consequently f) has a unique minimum at h = 4R and correspond-
ingly, r2 = R2h

h−2R = 2R2.

3.1.4 Optimization Principles for Multivariate Functions

Directional derivative and the gradient vector

Consider a function f(x), with x ∈ <n. We start with the concept of the
the direction at a point x ∈ <n. We will represent a vector by x and the kth

component of x by xk. Let uk be a unit vector pointing along the kth coordinate
axis in <n; ukk = 1 and ukj = 0, ∀j 6= k An arbitrary direction vector v at x is a
vector in <n with unit norm (i.e., ||v|| = 1) and component vk in the direction
of uk. Let f : D → <, D ⊆ <n be a function.

Definition 32 [Directional derivative]: The directional derivative of f(x)
at x in the direction of the unit vector v is

Dvf(x) = lim
h→0

f(x + hv)− f(x)
h

(3.12)

4Since r appears in the volume formula only in terms of r2.
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provided the limit exists.

As a special case, when v = uk the directional derivative reduces to the partial
derivative of f with respect to xk.

Dukf(x) =
∂f(x)
∂xk

Theorem 42 If f(x) is a differentiable function of x ∈ <n, then f has a di-
rectional derivative in the direction of any unit vector v, and

Dvf(x) =
n∑
k=1

∂f(x)
∂xk

vk (3.13)

Proof: Define g(h) = f(x + vh). Now:

• g′(0) = lim
h→0

g(0+h)−g(0)
h = lim

h→0

f(x+hv)−f(x)
h , which is the expression for the

directional derivative defined in equation 3.12. Thus, g′(0) = Dvf(x).

• By definition of the chain rule for partial differentiation, we get another

expression for g′(0); g′(0) =
n∑
k=1

∂f(x)
∂xk

vk

Therefore, g′(0) = Dvf(x) =
n∑
k=1

∂f(x)
∂xk

vk 2

The theorem works if the function is differentiable at the point, else it is not
predictable. The above theorem leads us directly to the idea of the gradient.
We can see that the right hand side of (3.13) can be realized as the dot product

of two vectors, viz.,
[
∂f(x)
∂x1

, ∂f(x)
∂x2

, . . . , ∂f(x)
∂xn

]T
and v. Let us denote ∂f(x)

∂xi
by

fxi(x). Then we assign a name to the special vector discovered above.

Definition 33 [Gradient Vector]: If f is differentiable function of x ∈ <n,
then the gradient of f(x) is the vector function ∇f(x), defined as:

∇f(x) = [fx1(x), fx2(x), . . . , fxn(x)]

The directional derivative of a function f at a point x in the direction of a unit
vector v can be now written as

Dvf(x) = ∇T f(x).v (3.14)
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What does the gradient ∇f(x) tell you about the function f(x)? We will il-
lustrate with some examples. Consider the polynomial f(x, y, z) = x2y+z sinxy
and the unit vector vT = 1√

3
[1, 1, 1]T . Consider the point p0 = (0, 1, 3). We will

compute the directional derivative of f at p0 in the direction of v. To do this, we
first compute the gradient of f in general: ∇f =

[
2xy + yz cosxy, x2 + xz cosxy, sinxy

]T .
Evaluating the gradient at a specific point p0, ∇f(0, 1, 3) = [3, 0, 0]T . The di-
rectional derivative at p0 in the direction v isDvf(0, 1, 3) = [3, 0, 0]. 1√

3
[1, 1, 1]T =

√
3. This directional derivative is the rate of change of f at p0 in the direction

v; it is positive indicating that the function f increases at p0 in the direction v.
All our ideas about first and second derivative in the case of a single variable
carry over to the directional derivative.

As another example, let us find the rate of change of f(x, y, z) = exyz at
p0 = (1, 2, 3) in the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1). We first
construct a unit vector from p1 to p2; v = 1√

57
[−5, 4,−4]. The gradient of f

in general is ∇f = [yzexyz, xzexyz, xyexyz] = exyz[yz, xz, xy]. Evaluating
the gradient at a specific point p0, ∇f(1, 2, 3) = e6 [6, 3, 2]T . The directional
derivative at p0 in the direction v is Duf(1, 2, 3) = e6[6, 3, 2]. 1√

57
[−5, 4,−4]T =

e6−26√
57

. This directional derivative is negative, indicating that the function f

decreases at p0 in the direction from p1 to p2.
While there exist infinitely many direction vectors v at any point x, there is

a unique gradient vector∇f(x). Since we seperated Dvf(x) as the dot prouduct
of ∇f(x) with v, we can study ∇f(x) independently. What does the gradient
vector tell us? We will state a theorem to answer this question.

Theorem 43 Suppose f is a differentiable function of x ∈ <n. The maximum
value of the directional derivative Dvf(x) is ||∇f(x|| and it is so when v has
the same direction as the gradient vector ∇f(x).

Proof: The cauchy schwartz inequality when applied in the eucledian space
states that |xT .y| ≤ ||x||.||y|| for any x,y ∈ <n, with equality holding iff x
and y are linearly dependent. The inequality gives upper and lower bounds on
the dot product between two vectors; −||x||.||y|| ≤ xT .y ≤ ||x||.||y||. Applying
these bounds to the right hand side of 3.14 and using the fact that ||v|| = 1, we
get

−||∇f(x)|| ≤ Dvf(x) = ∇T f(x).v ≤ ||∇f(x)||

with equality holding iff v = k∇f(x) for some k ≥ 0. Since ||v|| = 1, equality
can hold iff v = ∇f(x)

||∇f(x)|| . 2

The theorem implies that the maximum rate of change of f at a point x is
given by the norm of the gradient vector at x. And the direction in which the
rate of change of f is maximum is given by the unit vector ∇f(x

||∇f(x|| .
An associated fact is that the minimum value of the directional derivative

Dvf(x) is −||∇f(x|| and it occurs when v has the opposite direction of the
gradient vector, i.e., − ∇f(x

||∇f(x|| . This fact is often used in numerical analysis
when one is trying to minimize the value of very complex functions. The method
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Figure 3.12: 10 level curves for the function f(x1, x2) = x1e
x2 .

of steepest descent uses this result to iteratively choose a new value of x by
traversing in the direction of −∇f(x).

Consider the function f(x1, x2) = x1e
x2 . Figure 3.12 shows 10 level curves

for this function, corresponding to f(x1, x2) = c for c = 1, 2, . . . , 10. The idea
behind a level curve is that as you change x along any level curve, the function
value remains unchanged, but as you move x across level curves, the function
value changes.

We will define the concept of a hyperplane next, since it will be repeatedly
referred to in the sequel.

Definition 34 [Hyperplane]: A set of points H ⊆ <n is called a hyperplane
if there exists a vector v ∈ <n and a point q ∈ <n such that

∀ p ∈ H, (p− q)Tv = 0

or in other words, ∀p ∈ H,pTv = qTv. This is the equation of a hy-
perplane orthogonal to vector v and passing through point q. The space
spanned by vectors in the hyperplane H which are orthogonal to vector v,
forms the orthogonal complement of the space spanned by v.

Hyperplane H can also be equivalently defined as the set of points p such that
pTv = c for some c ∈ < and some v ∈ <n, with c = qTv in our definition.
(This definition will be referred to at a later point.)

What if Dvf(x) turns out to be 0? What can we say about ∇f(x) and v?
There is a useful theorem in this regard.

Theorem 44 Let f : D → < with D ∈ <n be a differentiable function. The
gradient ∇f evaluated at x∗ is orthogonal to the tangent hyperplane (tangent
line in case n = 2) to the level surface of f passing through x∗.
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Proof: Let K be the range of f and let k ∈ K such that f(x∗) = k. Consider the
level surface f(x) = k. Let r(t) = [x1(t), x2(t), . . . , xn(t)] be a curve on the level
surface, parametrized by t ∈ <, with r(0) = x∗. Then, f(x(t), y(t), z(t)) = k.
Applying the chain rule

df(r(t))
dt

=
n∑
i=1

∂f

∂xi

dxi(t)
dt

= ∇T f(x(t))
dr(t)
dt

= 0

For t = 0, the equations become

∇T f(x∗)
dr(0)
dt

= 0

Now, dr(t)
dt represents any tangent vector to the curve through r(t) which lies

completely on the level surface. That is, the tangent line to any curve at x∗

on the level surface containing x∗, is orthogonal to ∇f(x∗). Since the tangent
hyperplane to a surface at any point is the hyperplane containing all tangent
vectors to curves on the surface passing through the point, the gradient is per-
pendicular to the tangent hyperplane to the level surface passing through that
point. The equation of the tangent hyperplane is given by (x−x∗)T∇f(x∗) = 0.
2

Recall from elementary calculus, that the normal to a plane can be found
by taking the cross product of any two vectors lying within the plane. The
gradient vector at any point on the level surface of a function is normal to the
tangent hyperplane (or tangent line in the case of two variables) to the surface
at the same point, but can however be conveniently obtained using the partial
derivatives of the function at that point.

We will use some illustrative examples to study these facts.

1. Consider the same plot as in Figure 3.12 with a gradient vector at (2, 0) as
shown in Figure 3.13. The gradient vector [1, 2]T is perpendicular to the
tangent hyperplane to the level curve x1e

x2 = 2 at (2, 0). The equation of
the tangent hyperplane is (x1 − 2) + 2(x2 − 0) = 0 and it turns out to be
a tangent line.

2. The level surfaces for f(x1, x2, x3) = x2
1 +x2

2 +x2
3 are shown in Figure 3.14.

The gradient at (1, 1, 1) is orthogonal to the tangent hyperplane to the
level surface f(x1, x2, x3) = x2

1 + x2
2 + x2

3 = 3 at (1, 1, 1). The gradient
vector at (1, 1, 1) is [2, 2, 2]T and the tanget hyperplane has the equation
2(x1−1)+2(x2−1)+2(x3−1) = 0, which is a plane in 3D. On the other
hand, the dotted line in Figure 3.15 is not orthogonal to the level surface,
since it does not coincide with the gradient.

3. Let f(x1, x,x3) = x2
1x

3
2x

4
3 and consider the point x0 = (1, 2, 1). We will

find the equation of the tangent plane to the level surface through x0.
The level surface through x0 is determined by setting f equal to its
value evaluated at x0; that is, the level surface will have the equation
x2

1x
3
2x

4
3 = 122314 = 8. The gradient vector (normal to tangent plane) at
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Figure 3.13: The level curves from Figure 3.12 along with the gradient vector
at (2, 0). Note that the gradient vector is perpenducular to the level curve
x1e

x2 = 2 at (2, 0).

Figure 3.14: 3 level surfaces for the function f(x1, x2, x3) = x2
1+x2

2+x2
3 with c =

1, 3, 5. The gradient at (1, 1, 1) is orthogonal to the level surface f(x1, x2, x3) =
x2

1 + x2
2 + x2

3 = 3 at (1, 1, 1).
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Figure 3.15: Level surface f(x1, x2, x3) = x2
1 + x2

2 + x2
3 = 3. The gradient at

(1, 1, 1), drawn as a bold line, is perpendicular to the tangent plane to the level
surface at (1, 1, 1), whereas, the dotted line, though passing through (1, 1, 1) is
not perpendicular to the same tangent plane.
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(1, 2, 1) is ∇f(x1, x2, x3)|(1,2,1) = [2x1x
3
2x

4
3, 3x2

1x
2
2x

4
3, 4x

2
1x

3
2x

3
3]T
∣∣
(1,2,1)

=
[16, 12, 32]T . The equation of the tangent plane at x0, given the normal
vector ∇f(x0) can be easily written down: ∇f(x0)T .[x − x0] = 0 which
turns out to be 16(x1 − 1) + 12(x2 − 2) + 32(x3 − 1) = 0, a plane in 3D.

4. Consider the function f(x, y, z) = x
y+z . The directional derivative of f in

the direction of the vector v = 1√
14

[1, 2, 3] at the point x0 = (4, 1, 1) is

∇T f
∣∣
(4,1,1)

. 1√
14

[1, 2, 3]T =
[

1
y+z , −

x
(y+z)2 , − x

(y+z)2

]∣∣∣
(4,1,1)

. 1√
14

[1, 2, 3]T =[
1
2 , −1, −1

]
. 1√

14
[1, 2, 3]T = − 9

2
√

14
. The directional derivative is nega-

tive, indicating that the function decreases along the direction of v. Based
on theorem 43, we know that the maximum rate of change of a function
at a point x is given by ||∇f(x)|| and it is in the direction ∇f(x)

||∇f(x)|| . In
the example under consideration, this maximum rate of change at x0 is 3

2
and it is in the direction of the vector 2

3

[
1
2 , −1, −1

]
.

5. Let us find the maximum rate of change of the function f(x, y, z) = x2y3z4

at the point x0 = (1, 1, 1) and the direction in which it occurs. The
gradient at x0 is ∇T f

∣∣
(1,1,1)

= [2, 3, 4]. The maximum rate of change at

x0 is therefore
√

29 and the direction of the corresponding rate of change is
1√
29

[2, 3, 4]. The minimum rate of change is−
√

29 and the corresponding
direction is − 1√

29
[2, 3, 4].

6. Let us determine the equations of (a) the tangent plane to the paraboloid
P : x1 = x2

2 + x2
3 + 2 at (−1, 1, 0) and (b) the normal line to the tangent

plane. To realize this as the level surface of a function of three variables, we
define the function f(x1, x2, x3) = x1−x2

2−x2
3 and find that the paraboloid

P is the same as the level surface f(x1, x2, x3) = −2. The normal to the
tangent plane to P at x0 is in the direction of the gradient vector∇f(x0) =
[1,−2, 0]T and its parametric equation is [x1, x2, x3] = [−1+ t, 1−2t, 0].
The equation of the tangent plane is therefore (x1 + 1)− 2(x2 − 1) = 0.

We can embed the graph of a function of n variables as the 0-level surface of
a function of n + 1 variables. More concretely, if f : D → <, D ⊆ <n then we
define F : D′ → <, D′ = D×< as F (x, z) = f(x)−z with x ∈ D′. The function
f then corresponds to a single level surface of F given by F (x, z) = 0. In other
words, the 0−level surface of F gives back the graph of f . The gradient of F
at any point (x, z) is simply, ∇F (x, z) = [fx1 , fx2 , . . . , fxn ,−1] with the first n
components of ∇F (x, z) given by the n components of ∇f(x). We note that the
level surface of F passing through point (x0, f(x0) is its 0-level surface, which
is essentially the surface of the function f(x). The equation of the tangent
hyperplane to the 0−level surface of F at the point (x0, f(x0) (that is, the
tangent hyperplane to f(x) at the point x0), is ∇F (x0, f(x0))T .[x − x0, z −
f(x0)]T = 0. Substituting appropriate expression for ∇F (x0), the equation of
the tangent plane can be written as
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(
n∑
i=1

fxi(x
0)(xi − x0

i )

)
−
(
z − f(x0)

)
= 0

or equivalently as,(
n∑
i=1

fxi(x
0)(xi − x0

i )

)
+ f(x0) = z

As an example, consider the paraboloid, f(x1, x2) = 9− x2
1 − x2

2, the corre-
sponding F (x1, x2, z) = 9−x2

1−x2
2−z and the point x0 = (x0, z) = (1, 1, 7) which

lies on the 0-level surface of F . The gradient ∇F (x1, x2, z) is [−2x1, −2x2, −1],
which when evaluated at x0 = (1, 1, 7) is [−2, −2, −1]. The equation of the
tangent plane to f at x0 is therefore given by −2(x1 − 1)− 2(x2 − 1) + 7 = z.

Recall from theorem 24 that for functions of single variable, at local extreme
points, the tangent to the curve is a line with a constant component in the
direction of the function and is therefore parallel to the x-axis. If the function
is is differentiable at the extreme point, then the derivative must vanish. This
idea can be extended to functions of multiple variables. The requirement in this
case turns out to be that the tangent plane to the function at any extreme point
must be parallel to the plane z = 0. This can happen if and only if the gradient
∇F is parallel to the z−axis at the extreme point, or equivalently, the gradient
to the function f must be the zero vector at every extreme point.

We will formalize this discussion by first providing the definitions for local
maximum and minimum as well as absolute maximum and minimum values of
a function of n variables.

Definition 35 [Local maximum]: A function f of n variables has a local
maximum at x0 if ∃ε > 0 such that ∀ ||x − x0|| < ε. f(x) ≤ f(x0). In
other words, f(x) ≤ f(x0) whenever x lies in some circular disk around
x0.

Definition 36 [Local minimum]: A function f of n variables has a local
minimum at x0 if ∃ε > 0 such that ∀ ||x − x0|| < ε. f(x) ≥ f(x0). In
other words, f(x) ≥ f(x0) whenever x lies in some circular disk around
x0.

These definitions are exactly analogous to the definitions for a function of
single variable. Figure 3.16 shows the plot of f(x1, x2) = 3x2

1 − x3
1 − 2x2

2 + x4
2.

As can be seen in the plot, the function has several local maxima and minima.
We will next state a theorem fundamental to determining the locally extreme

values of functions of multiple variables.

Theorem 45 If f(x) defined on a domain D ⊆ <n has a local maximum
or minimum at x∗ and if the first-order partial derivatives exist at x∗, then
fxi(x

∗) = 0 for all 1 ≤ i ≤ n.
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Figure 3.16: Plot of f(x1, x2) = 3x2
1 − x3

1 − 2x2
2 + x4

2, showing the various local
maxima and minima of the function.

Proof: The idea behind this theorem can be stated as follows. The tangent
hyperplane to the function at any extreme point must be parallel to the plane
z = 0. This can happen if and only if the gradient ∇F = [∇T f, −1]T is parallel
to the z−axis at the extreme point. Or equivalently, the gradient to the function
f must be the zero vector at every extreme point, i.e., fxi(x

∗) = 0 for 1 ≤ i ≤ n.
To formally prove this theorem, consider the function gi(xi) = f(x∗1, x

∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n).

If f has a local extremum at x∗, then each function gi(xi) must have a local
extremum at x∗i . Therefore g

′

i(x
∗
i ) = 0 by theorem 24. Now g

′

i(x
∗
i ) = fxi(x

∗) so
fxi(x

∗) = 0. 2

Applying theorem 45 to the function f(x1, x2) = 9−x2
1−x2

2, we require that
at any extreme point fx1 = −2x1 = 0⇒ x1 = 0 and fx2 = −2x2 = 0⇒ x2 = 0.
Thus, f indeed attains its maximum at the point (0, 0) as shown in Figure 3.17.

Definition 37 [Critical point]: A point x∗ is called a critical point of a func-
tion f(x) defined on D ⊆ <n if

1. If fxi(x
∗) = 0, for 1 ≤ i ≤ n.

2. OR fxi(x
∗) fails to exist for any 1 ≤ i ≤ n.

A procedure for computing all critical points of a function f is:

1. Compute fxi for 1 ≤ i ≤ n.

2. Determine if there are any points where any one of fxi fails to exist. Add
such points (if any) to the list of critical points.

3. Solve the system of equations fxi = 0 simultaneously. Add the solution
points to the list of saddle points.
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Figure 3.17: The paraboloid f(x1, x2) = 9 − x2
1 − x2

2 attains its maximum at
(0, 0). The tanget plane to the surface at (0, 0, f(0, 0)) is also shown, and so is
the gradient vector ∇F at (0, 0, f(0, 0)).

Figure 3.18: Plot illustrating critical points where derivative fails to exist.
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Figure 3.19: The hyperbolic paraboloid f(x1, x2) = x2
1−x2

2, which has a saddle
point at (0, 0).

As an example, for the function f(x1, x2) = |x1|, fx1 does not exist for
(0, s) for any s ∈ < and all of them are critical points. Figure 3.18 shows the
corresponding 3−D plot.

Is the converse of theorem 45 true? That is, if you find an x∗ that satisifes
fxi(x

∗) = for all 1 ≤ i ≤ n, is it necessary that x∗ is an extreme point? The
answer is no. In fact, points that violate the converse of theorem 45 are called
saddle points.

Definition 38 [Saddle point]: A point x∗ is called a saddle point of a func-
tion f(x) defined on D ⊆ <n if x∗ is a critical point of f but x∗ does not
correspond to a local maximum or minimum of the function.

We saw the example of a saddle point in Figure 3.7, for the case n = 1. The
inflection point for a function of single variable, that was discussed earlier, is the
analogue of the saddle point for a function of multiple variables. An example
for n = 2 is the hyperbolic paraboloid5 f(x1, x2) = x2

1 − x2
2, the graph of

which is shown in Figure 3.19. The hyperbolic paraboloid opens up on x1-axis
(Figure 3.20 and down on x2-axis (Figure 3.21) and has a saddle point at (0, 0).

To get working on figuring out how to find the maximum and minimum
of a function, we will take some examples. Let us find the critical points of
f(x1, x2) = x2

1 + x2
2 − 2x1 − 6x2 + 14 and classify the critical point. This

function is a polyonomial function and is differentiable everywhere. It is a
paraboloid that is shifted away from origin. To find its critical points, we will
solve fx1 = 2x1−2 = 0 and fx2 = 2x2−6 = 0, which when solved simultaneously,
yield a single critical point (1, 3). For a simple example like this, the function
f can be rewritten as f(x1, x2) = (x1 − 1)2 + (x2 − 3)2 + 4, which implies that
f(x1, x2) ≥ 4 = f(1, 3). Therefore, (1, 3) is indeed a local minimum (in fact a
global minimum) of f(x1, x2).

5The hyperbolic paraboloid is shaped like a saddle and can have a critical point called the
saddle point.
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Figure 3.20: The hyperbolic paraboloid f(x1, x2) = x2
1 − x2

2, when viewed from
the x1 axis is concave up.

Figure 3.21: The hyperbolic paraboloid f(x1, x2) = x2
1 − x2

2, when viewed from
the x2 axis is concave down.
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However, it is not always so easy to determine if a critical point is a point
of local extreme value. To understand this, consider the function f(x1, x2) =
2x3

1 +x1x
2
2 +5x2

1 +x2
2. The system of equations to be solved are fx1 = 6x2

1 +x2
2 +

10x1 = 0 and fx2 = 2x1x2 + 2x2 = 0. From the second equation, we get either
x2 = 0 or x1 = −1. Using these values one at a time in the first equation, we
get values for the other variables. The critical points are: (0, 0), (− 5

3 , 0), (−1, 2)
and (−1,−2). Which of these critical points correspond to extreme values of the
function? Since f does not have a quadratic form, it is not easy to find a lower
bound on the function as in the previous example. However, we can make use
of the taylor series expansion for single variable to find polynomial expansions
of functions of n variables. The following theorem gives a systematic method,
similar to the second derivative test for functions of single variable, for finding
maxima and minima of functions of multiple variables.

Theorem 46 Let f : D → < where D ⊆ <n. Let f(x) have continuous partial
derivatives and continuous mixed partial derivatives in an open ball R containing
a point x∗ where ∇f(x∗) = 0. Let ∇2f(x) denote an n × n matrix of mixed
partial derivatives of f evaluated at the point x, such that the ijth entry of the
matrix is fxixj . The matrix ∇2f(x) is called the Hessian matrix. The Hessian
matrix is symmetric6. Then,

• If ∇2f(x∗) is positive definite, x∗ is a local minimum.

• If ∇2f(x∗) is negative definite (that is if −∇2f(x∗) is positive definite),
x∗ is a local maximum.

Proof: Since the mixed partial derivatives of f are continuous in an open ball
containing R containing x∗ and since ∇2f(x∗) � 0, it can be shown that there
exists an ε > 0, with B(x∗, ε) ⊆ R such that for all ||h|| < ε, ∇2f(x∗ + h) � 0.
Consider an increment vector h such that (x∗ + h) ∈ B(x∗, ε). Define g(t) =
f(x∗ + th) : [0, 1]→ <. Using the chain rule,

g′(t) =
n∑
i=1

fxi(x
∗ + th)

dxi
dt

= hT .∇f(x∗ + th)

Since f has continuous partial and mixed partial derivatives, g′ is a differ-
entiable function of t and

g′′(t) = hT∇2f(x∗ + th)h

Since g and g′ are continous on [0, 1] and g′ is differentiable on (0, 1), we can
make use of the Taylor’s theorem (30) with n = 1 and a = 0 to obtain:

g(1) = g(0) + g′(0) +
1
2
g′′(c)

6By Clairauts Theorem, if the partial and mixed derivatives of a function are continuous
on an open region containing a point x∗, then fxixj (x∗) = fxjxi (x

∗), for all i, j ∈ [1, n].
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for some c ∈ (0, 1). Writing this equation in terms of f gives

f(x∗ + h) = f(x∗) + hT∇f(x∗) +
1
2
hT∇2f(x∗ + ch)h

We are given that ∇f(x∗) = 0. Therefore,

f(x∗ + h)− f(x∗) =
1
2
hT∇2f(x∗ + ch)h

The presence of an extremum of f at x∗ is determined by the sign of f(x∗+
h) − f(x∗). By virtue of the above equation, this is the same as the sign of
H(c) = hT∇2f(x∗ + ch)h. Because the partial derivatives of f are continuous
in R, if H(0) 6= 0, the sign of H(c) will be the same as the sign of H(0) =
hT∇2f(x∗)h for h with sufficiently small components. Therefore, if ∇2f(x∗)
is positive definite, we are guaranteed to have H(0) positive, implying that f
has a local minimum at x∗. Similarly, if −∇2f(x∗) is positive definite, we are
guaranteed to have H(0) negative, implying that f has a local maximum at x∗.
2

Theorem 46 gives sufficient conditions for local maxima and minima of func-
tions of multiple variables. Along similar lines of the proof of theorem 46, we
can prove necessary conditions for local extrema in theorem 47.

Theorem 47 Let f : D → < where D ⊆ <n. Let f(x) have continuous par-
tial derivatives and continuous mixed partial derivatives in an open region R
containing a point x∗ where ∇f(x∗) = 0. Then,

• If x∗ is a point of local minimum, ∇2f(x∗) must be positive semi-definite.

• If x∗ is a point of local maximum, ∇2f(x∗) must be negative semi-definite
(that is, −∇2f(x∗) must be positive semi-definite).

The following corollary of theorem 47 states a sufficient condition for a point
to be a saddle point.

Corollary 48 Let f : D → < where D ⊆ <n. Let f(x) have continuous par-
tial derivatives and continuous mixed partial derivatives in an open region R
containing a point x∗ where ∇f(x∗) = 0. If ∇2f(x∗) is neither positive semi-
definite nor negative semi-definite (that is, some of its eigenvalues are positive
and some negative), then x∗ is a saddle point.

Thus, for a function of more than one variable, the second derivative test
generalizes to a test based on the eigenvalues of the function’s Hessian matrix at
the stationary point. Based on theorem 46, we will derive the second derivative
test for determining extreme values of a function of two variables.

Theorem 49 Let the partial and second partial derivatives of f(x1, x2) be con-
tinuous on a disk with center (a, b) and suppose fx1(a, b) = 0 and fx2(a, b) = 0
so that (a, b) is a critical point of f . Let D(a, b) = fx1x1(a, b)fx2x2(a, b) −
[fx1x2(a, b)]2. Then7,

7D here stands for the discriminant.
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• If D > 0 and fx1x1(a, b) > 0, then f(a, b) is a local minimum.

• Else if D > 0 and fx1x1(a, b) < 0, then f(a, b) is a local maximum.

• Else if D < 0 then (a, b) is a saddle point.

Proof: Recall the definition of positive definiteness; a matrix is positive definite
if all its eigenvalues are positive. For the 2× 2 matrix ∇2f in this problem, the
product of the eigenvalues is det(∇2f) = fx1x1(a, b)fx2x2(a, b) − [fx1x2(a, b)]2

and the sum of the eigenvalues is fx1x1(a, b) + fx2x2(a, b). Now:

• If det(∇2f(a, b)) > 0 and if additionally fx1x1(a, b) > 0 (or equivalently,
fx2x2(a, b) > 0), the product as well as the sum of eigenvalues will be
positive, implying that the eigenvalues are positive and therefore∇2f(a, b)
is positive definite, According to theorem 46, this is a sufficient condition
for f(a, b) to be a local minimum.

• If det(∇2f(a, b)) > 0 and if additionally fx1x1(a, b) < 0 (or equivalently,
fx2x2(a, b) < 0), the product of the eigenvalue is positive whereas the
sum is negative, implying that the eigenvalues are negative and therefore
∇2f(a, b) is negative definite, According to theorem 46, this is a sufficient
condition for f(a, b) to be a local maximum.

• If det(∇2f(a, b)) < 0, the eigenvalues must have opposite signs, implying
that the∇2f(a, b) is neither positive semi-definite nor negative-semidefinite.
By corollary 48, this is a sufficient condition for f(a, b) to be a saddle point.

2

We saw earlier that the critical points for f(x1, x2) = 2x3
1+x1x

2
2+5x2

1+x2
2 are

(0, 0), (− 5
3 , 0), (−1, 2) and (−1,−2). To determine which of these correspond

to local extrema and which are saddle, we first compute compute the partial
derivatives of f :

fx1x1(x1, x2) = 12x1 + 10
fx2x2(x1, x2) = 2x1 + 2
fx1x2(x1, x2) = 2x2

Using theorem 49, we can verify that (0, 0) corresponds to a local minimum,
(− 5

3 , 0) corresponds to a local maximum while (−1, 2) and (−1,−2) correspond
to saddle points. Figure 3.22 shows the plot of the function while pointing out
the four critical points.
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Figure 3.22: Plot of the function 2x3
1 +x1x

2
2 + 5x2

1 +x2
2 showing the four critical

points.

We will take some more examples:

1. Consider a significantly harder function f(x, y) = 10x2y − 5x2 − 4y2 −
x4 − 2y4. Let us find and classify its critical points. The gradient vector
is ∇f(x, y) = [20xy − 10x − 4x3, 10x2 − 8y − 8y3]. The critical points
correspond to solutions of the simultaneous set of equations

20xy − 10x− 4x3 = 0
10x2 − 8y − 8y3 = 0

(3.15)

One of the solutions corresponds to solving the system −8y3 + 42y −
25 = 08 and 10x2 = 50y − 25, which have four real solutions9, viz.,
(0.8567, 0.646772), (−0.8567, 0.646772), (2.6442, 1.898384), and (−2.6442, 1.898384).
Another real solution is (0, 0). The mixed partial derivatives of the func-
tion are

fxx = 20y − 10− 12x2

fxy = 20x
fyy = −8− 24y2

(3.16)

Using theorem 49, we can verify that (2.6442, 1.898384) and (−2.6442, 1.898384)
correspond to local maxima whereas (0.8567, 0.646772) and (−0.8567, 0.646772)
correspond to saddle points. This is illustrated in Figure 3.23.

8Solving this using matlab without proper scaling could give you complex values. With
proper scaling of the equation, you should get y = −2.545156 or y = 0.646772 or y = 1.898384.

9The values of x corresponding to y = −2.545156 are complex
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Figure 3.23: Plot of the function 10x2y− 5x2− 4y2−x4− 2y4 showing the four
critical points.

2. The function f(x, y) = x sin y has the gradient vector [sin y, x cos y].
The critical points correspond to the solutions to the simultaneous set of
equations

sin y = 0
x cos y = 0

(3.17)

The critical points are10 (0, nπ) for n = 0,±1,±2, . . .. The mixed partial
derivatives of the function are

fxx = 0
fxy = cos y
fyy = −x sin y

(3.18)

which tell us that the discriminant function D = − cos2 y is always nega-
tive. Therefore, all the critical points turn out to be saddle points. This
is illustrated in Figure 3.24.

Along similar lines of the single variable case, we next define the global
maximum and minimum.

Definition 39 [Global maximum]: A function f of n variables, with domain
D ⊆ <n has an absolute or global maximum at x0 if ∀ x ∈ D, f(x) ≤
f(x0).

10Note that the cosine does not vanish wherever the sin vanishes.
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Figure 3.24: Plot of the function x sin y illustrating that all critical points are
saddle points.

Definition 40 [Global minimum]: A function f of n variables, with domain
D ⊆ <n has an absolute or global minimum at x0 if ∀ x ∈ D, f(x) ≥
f(x0).

We would like to find the absolute maximum and minimum values of a func-
tion of multiple variables in a closed interval, along similar lines of the method
yielded by theorem 26 for functions of single variable. The procedure was to eval-
uate the value of the function at the critical points as well as the end points of the
interal and determine the absolute maximum and minimum values by scanning
this list. To generalize the idea to function of multiple variables, we point out
that the analogue of finding the value of the function at the boundaries of closed
interval in the single variable case is to find the function value along the bound-
ary curve, which reduces the evaluation of a function of multiple variables to
evaluating a function of a single variable. Recall from the definitions on page 158
that a closed set in <n is a set that contains its boundary points (analogous to
closed interval in <) while a bounded set in <n is a set that is contained inside a
closed ball, B[0, ε]. An example bounded set is

{
(x1, x2, x3)|x2

1 + x2
2 + x2

3 ≤ 1
}

.
An example unbounded set is {(x1, x2, x3)|x1 > 1, x2 > 1, x3 > 1}. Based on
these definitions, we can state the extreme value theorem for a function of n
variables.

Theorem 50 Let f : D → < where D ⊆ <n is a closed bounded set and f be
continuous on D. Then f attains an absolute maximum and absolute minimum
at some points in D.

The theorem implies that whenever a function of n variables is restricted
to a bounded space, it has an absolute maximum and an absolute minimum.
Following theorem 45, we note that the locally extreme values of a function
occur at its critical points. By the very definition of local extremum, it cannot
occur at the boundary point of D. Since every absolute extremum is also a
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Figure 3.25: The region bounded by the points (0, 3), (2, 0), (0, 0) on which we
consider the maximum and minimum of the function f(x, y) = 1 + 4x− 5y.

local extremum, the absolute maximum and minimum of a function on a closed,
bounded set will either happen at the critical points or at the boundary. The
procedure for finding the absolute maximum and minimum of a function on a
closed bounded set is outlined below and is similar to the procedure 4 for a
function of single variable continuous on a closed and bounded interval:

Procedure 5 [Finding extreme values on closed, bounded sets]: To find
the absolute maximum and absolute minimum of a continuous function f
on a closed bounded set D;

• evaluate f at the critical points of f on D
• find the extreme values of f on the boundary of D
• the largest of the values found above is the absolute maximum, and

the smallest of them is the absolute mininum.

We will take some examples to illustrate procedure 5.

1. Consider the function f(x, y) = 1 + 4x − 5y defined on the region R
bounded by the points (0, 3), (2, 0), (0, 0). The region R is shown in
Figure 3.25 and is bounded by three line segments

• B1: x = 0, 0 ≤ y ≤ 3

• B2: y = 0, 0 ≤ x ≤ 2

• and B3: y = 3− 3
2x, 0 ≤ x ≤ 2.

The linear function f(x, y) = 1 + 4x − 5y has no critical points, since
∇f(x, y) = [4, 5]T is defined everywhere, though it cannot disappear at
any point. In fact, linear functions have no critical points and the extreme
values are always assumed at the boundaries; this forms the basis of linear
programming. We will find the extreme values on the boundaries.
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Figure 3.26: The region R bounded by y = x2 and y = 4 on which we consider
the maximum and minimum of the function f(x, y) = 1− xy − x− y.

• On B1, f(x, y) = f(0, y) = 1 − 5y, for y ∈ [0, 3]. This is a single
variable extreme value problem for a continuous function. Its largest
value is assumed at y = 0 and equals 1 while the smallest value is
assumed at y = 3 and equals −14.

• On B2, f(x, y) = f(x, 0) = 1 + 4x, for x ∈ [0, 2]. This is again a
single variable extreme value problem for a continuous function. Its
largest value is assumed at x = 2 and equals 9 while the smallest
value is assumed at x = 0 and equals 1.

• On B3, f(x, y) = 1 + 4x − 5 (3− (3/2)x) = −14 + (23/2)x, for x ∈
[0, 2]. This is also a single variable extreme value problem for a
continuous function. Its largest value is assumed at x = 2 and equals
9 while the smallest value is assumed at x = 0 and equals −14.

Thus, the absolute maximum is attained by f at (2, 0) while the absolute
minimum is attained at (0, 3). Both extrema are at the vertices of the
polygon (triangle) This example illustrates the general procedure for de-
termining the absolute maximum and minimum of a function on a closed,
bounded set. However, the problem can become very hard in practice as
the function f gets complex.

2. Let us look at a harder problem. Let us find the absolute maximum and
the absolute minimum of the function f(x, y) = 1 − xy − x − y on the
region R bounded by y = x2 and y = 4. This is not a linear function any
longer. The region R is shown in Figure 3.26 and is bounded by

• B1: y = x2, −2 ≤ x ≤ 2

• B2: y = 4, −2 ≤ x ≤ 2

Since f(x, y) = 1 − xy − x − y is differentiable everywhere, the critical
point of f is characterized by ∇f(x, y) = [−y − 1, x − 1]T = 0, that is
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x = −1, y = −1. However, this point does not lie in R and hence, there
are no critical points, in R. Along similar lines of the previous problem,
we will find the extreme values of f on the boundaries of R.

• On B1, f(x, y) = 1 − x3 − x − x2, for x ∈ [−2, 2]. This is a single
variable extreme value problem for a continuous function. Its critical
points correspond to solutions of 3x2 + 2x + 1 = 0. However, this
equation has no real solutions11 and therefore, the function’s extreme
values are only at the boundary points; the minimum value −13 is
attained at x = 2 and the maximum value 7 is attained at x = −2.

• On B2, f(x, y) = 1 − 4x − x − 4 = −3 − 5x, for x ∈ [−2, 2]. This
is again a single variable extreme value problem for a continuous
function. It has no critical points and extreme values correspond to
the boundary points; its maximum value 7 is assumed at x = −12
while the minimum value −13 is assumed at x = 2.

Thus, the absolute maximum value 7 is attained by f at (−2, 4) while the
absolute minimum value −13 is attained at (2, 4).

3. Consider the same problem as the previous one, with a slightly different
objective function, f(x, y) = 1 + xy − x − y. The critical point of f is
characterized by ∇f(x, y) = [y − 1, x − 1]T = 0, that is x = 1, y = 1.
This lies within R and f takes the value 0 at (1, 1). Next, we find the
extreme values of f on the boundaries of R.

• On B1, f(x, y) = 1 + x3 − x− x2, for x ∈ [−2, 2]. Its critical points
correspond to solutions of 3x2 − 2x − 1 = 0. Its solutions are x = 1
and x = − 1

3 . The function values corresponding to these points are
f(1, 1) = 0 and f(−1/3, 1/9) = 32/27. At the boundary points, the
function assumes the values f(−2, 4) = −9 and f(2, 4) = 3. Thus,
the maximum value on B1 is f(2, 4) = 3 and the minimum value is
f(−2, 4) = −9.

• On B2, f(x, y) = 1 + 4x−x− 4 = −3 + 3x, for x ∈ [−2, 2]. It has no
critical points and extreme values correspond to the boundary points;
At the boundary points, the function assumes the values f(−2, 4) =
−9 and f(2, 4) = 3, which correspond to the minimum and maximum
values respectively of f on B2.

Thus, the absolute maximum value 3 is attained by f at (2, 4) while the
absolute minimum value −9 is attained at (−2, 4).

3.1.5 Absolute extrema and Convexity

Theorem 46 specified a sufficient condition for the local minimum of a differ-
entiable function with continuous partial and mixed partial derivatives, while

11The complex solutions are x = − 1
3

+ i 1
3

√
2 and x = − 1

3
− i 1

3

√
2.
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theorem 47 specified a necessary condition for the same. Can these conditions
be extended to globally optimal solutions? The answer is that the extensions
to globally optimal solutions can be made for a specific class of optimization
problems called convex optimization problems. In the next section we introduce
the concept of convex sets and convex functions, enroute to discussing convex
optimization.

3.2 Convex Optimization Problem

A function f(.) is called convex if its value at the scalar combination of two
points x and y is less than the same scalar combination of the function at the
two points. In other words, f(.) is convex if and only if:

f(αx+ βy) ≤ αf(x) + βf(y)
if α+ β = 1, α ≥ 0, β ≥ 0

(3.19)

For a convex optimization problem, the objective function f(x) as well as
the inquality functions gi(x), i = 1, . . . ,m are convex. The equality constraints
are linear, i.e., of the form, Ax = b.

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.20)

Least squares and linear programming are special cases of convex optimiza-
tion problems. Like in the case of linear programming, there are no analytical
solutions for convex optimization problems. But they can be solved reliably,
efficiently and optimally. There are not many well developed software for the
general class of convex optimization problems, though there are several software
packages in matlab, C, etc., and many free softwares as well. The computation
time is polynomial but more complicated to be expressed exactly because the
computation time depends on the cost of validating the function values and their
derivates. Modulo that, computation time for convex optimization problems is
similar to that for linear programming problems.

To pose pratical problems as convex optimization problems is more diffi-
cult than to recognize least squares and linear programs. There exist many
techniques to reformulate problems in the convex form. However, surprisingly,
many problems in practice can be solved via convex optimization.

3.2.1 Why Convex Optimization?

We will see in this sequel, that generic convex programs, under mild computabil-
ity and boundedness assumptions, are computationally tractable. Many convex
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programs admit theoretically and practically efficient solution methods. Convex
optimization admits duality theory, which can be used to quantitatively estab-
lish the quality of an approximate solution. Even though duality may not yield
a closed-form solution, it often facilitates nontrivial reformulations of the prob-
lem. Duality theory also comes handy in confirming if an approximate solution
is optimal.

In contrast to this, rarely does it happen that a global solution can be
efficiently found for nonconvex optimization programs12. For most nonconvex
programs, there are no sound techniques for certifying the global optimalality of
approximate solutions or estimating how non-optimal an approximate solution
is.

3.2.2 History

Numerical optimization started in the 1940s with the development of the sim-
plex method for linear programming. The next obvious extension to linear
programming was by replacing the linear cost function with a quadratic cost
function. The linear inequality constraints were however maintained. This first
extension took place in the 1950s. We can expect that the next step would have
been to replace the linear constraints with quadratic constraints. But it did
not really happen that way. On the other hand, around the end of the 1060s,
there was another non-linear, convex extension of linear programming called
geometric programming. Geometric programming includes linear programming
as a special case. Nothing more happened until the beginning of the 1990s. The
beginning of the 1990s was marked by a big explosion of activities in the area
of convex optimizations, and development really picked up. Researches formu-
lated different and more general classes of convex optimization problems that are
known as semidefinite programming, second-order cone programming, quadrat-
ically constrained quadratic programming, sum-of-squares programming, etc.

The same happened in terms of applications. Since 1990s, applications have
been investigated in many different areas. One of the first application areas was
control, and the optimization methods that were investigated included semi-
definite programming for certain control problem. Geometric programming had
been around since late 1960s and it was applied extensively to circuit design
problems. Quadratic programming found application in machine learning prob-
lem formulations such as support vector machines. Semi-definite programming
relaxations found use in combinatorial optimization. There were many other
interesting applications in different areas such as image processing, quantum
information, finance, signal processing, communications, etc.

This first look at the activities involving applications of optimization clearly
indicates that a lot a of development took place around the 1990s. Further,
people extended interior-point methods (which were already known for linear

12Optimization problems such as singular value decomposition are some few exceptions to
this.
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programming since 198413) to non-linear convex optimization problems. A high-
light in this area was the work of Nesterov and Nemirovski who extended Kar-
markar’s work to polynomial-time interior-point methods for nonlinear convex
programming in their book published in 1994, though the work actually took
place in 1990. As a result, people started looking at non-linear convex opti-
mization in a special way; instead of treating non-linear convex optimization as
a special case of non-linear optimization, they looked at it as an extension of
linear programming which can be solved almost with the same efficiency. Once
people started looking at applications of non-linear convex optimization, they
discovered many!

We will begin with a background on convex sets and functions. Convex
sets and functions constitute the basic theory for the entire area of convex
optimization. Next, we will discuss some standard problem classes and some
recently studied problem classes such as semi-definite programming and cone
programming. FInally, we will look at applications.

3.2.3 Affine Set

Definition 41 [Affine Set]: A set A is called affine if the line connecting
any two distinct points in the set is completely contained within A. Math-
ematically, the set A is called affine if

∀ x1,x2 ∈ A, θ ∈ < ⇒ θx1 + (1− θ)x2 ∈ A (3.21)

Theorem 51 The solution set of the system of linear equations Ax = b is an
affine set.

Proof: Suppose x1 and x2 are solutions to the system Ax = b with x1 6= x2.
Then, A (θx1 + (1− θ)x2) = θb + (1 − θ)b = b. Thus, θx1 + (1 − θ)x2 ∈ A,
implying that the solution set of the system Ax = b is an affine set. 2

In fact, converse of theorem 51 is also true; any affine set can be expressed
as the solution set of a system of linear equations Ax = b.

3.2.4 Convex Set

Definition 42 [Convex Set]: A set C is called convex if the line segment
connecting any two points in the set is completely contained within C.
Else C is called concave. That is,

∀ x1,x2 ∈ C 0 ≤ θ ≤ 1 ⇒ θx1 + (1− θ)x2 ∈ C (3.22)
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Figure 3.27: Examples of convex and non-convex sets.

Figure 3.27 shows examples of convex and non-convex (concave) sets. Since
an affine set contains any line passing through two distinct points in the set, it
also contains any line segment connecting two points in the set. Thus, an affine
set is our first example of a convex set.

A set C is a convex cone if it is covex and additionally, for every point x ∈ C,
all non-negative multiples of x are also in C. In other words,

∀x1,x2 ∈ C θ1, θ2 ≥ 0 ⇒ θ1x1 + θ2x2 ∈ C (3.23)

Combinations of the form θ1x1 + θ2x2 for θ1 ≥ 0, θ2 ≥ 0 are called conic com-
binations. We will state a related definition next - that of the convex hull of a
set of points.

Definition 43 [Convex Hull]: A convex combination of the set of points
S = {x1,x2, . . . ,xk} is any point x of the form

x =
k∑
i=1

θixi with
k∑
i=1

θi = 1 and θi ≥ 0 (3.24)

The convex hull conv(S) of the set of points S is the set of all convex
combinations of points in S. The convex hull of a convex set S is S itself.

13The first practical polynomial time algorithm for linear programming by Karmarkar (1984)
involved interior-point methods.
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Figure 3.28: Example of a hyperplane in <2.

3.2.5 Examples of Convex Sets

We will look at simple but important examples of convex sets. We will also look
at some operations that preserve convexity.

A hyperplane is the most common example of a convext set. A hyperplane
is the set of solutions to a linear system of equations of the form aTx = b with
a 6= 0 and was defined earlier in definition 34. A half space is a solution set
over the linear inequality aTx ≤ b, a 6= 0. The hyperplane aTx = b bounds the
half-space from one side.

Formally,

Hyperplane: {x|aTx = b, a 6= 0}. Figure 3.28 shows an example hyperplane
in <2. a is the normal vector.

Halfspace: {x|aTx ≤ b, a 6= 0}. Figure 3.29 shows an example half-space in
<2.

The hyperplane is convex and affine, whereas the halfspace is merely convex
and not affine.

Another simple example of a convex set is a closed ball in <n with radius r
and center xc which is an n-dimensional vector.

B[xc, r] = {xc + ru | ||u||2 ≤ 1}

where u is a vector with norm less than or equal to 1. The open ball B(xc, r)
is also convex. Replacing r with a non-singular square matrix A, we get an
ellipsoid given by

{xc +Au | ||u||2 ≤ 1}

which is also a convex set. Another equivalent representation of the ellipsoid can
be obtained by observing that for any point x in the ellipsoid, ||A−1(x−xc)||2 ≤
1, that is (x − xc)T (A−1)TA−1(x − xc) ≤ 1. Since (A−1)T = (AT )−1 and
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Figure 3.29: Example of a half-space in <2.

Figure 3.30: Example of a ellipsoid in <2.

A−1B−1 = (BA)−1, the ellipsoid can be equivalently defined as
{
x|(x− xc)TP−1(x− xc) ≤ 1

}
where P = (AAT ) is a symmetric matrix. Furthermore, P is positive definite,
since A is non-singular (c.f. page 151).

Matrix A determines the size of the ellipsoid; the eigenvalue λi of A deter-
mines the length of the ith semi-axis of the ellipsoid (see page number 149).
The ellipsoid is another example of a convex set and is a generalization of the
eucledian ball. Figure 3.30 illustrates an ellipsoid in <2.

A norm ball is a ball with an arbitrary norm. A norm ball with center xc
and radius r is given by

{x | ||x− xc|| ≤ r}

By the definition of the norm, a ball in that norm will be convex. The norm
ball with the ∞−norm corresponds to a square in <2, while the norm ball with
the 1−norm in <2 corresponds to the same square rotated by 45◦. The norm
ball is convex for all norms.

The definition of cone can be extended to any arbitrary norm to define a
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Figure 3.31: Example of a cone in <2.

norm cone. The set of all pairs (x, t) satisfying ||x|| ≤ t, i.e.,

{(x, t) | ||x|| ≤ t}

is called a norm cone
When the norm is the eucledian norm, the cone (which looks like an ice-

cream cone) is called the second order cone. Norm cones are always convex.
Figure 3.31 shows a cone in <2. In general, the cross section of a norm cone has
the shape of a norm ball with the same norm. The norm cone for the ∞−norm
is a square pyramid in <3 and the cone for 1−norm in <3 is the same square
pyramid rotated by 45◦.

A polyhedron is another convex set which is given as the solution set of a
finite set of linear equalities and inequalities. In matrix form, the inequalities
can be stated as

Ax � b A ∈ <m×n

Cx = d C ∈ <p×n
(3.25)

where� stands for component-wise inequality of the form≤14. A polyhedron
can also be represented as the intersection of a finite number of halfspaces and
hyperplanes. Figure 3.32 depicts a typical polyhedron in <2. An affine set is a
special type of polyhedron.

A last simple example is the positive semi-definite cone. Let Sn be the set
of all symmetric n × n matrices and Sn+ ⊂ Sn be the set of all positive semi-
definite n × n matrices. The set Sn+ is a convex cone and is called the positive
semi-definite cone. Consider a positive semi-definite matrix S in <2. Then S
must of the form

14The component-wise inequality corresponds to a generalized inequality �K with K = <n+.
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Figure 3.32: Example of a polyhedron in <2.

Figure 3.33: Example of a positive semidefinite cone in <2.

S =

[
x y

y z

]
(3.26)

We can represent the space of matrices S2
+ of the form S ∈ S2

+ as a three
dimensional space with non-negative x, y and z coordinates and a non-negative
determinant. This space corresponds to a cone as shown in Figure 3.33.

3.2.6 Convexity preserving operations

In practice if you want to establish the convexity of a set C, you could either

1. prove it from first principles, i.e., using the definition of convexity or

2. prove that C can be built from simpler convex sets through some basic
operations which preserve convexity.
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Figure 3.34: Plot for the function in (3.28)

Some of the important operations that preserve complexity are:

Intersection

The intersection of any number of convex sets is convex15. Consider the set S:

S =
{

x ∈ <n | |p(t)| ≤ 1 for |t| ≤ π

3

}
(3.27)

where
p(t) = x1 cos t+ x2 cos 2t+ . . .+ xm cosmt (3.28)

Any value of t that satisfies |p(t)| ≤ 1, defines two regions, viz.,

<≤(t) = {x | x1 cos t+ x2 cos 2t+ . . .+ xm cosmt ≤ 1}

and

<≥(t) = {x | x1 cos t+ x2 cos 2t+ . . .+ xm cosmt ≥ −1}

Each of the these regions is convex and for a given value of t, the set of
points that may lie in S is given by

<(t) = <≤(t) ∩ <≥(t)

This set is also convex. However, not all the points in <(t) lie in S, since
the points that lie in S satisfy the inequalities for every value of t. Thus, S can
be given as:

S = ∩|t|≤π3<(t)

15Exercise: Prove.
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Figure 3.35: Illustration of the closure property for S defined in (3.27), for
m = 2.

Affine transform

An affine transform is one that preserves

• Collinearity between points, i.e., three points which lie on a line continue
to be collinear after the transformation.

• Ratios of distances along a line, i.e., for distinct colinear points p1,p2,p3,
||p2−p1||
||p3−p2|| is preserved.

An affine transformation or affine map between two vector spaces f : <n →
<m consists of a linear transformation followed by a translation:

x 7→ Ax + b

where A ∈ <n×m and b ∈ <m. In the finite-dimensional case each affine trans-
formation is given by a matrix A and a vector b.

The image and pre-image of convex sets under an affine transformation de-
fined as

f(x) =
n∑
i

xiai + b

yield convex sets16. Here ai is the ith row of A. The following are examples of
convex sets that are either images or inverse images of convex sets under affine
transformations:

1. the solution set of linear matrix inequality (Ai, B ∈ Sm)

{x ∈ <n | x1A1 + . . .+ xnAn � B}
16Exercise: Prove.
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is a convex set. Here A � B means B − A is positive semi-definite17.
This set is the inverse image under an affine mapping of the positive semi-
definite cone. That is, f−1 (cone) =

{
x ∈ <n |B − (x1A1 + . . .+ xnAn) ∈ Sm+

}
=

{x ∈ <n|B ≥ (x1A1 + . . .+ xnAn)}.

2. hyperbolic cone (P ∈ Sn+), which is the inverse image of the norm cone
Cm+1 = {(z, u)|||z|| ≤ u, u ≥ 0, z ∈ <m} =

{
(z, u)|zT z− u2 ≤ 0, u ≥ 0, z ∈ <m

}
is a convex set. The inverse image is given by f−1 (Cm+1) =

{
x ∈ <n |

(
Ax, cTx

)
∈ Cm+1

}
={

x ∈ <n|xTATAx− (cTx)2 ≤ 0
}

. Setting, P = ATA, we get the equation
of the hyperbolic cone:{

x | xTPx ≤ (cTx)2, cTx ≥ 0
}

Perspective and linear-fractional functions

The perspective function P : <n+1 → <n is defined as follows:

P : <n+1 → <n such that
P (x, t) = x/t dom P = {(x, t) | t > 0}

(3.29)

The linear-fractional function f is a generalization of the perspective function
and is defined as: <n → <m:

f : <n → <m such that
f(x) = Ax+b

cTx+d
dom f = {x | cTx + d > 0}

(3.30)

The images and inverse images of convex sets under perspective and linear-
fractional functions are convex18.

Consider the linear-fractional function f = 1
x1+x2+1x. Figure ?? shows an

example convex set. Figure ?? shows the image of this convex set under the
linear-fractional function f .

Supporting Hyperplane Theorem

On page 3.1.4, we introduced the concept of the hyperplane. For disjoint convex
sets, we state the separating hyperplane theorem.

Theorem 52 If C and D are disjoint convex sets, i.e., C ∩ D = φ, then there
exists a 6= 0, with a b ∈ < such that

aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D. The seperating

hyperplane need not be unique though.
17The inequality induced by positive semi-definiteness corresponds to a generalized inequal-

ity �K with K = Sn+.
18Exercise: Prove.
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Proof: We first note that the set S = {x− y|x ∈ C,y ∈ D} is convex, since it
is the sum of two convex sets. Since C and D are disjoint, 0 /∈ S. Consider two
cases:

1. Suppose 0 /∈ closure(S). Let E = {0} and F = closure(S). Then, the
euclidean distance between E and F , defined as

dist(E ;F) = inf {||u− v||2|u ∈ E ,v ∈ F}
is positive, and there exists a point f ∈ F that achieves the minimum
distance, i.e., ||f ||2 = dist(E ,F). Define a = f , b = ||f ||2. Then a 6= 0 and
the affine function f(x) = aTx− b = fT (x− 1

2 f) is nonpositive on E and
nonnegative on F , i.e., that the hyperplane

{
x|aTx = b

}
separates E and

F . Thus, aT (x − y) > 0 for all x − y ∈ S ⊆ closure(S), which implies
that, aTx ≥ aTy for all x ∈ C and y ∈ D.

2. Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.

• If S has empty interior, it must lie in an affine set of dimension less
than n, and any hyperplane containing that affine set contains S
and is a hyperplane. In other words, S is contained in a hyperplane{
z|aT z = b

}
, which must include the origin and therefore b = 0. In

other words, aTx = aTy for all x ∈ C and all y ∈ D gives us a trivial
separating hyperplane.

• If S has a nonempty interior, consider the set
S−ε = {z|B(z, ε) ⊆ S}
where B(z, ε) is the Euclidean ball with center z and radius ε > 0.
S−ε is the set S, shrunk by ε. closure (S−ε) is closed and convex,
and does not contain 0, so as argued before, it is separated from {0}
by atleast one hyperplane with normal vector a(ε) such that
a(ε)T z ≥ 0 for all z ∈ Sε
Without loss of generality assume ||a(ε)||2 = 1. Let εk, for k =
1, 2, . . . be a sequence of positive values of εk with lim

k→∞
εk = 0. Since

||a(εk)||2 = 1 for all k, the sequence a(εk) contains a convergent
subsequence, and let a be its limit. We have
a(εk)T z ≥ 0 for all z ∈ S−εk
and therefore aT z ≥ 0 for all z ∈ interior(S), and aT z ≥ 0 for all
z ∈ S, which means
aTx ≥ aTy for all x ∈ C, and y ∈ D.

2

Theorem 44 stated that the gradient evaluated at a point on a level set is
orthogonal to the tangent hyperplane to the level set at that point. We now
state the definition of a supporting hyperplane, which is special type of tangent
hyperplane.

Definition 44 [Supporting Hyperplane]: The supporting hyperplane to a
set C at a boundary point x0 is defined as

{
x|aTx = aTx0, a 6= 0, aTy ≤ aTx0, ∀ y ∈ C

}
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Figure 3.36: Example of a supporting hyperplane.

Figure 3.36 shows a supporting hyperplane at the point x0 on the boundary
of a convex set C.

For convex sets, there is an important theorem regarding supporting hyper-
planes.

Theorem 53 If the set C is convex, then there exists a supporting hyperplane
at every boundary point of C. As in the case of the seperating hyperplane, the
supporting hyperplane need not be unique.

Proof: If the interior of C is nonempty, the result follows immediately by ap-
plying the separating hyperplane theorem to the sets {x0} and interior(C). If
the interior of C is empty, then C must lie in an affine set of dimension less than
n, and any hyperplane containing that affine set contains C and x0, and is a
(trivial) supporting hyperplane. 2

3.2.7 Convex Functions

Definition 45 [Convex Function]: A function f : D → < is convex if D is
a convex set and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (3.31)

Figure 3.37 illustrates an example convex function. A function f : D → <
is strictly convex if D is convex and

f(θx + (1− θ)y) < θf(x) + (1− θ)f(y)) ∀ x,y ∈ D 0 ≤ θ ≤ 1(3.32)
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Figure 3.37: Example of convex function.

A function f : D → < is called uniformly or strongly convex if D is convex
and there exists a constant c > 0 such that

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− 1
2cθ(1− θ)||x− y|| ∀ x,y ∈ D 0 ≤ θ ≤ 1(3.33)

A function f : <n → < is said to be concave if the function −f is convex.
Examples of convex functions on the set of reals < as well as on <n and <m×n
are show in Table 3.1. Examples of concave functions on the set of reals < are
show in Table 3.2. If a function is both convex and concave, it must be affine,
as can be seen in the two tables.

Function type Domain Additional Constraints

The affine function: ax+ b < Any a, b ∈ <
The exponential function: eax < Any a ∈ <
Powers: xα <++ α ≥ 1 or α ≤ 1

Powers of absolute value: |x|p < p ≥ 1

Negative entropy: x log x <++

Affine functions of vectors: aTx + b <n

p-norms of vectors: ||x||p =

(
n∑
i=1

|xi|p
)1/p

<n p ≥ 1

inf norms of vectors: ||x||∞ = maxk |xk| <n

Affine functions of matrices: tr(ATX) + b =
m∑
i=1

n∑
j=1

AijXij + b <m×n

Spectral (maximum singular value) matrix norm: ||X||2 = σmax(X) = (λmax(XTX))1/2 <m×n

Table 3.1: Examples of convex functions on <, <n and <m×n.

3.2.8 Convexity and Global Minimum

One of the most fundamental and useful chracteristics of convex functions is
that any point of local minimum point for a convex function is also a point of
global minimum.
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Function type Domain Additional Constraints

The affine function: ax+ b < Any a, b ∈ <
Powers: xα <++ 0 ≤ α ≤ 1

logarithm: log x <++

Table 3.2: Examples of concave functions on <.

Theorem 54 Let f : D → < be a convex function on a convex domain D. Any
point of locally minimum solution for f is also a point of its globally minimum
solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of
global minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum,
there exists an ε > 0 such that

∀ z ∈ D, ||z− x|| ≤ ε⇒ f(z) ≥ f(x)

Consider a point z = θy + (1 − θ)x with θ = ε
2||y−x|| . Since x is a point of

local minimum (in a ball of radius ε), and since f(y) < f(x), it must be that
||y − x|| > ε. Thus, 0 < θ < 1

2 and z ∈ D. Furthermore, ||z− x|| = ε
2 . Since f

is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have

θf(x) + (1− θ)f(y) < f(x)

The two equations imply that f(z) < f(x), which contradicts our assumption
that x corresponds to a point of local minimum. That is f cannot have a point
of local minimum, which does not coincide with the point y of global minimum.
2

Since any locally minimum point for a convex function also corresponds to
its global minimum, we will drop the qualifiers ‘locally’ as well as ‘globally’ while
referring to the points corresponding to minimum values of a convex function.
For any stricly convex function, the point corresponding to the gobal minimum
is also unique, as stated in the following theorem.

Theorem 55 Let f : D → < be a strictly convex function on a convex domain
D. Then f has a unique point corresponding to its global minimum.

Proof: Suppose x ∈ D and y ∈ D with y 6= x are two points of global minimum.
That is f(x) = f(y) for y 6= x. The point x+y

2 also belongs to the convex set
D and since f is strictly convex, we must have

f

(
x + y

2

)
<

1
2
f(x) +

1
2
f(y) = f(x)

which is a contradiction. Thus, the point corresponding to the minimum of f
must be unique. 2
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In the following section, we state some important properties of convex func-
tions, including relationships between convex functions and convex sets, and
first and second order conditions for convexity. We will also draw relationships
between the definitions of convexity and strict convexity stated here, with the
definitions on page 168 for the single variable case.

3.2.9 Properties of Convex Functions

We will first extend the domain of a convex function to all <n, while retaining
its convexity and preserving its value in the domain.

Definition 46 [Extended value extension]: If f : D → <, with D ⊆ <n is
a convex function, then we define its extended-valued extension f̃ : <n → <
as

f̃(x) =

{
f(x) if x ∈ D
∞ if x /∈ D

(3.34)

In what follows, we will assume if necessary, that all convex functions are
implicitly extended to the domain <n. A useful technique for verifying the
convexity of a function is to investigate its convexity, by restricting the function
to a line and checking for the convexity of a function of single variable. This
technique is hinged on the following theorem.

Theorem 56 A function f : D → < is (strictly) convex if and only if the
function φ : Dφ → < defined below, is (strictly) convex in t for every x ∈ <n
and for every h ∈ <n

φ(t) = f(x + th)

with the domain of φ given by Dφ = {t|x + th ∈ D}.

Proof: We will prove the necessity and sufficiency of the convexity of φ for a
convex function f . The proof for necessity and sufficiency of the strict convexity
of φ for a strictly convex f is very similar and is left as an exercise.

Proof of Necessity: Assume that f is convex. And we need to prove that
φ(t) = f(x + th) is also convex. Let t1, t2 ∈ Dφ and θ ∈ [0, 1]. Then,

φ(θt1 + (1− θ)t2) = f (θ(x + t1h) + (1− θ)(x + t2h))
≤ θf ((x + t1h)) + (1− θ)f ((x + t2h)) = θφ(t1) + (1− θ)φ(t2) (3.35)

Thus, φ is convex.
Proof of Sufficiency: Assume that for every h ∈ <n and every x ∈ <n,

φ(t) = f(x + th) is convex. We will prove that f is convex. Let x1,x2 ∈ D.
Take, x = x1 and h = x2 − x1. We know that φ(t) = f (x1 + t(x2 − x1)) is
convex, with φ(1) = f(x2) and φ(0) = f(x1). Therefore, for any θ ∈ [0, 1]
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f (θx2 + (1− θ)x1) = φ(θ)
≤ θφ(1) + (1− θ)φ(0) ≤ θf(x2) + (1− θ)f(x1) (3.36)

This implies that f is convex. 2

Next, we will draw the parallel between convex sets and convex functions by
introducing the concept of the epigraph of a function.

Definition 47 [Epigraph]: Let D ⊆ <n be a nonempty set and f : D →
<. The set {(x, f(x)|x ∈ D} is called graph of f and lies in <n+1. The
epigraph of f is a subset of <n+1 and is defined as

epi(f) = {(x, α)|f(x) ≤ α, x ∈ D, α ∈ <} (3.37)

In some sense, the epigraph is the set of points lying above the graph of f .
Similarly, the hypograph of f is a subset of <n+1, lying above the graph of
f and is defined by

hyp(f) = {(x, α)|f(x) ≥ α, x ∈ D, α ∈ <} (3.38)

There is a one to one correspondence between the convexity of function f and
that of the set epi(f), as stated in the following theorem.

Theorem 57 Let D ⊆ <n be a nonempty convex set, and f : D → <. Then f
is convex if and only if epi(f) is a convex set.

Proof: Let f be convex. For any (x1, α1) ∈ epi(f) and (x2, α2) ∈ epi(f) and
any θ ∈ (0, 1),

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) ≤ θα1 + (1− θ)α2

SinceD is convex, θx1+(1−θ)x2 ∈ D. Therefore, (θx1 + (1− θ)x2, θα1 + (1− θ)α2) ∈
epi(f). Thus, epi(f) is convex if f is convex. This proves the necessity part.

To prove sufficiency, assume that epi(f) is convex. Let x1,x2 ∈ D. So,
(x1, f(x1)) ∈ epi(f) and (x2, f(x2)) ∈ epi(f). Since epi(f) is convex, for θ ∈
(0, 1),

(θx1 + (1− θ)x2, θα1 + (1− θ)α2) ∈ epi(f)

which implies that f(θx1 +(1−θ)x2) ≤ θf(x1)+(1−θ)f(x2)) for any θ ∈ (0, 1).
This proves the sufficiency. 2

There is also a correspondence between the convexity of a function and the
convexity of its sublevel sets.
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Definition 48 [Sublevel Sets]: Let D ⊆ <n be a nonempty set and f : D →
<. The set

Lα(f) = {x|x ∈ D, f(x) ≤ α}

is called the α−sub-level set of f .

The correspondence between the convexity of f and its α−sub-level set is stated
in the following theorem. Unlike the correspondence with the epigraph, the
correspondence with the α−sub-level set is not one to one.

Theorem 58 Let D ⊆ <n be a nonempty convex set, and f : D → < be a
convex function. Then Lα(f) is a convex set for any α ∈ <.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D,
f(x1) ≤ α and f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1),
x = θx1 + (1− θ)x2 ∈ D. Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set. 2The converse
of this theorem does not hold. To illustrate this, consider the function f(x) =
x2

1+2x2
1
. The 0-sublevel set of this function is {(x1, x2) | x2 ≤ 0}, which is convex.

However, the function f(x) itself is not convex.
An important property of a convex function is that it is continuous in the

interior of its domain.

Theorem 59 Let f : D → < be a convex function with D ⊆ <n being a convex
set. Let S ⊂ D be an open convex set. Then f is continuous on S.

Proof: Let us consider a point x0 ∈ S. Since S is an open convex set, we can
find n+ 1 points x1,x2, . . . ,xn+1 such that the interior of the convex hull

C =

{
x|x =

n+1∑
i=1

aixi, ai ≥ 0,
n+1∑

1

ai = 1

}

is not empty and x0 ∈ interior(C). Let M = max
1≤i≤n+1

f(xi). Then, for any

x =
n+1∑
i=1

aixi ∈ C,

f(x) = f

(
n+1∑
i=1

aixi

)
≤
n+1∑
i=1

aif(xi) ≤M

Since x0 ∈ C, there exists a δ > 0 such that B(x0, δ) ⊂ C, where, B(x0, δ) =
{x|||x− x0|| ≤ δ}. Therefore, x0 can be expressed as a convex combination of
(x0 + θh and x0 − h for some h ∈ B(x0, δ) and some θ ∈ [0, 1].

x0 =
1

1 + θ
(x0 + θh) +

θ

1 + θ
(x0 − h)
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Since f is convex on C,

f(x0) ≤ 1
1 + θ

f(x0 + θh) +
θ

1 + θ
f(x0 − h)

From this, we can conclude that

f(x0 + θh)− f(x0) ≥ θ (f(x0 − f(x0 − h)) ≥ −θ (M − f(x0)) (3.39)

On the other hand,

f(x0 + θh) ≤ θf(x0 + h) + (1− θ)f(x0)

which implies that

f(x0 + θh)− f(x0) ≤ θ (f(x0 + h)− f(x0) ≤ θ (M − f(x0)) (3.40)

From equations 3.39 and 3.40, we can infer that

|f(x0 + θh)− f(x0)| ≤ θ|f(x0)−M |

For a given ε > 0, select δ′ ≤ δ such that δ′|f(x0)−M | ≤ εδ. Then d = θh with
||h|| = δ, implies that d ∈ B(x0, δ) and f(x0 + d)− f(x0)| ≤ ε. This proves the
theorem. 2

Analogous to the definition of increasing functions introduced on page num-
ber 164, we next introduce the concept of monotonic functions. This concept is
very useful for characterization of a convex function.

Definition 49 Let f : D → <n and D ⊆ <n. Then

1. f is monotone on D if for any x1,x2 ∈ D,

(f(x1)− f(x2))T (x1 − x2) ≥ 0 (3.41)

2. f is strictly monotone on D if for any x1,x2 ∈ D with x1 6= x2,

(f(x1)− f(x2))T (x1 − x2) > 0 (3.42)

3. f is uniformly or strongly monotone on D if for any x1,x2 ∈ D, there is
a constant c > 0 such that

(f(x1)− f(x2))T (x1 − x2) ≥ c||x1 − x2||2 (3.43)
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First-Order Convexity Conditions

The first order convexity condition for differentiable functions is provided by
the following theorem:

Theorem 60 Let f : D → < be a differentiable convex function on an open
convex set D. Then:

1. f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇T f(x)(y − x) (3.44)

2. f is strictly convex on D if and only if, for any x,y ∈ D, with x 6= y,

f(y) > f(x) +∇T f(x)(y − x) (3.45)

3. f is strongly convex on D if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇T f(x)(y − x) +
1
2
c||y − x||2 (3.46)

for some constant c > 0.

Proof:
Sufficiency: The proof of sufficiency is very similar for all the three state-

ments of the theorem. So we will prove only for statement (3.44). Suppose
(3.44) holds. Consider x1,x2 ∈ D and any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2.
Then,

f(x1) ≥ f(x) +∇T f(x)(x1 − x)
f(x2) ≥ f(x) +∇T f(x)(x2 − x) (3.47)

Adding (1− θ) times the second inequality to θ times the first, we get,

θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity,
strict inequality holds in (3.47) and it follows through. In the case of strong
convexity, we need to additionally prove that

θ
1
2
c||x− x1||2 + (1− θ)1

2
c||x− x2||2 =

1
2
cθ(1− θ)||x2 − x1||2



3.2. CONVEX OPTIMIZATION PROBLEM 217

Figure 3.38: Figure illustrating Theorem 60.

Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we
must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,

∇T f(x1)(x2 − x1) = lim
θ→0

f (x1 + θ(x2 − x1))− f (x1)
θ

≤ f(x2)− f(x1)

This proves necessity for (3.44). The necessity proofs for (3.45) and (3.46) are
very similar, except for a small difference for the case of strict convexity; the
strict inequality is not preserved when we take limits. Suppose equality does
hold in the case of strict convexity, that is for a strictly convex function f , let

f(x2) = f(x1) +∇T f(x1)(x2 − x1) (3.48)

for some x2 6= x1. Because f is stricly convex, for any θ ∈ (0, 1) we can write

f (θx1 + (1− θ)x2) = f (x2 + θ(x1 − x2)) < θf(x1) + (1− θ)f(x2) (3.49)

Since (3.44) is already proved for convex functions, we use it in conjunction with
(3.48), and (3.49), to get

f(x2)+θ∇T f(x2)(x1−x2) ≤ f (x2 + θ(x1 − x2)) < f(x2)+θ∇T f(x2)(x1−x2)

which is a contradiction. Thus, equality can never hold in (3.44) for any x1 6= x2.
This proves the necessity of (3.45). 2

The geometrical interpretation of theorem 60 is that at any point, the linear
approximation based on a local derivative gives a lower estimate of the function,
i.e. the convex function always lies above the supporting hyperplane at that
point. This is pictorially depicted in Figure 3.38. There are some implications
of theorem 60 for strongly convex functions. We state them next.
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Definition 50 [Some corollaries of theorem 60 for strongly convex functions]:
For a fixed x, the right hand side of the inequality (3.46) is a convex
quadratic function of y. Thus, the critical point of the RHS should corre-
spond to the minimum value that the RHS could take. This yields another
lower bound on f(y).

f(y) ≥ f(x)− 1
2c
||∇f(x)||22 (3.50)

Since this holds for any y ∈ D, we have

min
y∈D

f(y) ≥ f(x)− 1
2c
||∇f(x)||22 (3.51)

which can be used to bound the suboptimality of a point x in terms of
||∇f(x)||2. This bound comes handy in theoretically understanding the
convergence of gradient methods. If ŷ = min

y∈D
f(y), we can also derive a

bound on the distance between any point x ∈ D and the point of optimality
ŷ.

||x− ŷ||2 ≤
2
c
||∇f(x)||2 (3.52)

Theorem 60 motivates the definition of the subgradient for non-differentiable
convex functions, which has properties very similar to the gradient vector.

Definition 51 [Subgradient]: Let f : D → < be a convex function defined
on a convex set D. A vector h ∈ <n is said to be a subgradient of f at the
point x ∈ D if

f(y) ≥ f(x) + hT (y − x)

for all y ∈ D. The set of all such vectors is called the subdifferential of f
at x.

For a differentiable convex function, the gradient at point x is the only subgradi-
ent at that point. Most properties of differentiable convex functions that hold in
terms of the gradient also hold in terms of the subgradient for non-differentiable
convex functions. Theorem 60 gives a very simple optimality criterion for a dif-
ferentiable function f .

Theorem 61 Let f : D → < be a convex function defined on a convex set D.
A point x ∈ D corresponds to a minimum if and only if

∇T f(x)(y − x) ≥ 0

for all y ∈ D.
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If ∇f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 62 implies that for a differentiable convex function defined on an open
set, every critical point must be a point of (global) minimum.

Theorem 62 Let f : D → < be differentiable and convex on an open convex
domain D ⊆ <n. Then x is a critical point of f if and only if it is a (global)
minimum.

Proof: If x is a global minimum, it is a local minimum and by theorem 45, it
must be a critical point and therefore ∇f(x) = 0. Conversely, let ∇f(x) = 0,
By theorem 60, we know that for all y ∈ D,

f(y) ≥ f(x) +∇T f(x)(y − x)

Substituting ∇f(x) = 0 in this inequality, we get for all y ∈ D,

f(y) ≥ f(x)

That is, x corresponds to a (global) minimum. 2

Based on the definition of monotonic functions in definition 49, we show the
relationship between convexity of a function and monotonicity of its gradient in
the next theorem.

Theorem 63 Let f : D → < with D ⊆ <n be differentiable on the convex set
D. Then,

1. f is convex on D if and only if is its gradient ∇f is monotone. That is,
for all x,y ∈ <

(∇f(x)−∇f(y))T (x− y) ≥ 0 (3.53)

2. f is strictly convex on D if and only if is its gradient ∇f is strictly mono-
tone. That is, for all x,y ∈ < with x 6= y,

(∇f(x)−∇f(y))T (x− y) > 0 (3.54)

3. f is uniformly or strongly convex on D if and only if is its gradient ∇f is
uniformly monotone. That is, for all x,y ∈ <,

(∇f(x)−∇f(y))T (x− y) ≥ c||x− y||2 (3.55)

for some constant c > 0.
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Proof:
Necessity: Suppose f is uniformly convex on D. Then from theorem 60,

we know that for any x,y ∈ D,

f(y) ≥ f(x) +∇T f(x)(y − x)− 1
2
c||y + x||2

f(x) ≥ f(y) +∇T f(y)(x− y)− 1
2
c||x + y||2

Adding the two inequalities, we get (3.55). If f is convex, the inequalities hold
with c = 0, yielding (3.54). If f is strictly convex, the inequalities will be strict,
yielding (3.54).

Sufficiency: Suppose ∇f is monotone. For any fixed x,y ∈ D, consider the
function φ(t) = f (x + t(y − x)). By the mean value theorem applied to φ(t),
we should have for some t ∈ (0, 1),

φ(1)− φ(0) = φ′(t) (3.56)

Letting z = x + t(y − x), (3.56) translates to

f(y)− f(x) = ∇T f(z)(y − x) (3.57)

Also, by definition of monotonicity of ∇f , (from (3.53)),

(∇f(z)−∇f(x))T (y − x) =
1
t

(∇f(z)−∇f(x))T (z− x) ≥ 0 (3.58)

Combining (3.57) with (3.58), we get,

f(y)− f(x) = (∇f(z)− f(x))T (y − x) +∇T f(x)(y − x)
≥ ∇T f(x)(y − x) (3.59)

By theorem 60, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (3.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (3.59). For the
case of strong convexity, from (3.55), we have

φ′(t)− φ′(0) = (∇f(z)− f(x))T (y − x)

=
1
t

(∇f(z)− f(x))T (z− x) ≥ 1
t
c||z− x||2 = ct||y − x||2 (3.60)
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Therefore,

φ(1)− φ(0)− φ′(0) =
∫ 1

0

[φ′(t)− φ′(0)]dt ≥ 1
2
c||y − x||2 (3.61)

which translates to

f(y) ≥ f(x) +∇T f(x)(y − x) +
1
2
c||y − x||2

By theorem 60, f must be strongly convex. 2

Second Order Condition

For twice continuously differentiable convex functions the convexity condition
can be characterized as follows.

Theorem 64 A twice differential function f : D → < for a nonempty open
convex set D

1. is convex if and only if its domain is convex and its Hessian matrix is
positive semidefinite at each point in D. That is

∇2f(x) � 0 ∀ x ∈ D (3.62)

2. is strictly convex if its domain is convex and its Hessian matrix is positive
definite at each point in D. That is

∇2f(x) � 0 ∀ x ∈ D (3.63)

3. is uniformly convex if and only if its domain is convex and its Hessian
matrix is uniformly positive definite at each point in D. That is, for any
v ∈ <n and any x ∈ D, there exists a c > 0 such that

vT∇2f(x)v ≥ c||v||2 (3.64)

In other words
∇2f(x) � cIn×n

where In×n is the n × n identity matrix and � corresponds to the pos-
itive semidefinite inequality. That is, the function f is strongly convex
iff ∇2f(x) − cIn×n is positive semidefinite, for all x ∈ D and for some
constant c > 0, which corresponds to the positive minimum curvature of
f .
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Proof: We will prove only the first statement in the theorem; the other two
statements are proved in a similar manner.

Necessity: Suppose f is a convex function, and consider a point x ∈ D.
We will prove that for any h ∈ <n, hT∇2f(x)h ≥ 0. Since f is convex, by
theorem 60, we have

f(x + th) ≥ f(x) + t∇T f(x)h (3.65)

Consider the function φ(t) = f(x + th) considered in theorem 56, defined on
the domain Dφ = [0, 1]. Using the chain rule,

φ′(t) =
n∑
i=1

fxi(x + th)
dxi
dt

= hT .∇f(x + th)

Since f has partial and mixed partial derivatives, φ′ is a differentiable function
of t on Dφ and

φ′′(t) = hT∇2f(x + th)h

Since φ and φ′ are continous on Dφ and φ′ is differentiable on int(Dφ), we
can make use of the Taylor’s theorem (30) with n = 3 to obtain:

φ(t) = φ(0) + t.φ′(0) + t2.
1
2
φ′′(0) +O(t3)

Writing this equation in terms of f gives

f(x + th) = f(x) + thT∇f(x) + t2
1
2
hT∇2f(x)h +O(t3)

In conjunction with (3.65), the above equation implies that

t2

2
hT∇2f(x)h +O(t3) ≥ 0

Dividing by t2 and taking limits as t→ 0, we get

hT∇2f(x)h ≥ 0

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at
each point x ∈ D. Consider the same function φ(t) defined above with h = y−x
for y,x ∈ D. Applying Taylor’s theorem (30) with n = 2 and a = 0, we obtain,

φ(1) = φ(0) + t.φ′(0) + t2.
1
2
φ′′(c)

for some c ∈ (0, 1). Writing this equation in terms of f gives

f(x) = f(y) + (x− y)T∇f(y) +
1
2

(x− y)T∇2f(z)(x− y)
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where z = y + c(x−y). Since D is convex, z ∈ D. Thus, ∇2f(z) � 0. It follows
that

f(x) ≥ f(y) + (x− y)T∇f(y)

By theorem 60, the function f is convex. 2

Examples of differentiable/twice differentiable convex functions, along with
the value of their respective gradients/hessians are tabulated in Table 3.3.

Function type Constraints Gradient/Hessian

Quadratic : 1
2xTAx + bTx + c A � 0 ∇2f(x) = P

Quadratic over linear: x2

y ≥ 0 y > 0 ∇2f(x, y) = 2
y3

[
y2 −xy
−xy x2

]
Log-sum-exp: log

n∑
k=1

exp(xk) ∇2f(x) = 1
(1T z)2

(
(1T z) diag(z)− zzT

)
where z = [ex1 , ex1 , . . . , exn ]

Negative Geometric mean: −

(
n∏
k=1

xk

) 1
n

x ∈ <n++ ∇2f(x) =

∏
i=1

nx
1/n
i

n2

(
n diag( 1

x2
1
, . . . , 1

x2
n

)− qqT
)

Table 3.3: Examples of twice differentiable convex functions on <.

3.2.10 Convexity Preserving Operations on Functions

In practice if you want to establish the convexity of a function f , you could
either

1. Prove it from first principles, i.e., using the definition of convexity or

2. If f is twice differentiable, show that ∇2f(x) � 0

3. Show that f is obtained from simple convex functions by operations that
preserve complexity. Following are operations on functions that preserve
complexity (proofs omitted, since they are trivial):

• Nonnegative weighted sum: f =
n∑
i=1

αifi is convex if each fi for

1 ≤ i ≤ n is convex and αi ≥ 0, 1 ≤ i ≤ n.

• Composition with affine function: f(Ax + b) is convex if f is
convex. For example:

– The log barrier for linear inequalities, f(x) = −
m∑
i=1

log(bi−aTi x),

is convex since − log(x) is convex.
– Any norm of an affine function, f(x) = ||Ax+ b||, is convex.

• Pointwise maximum: If f1, f2, . . . , fm are convex, then f(x) =
max {f1(x), f2(x), . . . , fm(x)} is also convex, For example:
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– Sum of r largest components of x ∈ <n f(x) = x[1] +x[2] + . . .+
x[r], where x[1] is the ith largest component of x, is a convex
function.

• Pointwise supremum: If f(x, y) is convex in x for every y ∈ S,
then g(x) = sup

y∈S
f(x, y) is convex. For example:

– The function that returns the maximum eigenvalue of a symmet-
ric matrix X, viz., λmax(X) = sup

y∈S
f(x, y) is a convex function

of the symmetrix matrix X.

• Composition with functions: Let h : <k → < with h(x) =
∞,∀ x /∈ dom h and g : <n → <k. Define f(x) = h(g(x)). f is
convex if

– gi is convex, h is convex and nondecreasing in each argument
– or gi is concave, h is convex and nonincreasing in each argument

Some examples illustrating this property are:
– exp g(x) is convex if g is convex

–
m∑
i=1

log gi(x) is concave if gi are concave and positive

– log
m∑
i=1

exp gi(x) is convex if gi are convex

– 1/g(x) is convex if g is concave and positive
• Infimum: If f(x, y) is convex in (x, y) and C is a convex set, then
g(x) = inf

y∈C
f(x, y) is convex. For example:

– Let f(x,S) that returns the distance of a point x to a convex set
S. That is f(x,S) = inf

y∈S
||x− y||. Then f(x,S) is a convex.

• Perspective Function: The perspective of a function f : <n → < is
the function g : Rn×< → <, g(x, t) = tf(x/t). Function g is convex
if f is convex on domg = {(x, t)|x/t ∈ domf, t > 0}. For example,

– The perspective of f(x) = xTx is (quadratic-over-linear) function
g(x, t) = xT x

t and is convex.
– The perspective of negative logarithm f(x) = − log x is the rel-

ative entropy function g(x, t) = t log t− t log x and is convex.

3.3 Convex Optimization Problem

Formally, a convex program is defined as

min
x∈X

cTx (3.66)
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where X ⊂ <n is a convex set and x is a vector of n optimization or decision
variables. In applications, convex optimization programs usually arise in the
form:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

variable x = (x1, . . . , xn)

(3.67)

If it is given that the functions f, g1, . . . , gm are convex, by theorem 58, the
feasible set X of this problem, which is the intersection of a finite number of
0−sub-level sets of convex functions is also convex. Therefore, this problem can
be posed as the following convex optimization problem:

min
x=(t,u)∈X

t

X = {(t, u)|f(u) ≤ t, g1(u) ≤ 0, g2(u) ≤ 0, . . . , gm(u) ≤ 0}
(3.68)

The set X is convex, and hence the problem in (3.68) is a convex optimization
problem. Further, every locally optimal point is also globally optimal. The
computation time of algorithms for solving convex optimization problems is
roughly proportional to max

(
n2, n2m,C

)
, where C is the cost of evaluating

f , the gi’s and their first and second derivatives. There are many reliable and
efficient algorithms for solving convex optimization problems. However, it is
often difficult to recognize convex optimization problems in practice.

Examples

Consider the optimization problem

minimize f(x) = x2
1 + x2

2

subject to g1(x) = x1
1+x2

2
≤ 0

h(x) = (x1 + x2)2 = 0

(3.69)

We note that the optimiation problem above is not a convex problem ac-
cording to our definition, since g1 is not convex and h is not affine. However, we
note that the feasible set {(x1, x2) | x1 = −x2, x1 ≤ 0} is convex (recall that
the converse of theorem 58 does not hold - the 0-sublevel set of a non convex
function can be convex). This problem can be posed as an equivalent (but not
identical) convex optimization problem:
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minimize f(x) = x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0

(3.70)

3.4 Duality Theory

Duality is a very important component of nonlinear and linear optimization
models. It has a wide spectrum of applications that are very popular. It arises
in the basic form of linear programming as well as in interior point methods
for linear programming. The duality in linear programming was first observed
by Von Neumann, and later formalized by Tucker, Gale and Kuhn. In the
first attempt at extending duality beyond linear programs, duals of quadratic
programs were next developed. It was subsequently observed that you can
always write a dual for any optimization problem and the modern Lagrange-
based ‘constructive’19 duality theory followed in the late 1960s.

An extremely popular application of duality happens to be in the quadratic
programming for Support Vector Machines. The primal and dual both happen
to be convex optimization programs in this case. The Minimax theorem20, a
fundamental theorem of Game Theory, proved by John von Neumann in 1928,
is but one instance of the general duality theory. In the consideration of equi-
librium in electrical networks, current are ‘primal variables’ and the potential
differences are the ‘dual variables’. In models of economic markets, the ‘primal’
variables are production and consumption levels while the ‘dual’ variables are
prices (of goods, etc.). Dual price-based decomposition methods were developed
by Danzig. In the case of thrust structures in mechanics, forces are primal vari-
ables and the displacements are the dual variables. Dual problems and their
solutions are used for proving optimality of solutions, finding near-optimal so-
lutions, analysing how sensitive the solution of the primal is to perturbations in
the right hand side of constraints, analysing convergence of algorithms, etc.

3.4.1 Lagrange Multipliers

Consider the following quadratic function of x ∈ <n.

F (x) = xTAx− xTb (3.71)

where A is an n × n square matrix. Consider the unconstrained minimization
problem

19As we will see, the theory helps us construct duals that are useful in practice.
20The name Minimax was invented by Tucker.
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min
x∈D

F (x) (3.72)

A locally optimum solution x̂ to this objective can be obtained by setting
∇F (x̂) = 0. This condition translates to Ax̂ = b. A sufficient condition for x̂
to be a point of local minimum is that ∇2F (x̂) � 0. This condition holds iff,
A � 0, that is, A is a positive definite matrix. Given that A � 0, A must be
invertible (c.f. Section 2.12.2) and the unique solution is x = A−1b.

Now suppose we have a constrained minimization problem

min
y∈<n

1
2yTBy

subject to ATy = b
(3.73)

where y ∈ <n, A is an n ×m matrix, B is an n × n matrix and b is a vector
of size m. To handle constrained minimization, let us consider minimization of
the modified objective function L(y, λ) = 1

2yTBy + λT (ATy − b).

min
y∈<n,λ∈<m

1
2yTBy + λT (ATy − b) (3.74)

The function L(y, λ) is called the lagrangian and involves the lagrange multi-
plier λ ∈ <m. A sufficient condition for optimality of L(y, λ) at a point L(y∗, λ∗)
is that ∇L(y∗, λ∗) = 0 and ∇2L(y∗, λ∗) � 0. For this particular problem:

∇L(y∗, λ∗) =

[
By∗ +Aλ∗

ATy∗ − b

]
=

[
0
0

]
and

∇2L(y∗, λ∗) =

[
B A

AT 0

]
� 0

The point (y∗, λ∗) must therefore satisfy, ATy∗ = b and Aλ∗ = −By∗. If B
is taken to be the identity matrix, n = 2 and m = 1, the minimization problem
(3.73) amounts to finding a point y∗ on a line a11y1 +a12y2 = b that is closest to
the origin. From geometry, we know that the point on a line closest to the origin
is the point of intersection p∗ of a perpendicular from the origin to the line. On
the other hand, the solution for the minimum of (3.74), for these conditions
coincides with p∗ and is given by:

y1 =
a11b

(a11)2 + (a12)2

y2 =
a12b

(a11)2 + (a12)2
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That is, for n = 2 and m = 1, the solution to (3.74) is the same as the solu-
tion to (3.72) Can this construction be used to always find optimal solutions
to a minimization problem? We will answer this question by first motivating
the concept of lagrange multipliers and in Section 3.4.2, we will formalize the
lagrangian dual.

Lagrange Multipliers with Equality Constraints

The concept of lagrange multipliers can be attributed to the mathematician
Lagrange, who was born in the year 1736 in Turin. He largely worked on
mechanics, the calculus of variations probability, group theory, and number
theory. He was party to the choice of base 10 for the metric system (rather than
12). We will here give a brief introduction to lagrange multipliers; Section 3.4.2
will discuss the Karush-Kuhn-Tucker conditions, which are a generalization of
lagrange multipliers.

Consider the equality constrained minimization problem (with D ⊆ <n)

min
x∈D

f(x)

subject to gi(x) = 0 i = 1, 2, . . . ,m
(3.75)

A direct approach to solving this problem is to find a parametrization of the
constraints (as in the example on page 174) such that f is expressed in terms
of the parameters, to give an unconstrained problem. For example if there is a
single constraint of the form xTAx = k, and A � 0, then the coordinate system
can be rotated and x can be rescaled so that we get the constraint y′y = k.
Further, we can substitute with parametrization of the yi’s as

y1 = k sin θ1 sin θ2 . . . sin θn−1

y2 = k sin θ1 sin θ2 . . . cos θn−1

. . . . . . . . .

However, this is not possible for general constraints. The method of lagrange
multipliers presents an indirect approach to solving this problem.

Consider a schematic representation of the problem in (3.75) with a single
constraint, i.e., m = 1 in Figure 3.39. The figure shows some level curves of the
function f . The constraint function g1 is also plotted with dotted lines in the
same figure. The gradient of the constraint ∇g1 is not parallel to the gradient
∇f of the function21 at f = 10.4; it is therefore possible to move along the
constraint surface so as to further reduce f . However, as shown in Figure 3.39,
∇g1 and ∇f are parallel at f = 10.3, and any motion along g1(x) = 0 will

21Note that the (negative) gradient at a point is orthogonal to the contour line going through
that point. This was proved in Theorem 44.
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Figure 3.39: At any non-optimal and non-saddle point of the equality con-
strained problem, the gradient of the constraint will not be parallel to that of
the function.

increase f , or leave it unchanged. Hence, at the solution x∗, ∇f(x∗) must be
proportional to −∇g1(x∗), yielding, ∇f(x∗) = −λ∇g1(x∗), for some constant
λ ∈ <; λ is called a Lagrange multiplier. In several problems, the value of λ itself
need never be computed and therefore λ is often qualified as the undetermined
lagrange multiplier.

The necessary condition for an optimum at x∗ for the optimization problem
in (3.75) with m = 1 can be stated as in (3.76), where the gradient is now n+ 1
dimensional with its last component being a partial derivative with respect to
λ.

∇L(x∗, λ∗) = ∇f(x∗) + λ∗∇g1(x∗) = 0 (3.76)

The solutions to (3.76) are the stationary points of the lagrangian L; they are not
necessarily local extrema of L. L is unbounded: given a point x that doesn’t lie
on the constraint, letting λ→ ±∞ makes L arbitrarily large or small. However,
under certain stronger assumptions, as we shall see in Section 3.4.2, if the strong
Lagrangian principle holds, the minima of f minimize the Lagrangian globally.

We will extend the necessary condition for optimality of a minimization
problem with single constraint to minimization problems with multiple equality
constraints (i.e., m > 1. in (3.75)). Let S be the subspace spanned by ∇gi(x)
at any point x and let S⊥ be its orthogonal complement. Let (∇f)⊥ be the
component of ∇f in the subspace S⊥. At any solution x∗, it must be true that
the gradient of f has (∇f)⊥ = 0 (i.e., no components that are perpendicular to
all of the ∇gi), because otherwise you could move x∗ a little in that direction
(or in the opposite direction) to increase (decrease) f without changing any
of the gi, i.e. without violating any constraints. Hence for multiple equality
constraints, it must be true that at the solution x∗, the space S contains the
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Figure 3.40: At the equality constrained optimum, the gradient of the constraint
must be parallel to that of the function.

vector ∇f , i.e., there are some constants λi such that ∇f(x∗) = λi∇gi(x∗).
We also need to impose that the solution is on the correct constraint surface
(i.e., gi = 0, ∀i). In the same manner as in the case of m = 1, this can be

encapsulated by introducing the Lagrangian L(x, λ) = f(x) −
m∑
i=1

λi∇gi(x),

whose gradient with respect to both x, and λ vanishes at the solution.
This gives us the following necessary condition for optimality of (3.75):

∇L(x∗, λ∗) = ∇

(
f(x)−

m∑
i=1

λigi(x)

)
= 0 (3.77)

Lagrange Multipliers with Inequality Constraints

Instead of a single equality constraint g1(x) = 0, we could have a single inequal-
ity constraint g1(x) ≤ 0. The entire region labeled g1(x) ≤ 0 in Figure 3.41
then becomes feasible. At the solution x∗, if g1(x∗) = 0, i.e., if the constraint
is active, we must have (as in the case of a single equality constraint) that ∇f
is parallel to ∇g1, by the same argument as before. Additionally, it is neces-
sary that the two gradients must point in opposite directions; otherwise a move
away from the surface g1 = 0 and into the feasible region would further reduce
f . Since we are minimizing f , if the Lagrangian is written as L = f + λg1,
we must have λ ≥ 0. Therefore, with an inequality constraint, the sign of λ is
important, and λ ≥ 0 becomes a constraint.

However, if the constraint is not active at the solution ∇f(x∗) = 0, then
removing g1 makes no difference and we can drop it from L = f + λg1, which
is equivalent to setting λ = 0. Thus, whether or not the constraints g1 = 0 are
active, we can find the solution by requiring that the gradients of the Lagrangian
vanish, and also requiring that λg1(x∗) = 0. This latter condition is one of the
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Figure 3.41: At the inequality constrained optimum, the gradient of the con-
straint must be parallel to that of the function.

important Karush-Kuhn-Tucker conditions of convex optimization theory that
can facilitate the search for the solution and will be more formally discussed in
Section 3.4.2.

Now consider the general inequality constrained minimization problem

min
x∈D

f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . ,m
(3.78)

With multiple inequality constraints, for constraints that are active, as in the
case of multiple equality constraints, ∇f must lie in the space spanned by the

∇gi’s, and if the Lagrangian is L = f +
m∑
i=1

λigi, then we must additionally

have λi ≥ 0, ∀i (since otherwise f could be reduced by moving into the feasible
region). As for an inactive constraint gj (gj < 0), removing gj from L makes

no difference and we can drop ∇gj from ∇f = −
m∑
i=1

λi∇gi or equivalently set

λj = 0. Thus, the above KKT condition generalizes to λigi(x∗) = 0, ∀i. The
necessary condition for optimality of (3.78) is summarily given as

∇L(x∗, λ∗) = ∇

(
f(x)−

m∑
i=1

λigi(x)

)
= 0

∀i λigi(x) = 0 (3.79)

A simple and often useful trick called the free constraint gambit is to solve
ignoring one or more of the constraints, and then check that the solution satisfies
those constraints, in which case you have solved the problem.
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3.4.2 The Dual Theory for Constrained Optimization

Consider the general inequality constrained minimization problem in (3.78),
restated below.

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
(3.80)

There are three simple and straightforward steps in forming a dual problem.

1. The first step involves forming the lagrange function by associating a price
λi, called a lagrange multiplier, with the constraint involving gi.

L(x, λ) = f(x) +
n∑
i=1

λigi(x) = f(x) + λTg(x)

2. The second step is the construction of the dual function L∗(λ) which is
defined as:

L∗(λ) = min
x∈D

L(x, λ) = min
x∈D

f(x) + λTg(x)

What makes the theory of duality constructive is when we can solve for
L∗ efficiently - either in a closed form or some other ‘simple’ mechanism.
If L∗ is not easy to evaluate, the duality theory will be less useful.

3. We finally define the dual problem:

max
λ∈<m

L∗(λ)

subject to λ ≥ 0
(3.81)

It can be immediatly proved that the dual problem is a concave maximization
problem.

Theorem 65 The dual function L∗(λ) is concave.

Proof: Consider two values of the dual variables, viz., λ1 ≥ 0 and λ2 ≥ 0. Let
λ = θλ1 + (1− θ)λ2 for any θ ∈ [0, 1]. Then,

L∗(λ) = min
x∈D

f(x) + λT g(x)

= min
x∈D

θ
[
f(x) + λT1 g(x)

]
+ (1− θ)

[
f(x) + λT2 g(x)

]
≥ min

x∈D
θ
[
f(x) + λT1 g(x)

]
+ min

x∈D
(1− θ)

[
f(x) + λT2 g(x)

]
= θL∗(λ1) + (1− θ)L∗(λ2)
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This proves that L∗(λ) is a concave function. 2

The dual is concave (or the negative of the dual is convex) irrespective of the
primal. Solving the dual is therefore always a convex programming problem.
Thus, in some sense, the dual is better structured than the primal. However, the
dual cannot be drastically simpler than the primal. For example, if the primal
is not an LP, the dual cannot be an LP. Similarly, the dual can be quadratic
only if the primal is quadratic.

A tricky thing in duality theory is to decide what we call the domain or
ground set D and what we call the constraints gi’s. Based on whether constraints
are explicitly stated or implicitly stated in the form of the ground set, the dual
problem could be very different. Thus, many duals are possible for the given
primal.

We will look at two examples to give a flavour of how the duality theory
works.

1. We will first look at linear programming.

min
x∈<n

cTx

subject to −Ax + b ≤ 0

The lagrangian for this problem is:

L(x, λ) = cTx + λTb− λTAx = bTλ+
(
cT −ATλ

)
x

The next step is to get L∗, which we obtain using the first derivative test:

L∗(λ) = min
x∈<n

bTλ+
(
cT −Aλ

)T
x =

{
bTλ if ATλ = c

−∞ if ATλ 6= c

The function L∗ can be thought of as the extended value extension of the
same function restricted to the domain

{
λ|ATλ = c

}
. Therefore, the dual

problem can be formulated as:

max
λ∈<m

bTλ

subject to ATλ = c

λ ≥ 0

(3.82)

This is the dual of the standard LP. What if the original LP was the
following?
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min
x∈<n

cTx

subject to −Ax + b ≤ 0 x ≥ 0

Now we have a variety of options based on what constraints are intro-
duced into the ground set (or domain) and what are explicitly treated as
constraints. Some working out will convince us that treating x ∈ <n as
the constraint and the explicit constraints as part of the ground set is a
very bad idea. One dual for this problem is the same as (3.82).

2. Let us look at a modified version of the problem in (3.83).

min
x∈<n

cTx−
∑n
i=1 lnxi

subject to −Ax + b = 0

x > 0

Typically, when we try to formulate a dual problem, we look for constraints
that get in the way of conveniently solving the problem. We first formulate
the lagrangian for this problem.

L(x, λ) = cTx−
n∑
i=1

lnxi+λTb−λTAx = bTλ+xT
(
c−ATλ

)
−

n∑
i=1

lnxi

The domain (or ground set) for this problem is x > 0, which is open.

The expression for L∗ can be obtained using the first derivative test, while
keeping in mind that L can be made arbitrarily small (tending to −∞)
unless (c−ATλ) > 0. This is because, even if one component of c−ATλ is
less than or equal to zero, the value of L can be made arbitrarily small by
decreasing the value of the corresponding component of x in the

∑n
i=1 lnxi

part. Further, the sum bTλ+
(
c−ATλ

)T
x−

∑n
i=1 lnxi can be separated

out into the individual components of λi, and this can be exploited while
determining the critical point of L.

L∗(λ) = min
x>0

bTλ+ n+
n∑
i=1

ln
1

(c−ATλ)i
=

{
bTλ if (c−ATλ) > 0

−∞ otherwise

Finally, the dual will be

max
λ∈<m

bTλ+ n+
∑n
i=1 ln 1

(c−ATλ)i

subject to −ATλ+ c > 0
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As noted earlier, the theory of duality remains a theory unless the dual lends
itself to some constructive evaluation; not always is the dual a useful form.

The following Weak duality theorem states an important relationship be-
tween solutions to the primal (3.80) and the dual (3.81) problems.

Theorem 66 If p∗ ∈ < is the solution to the primal problem in (3.80) and
d∗ ∈ < is the solution to the dual problem in (3.81), then

p∗ ≥ d∗

In general, if x̂ is any feasible solution to the primal problem (3.80) and λ̂ is a
feasible solution to the dual problem (3.81), then

f(x̂) ≥ L∗(λ̂)

Proof: If x̂ is a feasible solution to the primal problem (3.80) and λ̂ is a feasible
solution to the dual problem, then

f(x̂) ≥ f(x̂) + λ̂Tg(λ̂) ≥ min
x∈D

f(x + λ̂Tg(λ) = L∗(λ̂)

This proves the second part of the theorem. A direct consequence of this is that

p∗ = min
x∈D

f(x) ≥ min
λ≥0

L∗(λ) = d∗

2

The weak duality theorem has some important implications. If the primal
problem is unbounded below, that is, p∗ = −∞, we must have d∗ = −∞, which
means that the Lagrange dual problem is infeasible. Conversely, if the dual
problem is unbounded above, that is, d∗ = ∞, we must have p∗ = ∞, which
is equivalent to saying that the primal problem is infeasible. The difference,
p∗ − d∗ is called the duality gap.

In many hard combinatorial optimization problems with duality gaps, we
get good dual solutions, which tell us that we are guaranteed of being some k %
within the optimal solution to the primal, for some satisfactorily low values of
k. This is one of the powerful uses of duality theory; constructing bounds for
optimization problems.

Under what conditions can one assert that d∗ = p∗? The condition d∗ = p∗ is
called strong duality and it does not hold in general. It usually holds for convex
problems but there are exceptions to that - one of the most typical being that
of the semi-definite optimization problem. The semi-definite program (SDP) is
defined, with the linear matrix inequality constraint (c.f. page 206) as follows:

min
x∈<n

cTx

subject to x1A1 + . . .+ xnAn +G � 0
Ax = b

(3.83)



236 CHAPTER 3. CONVEX OPTIMIZATION

Sufficient conditions for strong duality in convex problems are called constraint
qualifications. One of the most useful sufficient conditions for strong duality is
called the Slaters constraint qualification.

Definition 52 [Slaters constraint qualification]: For a convex problem

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m
Ax = b

variable x = (x1, . . . , xn)

(3.84)

strong duality holds (that is d∗ = p∗) if it is strictly feasible. That is,

∃x ∈ int(D) : gi(x) < 0 i = 1, 2, . . . ,m Ax = b

However, if any of the gi’s are linear, they do not need to hold with strict
inequalities.

Table 3.4 summarizes some optimization problems, their duals and con-
ditions for strong duality. Strong duality also holds for nonconvex problems

Problem type Objective Function Constraints L∗(λ) Dual constraints Strong duality

Linear Program cTx Ax ≤ b −bTλ ATλ+ c = 0 Feasible primal
λ ≥ 0 and dual

Quadratic Program 1
2xTQx + cTx for Q ∈ Sn++ Ax ≤ b − 1

2

(
c−ATλ

)T
Q−1

(
c−ATλ

)
+ bTλ λ ≥ 0 Always

Entropy maximization xi
∑n
i=1 lnxi Ax ≤ b −bTλ− µ− e−µ−1

∑n
i=1 e

−aTi λ λ ≥ 0 Primal constraints
xT1 = 1 ai is the ith column of A are satisfied.

Table 3.4: Examples of functions and their duals.

in extremely rare cases. One example of this is minimization of a nonconvex
quadratic function over the unit ball.

3.4.3 Geometry of the Dual

We will study the geometry of the dual in the column space <m+1. The column
geometry of the dual will require definition of the following set:

I = {(s, z) | s ∈ <m, z ∈ <, ∃x ∈ D with gi(x) ≤ si ∀1 ≤ i ≤ m, f(x) ≤ z }

The set I is a subset of <m+1, where m is the number of constraints. Consider
a plot in two dimensions, for n = 1, with s1 along the x−axis and z along the
y−axis. For every point, x ∈ D, we can identify all points (s1, z) for s1 ≥ g1(x)
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Figure 3.42: Example of the set I for a single constraint (i.e., for n = 1).

and z ≥ f(x) and these are points that lie to the left and above the point
(g1(x), f(x)). An example set I is shown in Figure 3.42. It turns out that all
the intuitions we need are in two dimensions, which makes it fairly convenient to
understand the idea. It is straightforward to prove that if the objective function
f(x) is convex and each of the constraints gi(x), 1 ≤ i ≤ n is a convex function,
then I must be a convex set. Since the feasible region for the primal problem
(3.78) is the region in I with s ≤ 0, and since all points above and to the right
of a point in I also belong to I, the solution to the primal problem corresponds
to the point in I with s = 0 and least possible value of z. For example, in
Figure 3.42, the solution to the primal corresponds to (0, δ1).

Let us define a hyerplane Hλ,α, parametrized by λ ∈ <m and α ∈ < as

Hλ,α =
{

(s, z)
∣∣λT .s + z = α

}
Consider all hyperplanes that lie below I. For example, in the Figure 3.42,
both hyperplanes Hλ1,α1 and Hλ2,α2 lie below the set I. Of all hyperplanes
that lie below I, consider the hyperplane whose intersection with the line s =
0, corresponds to as high a value of z as possible. This hyperplane must be
supporting hyperplane. Incidentally, Hλ1,α1 happens to be such a supporting
hyperplane. Its point of intersection (0, α1) precisely corresponds to the solution
to the dual problem. Let us derive this statement formally after setting up some
more notation.

We will define two half-spaces corresponding to Hλ,α

H+
λ,α =

{
(s, z)

∣∣λT .s + z ≥ α
}

H−λ,α =
{

(s, z)
∣∣λT .s + z ≤ α

}
Let us define another set L as

L = {(s, z) |s = 0}
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Note that L is essentially the z or function axis. The intersection of Hλ,α with
L is the point (0, α). That is

(0, α) = L
⋂
Hλ,α

We would like to manipulate λ and α so that the set I lies in the half-space
H+
λ,α as tightly as possible. Mathematically, we are interested in the problem

of maximizing the height of the point of intersection of L with Hλ,α above the
s = 0 plane, while ensuring that I remains a subset of H+

λ,α.

max α

subject to H+
λ,α ⊇ I

By definitions of I, H+
λ,α and the subset relation, this problem is equivalent to

max α

subject to λT .s + z ≥ α ∀(s, z) ∈ I

Now notice that if (s, z) ∈ I, then (s′, z) ∈ I for all s′ ≥ s. This was also
illustrated in Figure 3.42. Thus, we cannot afford to have any component of λ
negative; if any of the λi’s were negative, we could cranck up si arbitrarily to
violate the inequality λT .s + z ≥ α. Thus, we can add the constraint λ ≥ 0 to
the above problem without changing the solution.

max α

subject to λT .s + z ≥ α ∀(s, z) ∈ I
λ ≥ 0

Any equality constraint h(x) = 0 can be expressed using two inequality con-
straints, viz., h(x) ≤ 0 and −h(x) ≤ 0, implying that its corresponding lagrange
multiplier should be exactly 0. This problem can again be proved to be equiva-
lent to the following problem, using the fact that every point on ∂I must be of
the form (g1(x), g2(x), . . . , gm(x), f(x)) for some x ∈ D.

max α

subject to λT .g(x) + f(x) ≥ α ∀x ∈ D
λ ≥ 0

We will remind the reader at this point that L(x, λ) = λT .g(x) + f(x). The
above problem is therefore the same as
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max α

subject to L(x, λ) ≥ α ∀x ∈ D
λ ≥ 0

Since, L∗(λ) = min
x∈D

L(x, λ), we can deal with the equivalent problem

max α

subject to L∗(λ) ≥ α
λ ≥ 0

This problem can be restated as

max L∗(λ)
subject to λ ≥ 0

This is precisely the dual problem. We thus get a geometric interpretation of
the dual.

Again referring to Figure 3.42, we note that if the set I is not convex, there
could be a gap between the z−intercept (0, α1) of the best supporting hyperplane
Hλ1,α1 and the closest point (0, δ1) of I on the z−axis, which corresponds to
the solution to the primal. In fact, when the set I is not convex, we can
never prove that there will be no duality gap. And even when the set I is
convex, bizzaire things can happen; for example, in the case of semi-definite
programming, the set I, though convex, is not at all well-behaved and this
yields a large duality gap, as shown in Figure 3.43. In fact, the set I is open
from below (the dotted boundary) for a semi-definite program. We could create
very simple problems with convex I, for which there are duality gaps. For well-
behaved convex functions (as in the case of linear programming), there are no
duality gaps. Figure 3.44 illustrates the case of a well-behaved convex program.

3.4.4 Complementary slackness and KKT Conditions

We now state the conditions between the primal and dual optimal points for an
arbitrary function. These conditions, called the Karush-Kuhn-Tucker conditions
(abbreviated as KKT conditions) state a necessary condition for a solution to
be optimal with zero duality gap. Consider the following general optimization
problem.
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Figure 3.43: Example of the convex set I for a single constrained semi-definite
program.

Figure 3.44: Example of the convex set I for a single constrained well-behaved
convex program.



3.4. DUALITY THEORY 241

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , p

variable x = (x1, . . . , xn)

(3.85)

Suppose that the primal and dual optimal values for the above problem are
attained and equal, that is, strong duality holds. Let x̂ be a primal optimal and
(λ̂, µ̂) be a dual optimal point (λ̂ ∈ <m, µ̂ ∈ <p). Thus,

f(x̂) = L∗(λ̂, µ̂)
= min

x∈D
f(x) + λ̂Tg(x) + µ̂Th(x)

≤ f(x̂) + λ̂Tg(x̂) + µ̂Th(x̂)
≤ f(x̂)

The last inequality follows from the fact that λ̂ ≥ 0, g(x̂) ≤ 0, and h(x̂) = 0.
We can therefore conclude that the two inequalities in this chain must hold with
equality. Some of the conclusions that we can draw from this chain of equalities
are

1. That x̂ is a minimizer for L(x, λ̂, µ̂) over x ∈ D. In particular, if the func-
tions f , g1, g2, . . . , gm and h1, h2, . . . , hp are differentiable (and therefore
have open domains), the gradient of L(x, λ̂, µ̂) must vanish at x̂, since any
point of global optimum must be a point of local optimum. That is,

∇f(x̂) +
m∑
i=1

λ̂i∇gi(x̂) +
p∑
j=1

µ̂j∇hj(x̂) = 0 (3.86)

2. That

λ̂Tg(x̂) =
n∑
i=1

λ̂igi(x̂) = 0

Since each term in this sum is nonpositive, we conclude that

λ̂igi(x̂) = 0 for i = 1, 2, . . . ,m (3.87)

This condition is called complementary slackness and is a necessary con-
dition for strong duality. Complementary slackness implies that the ith
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optimal lagrange multiplier is 0 unless the ith inequality constraint is ac-
tive at the optimum. That is,

λ̂i > 0 ⇒ gi(x̂) = 0
gi(x̂) < 0 ⇒ λ̂i = 0

Let us further assume that the functions f , g1, g2, . . . , gm and h1, h2, . . . , hp
are differentiable on open domains. As above, let x̂ be a primal optimal and
(λ̂, µ̂) be a dual optimal point with zero duality gap. Putting together the
conditions in (3.86), (3.87) along with the feasibility conditions for any pri-
mal solution and dual solution, we can state the following Karush-Kuhn-Tucker
(KKT) necessary conditions for zero duality gap.

(1) ∇f(x̂) +
∑m
i=1 λ̂i∇gi(x̂) +

∑p
j=1 µ̂j∇hj(x̂) = 0

(2) gi(x̂) ≤ 0 i = 1, 2, . . . ,m
(3) λ̂i ≥ 0 i = 1, 2, . . . ,m
(4) λ̂igi(x̂) = 0 i = 1, 2, . . . ,m
(5) hj(x̂) = 0 j = 1, 2, . . . , p

(3.88)

When the primal problem is convex, the KKT conditions are also sufficient
for the points to be primal and dual optimal with zero duality gap. If f is convex,
gi are convex and hj are affine, the primal problem is convex and consequently,
the KKT conditions are sufficient conditions for zero duality gap.

Theorem 67 If the function f is convex, gi are convex and hj are affine, then
KKT conditions in 3.88 are necessary and sufficient conditions for zero duality
gap.

Proof: The necessity part has already been proved; here we only prove the
sufficiency part. The conditions (2) and (5) in (3.88) ensure that x̂ is primal
feasible. Since λ ≥ 0, L(x, λ̂, µ̂) is convex in x. Based on condition (1) in (3.88)
and theorem 62, we can infer that x̂ minimizes L(x, λ̂, µ̂). We can thus conclude
that

L∗(λ̂, µ̂) = f(x̂) + λ̂Tg(x̂) + µ̂Th(x̂)
= f(x̂)

In the equality above, we use hj(x̂) = 0 and λ̂igi(x̂) = 0. Further,

d∗ ≥ L∗(λ̂, µ̂) == f(x̂) ≥ p∗

The duality theorem (theorem 66) however states that p∗ ≥ d∗. This implies
that

d∗ = L∗(λ̂, µ̂) == f(x̂) = p∗
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This shows that x̂ and (λ̂, µ̂) correspond to the primal and dual optimals re-
spectively and the problem therefore has zero duality gap. 2

In summary, for any convex optimization problem with differentiable objec-
tive and constraint functions, any points that satisfy the KKT conditions are
primal and dual optimal, and have zero duality gap.

The KKT conditions play a very important role in optimization. In some rare
cases, it is possible to solve the optimization problems by finding a solution to
the KKT conditions analytically. Many algorithms for convex optimization are
conceived as, or can be interpreted as, methods for solving the KKT conditions.

3.5 Algorithms for Unconstrained Minimization

We will now study some algorithms for solving convex problems. These tech-
niques are relevant for most convex optimization problems that do not yield
themselves to closed form solutions. We will start with unconstrained mini-
mization.

Recall that the goal in unconstrained minimization is to solve the convex
problem

min
x∈D

f(x)

We are not interested in f , whose solution can be obtained in closed form.
For example, minimizing a quadratic is very simple and can be solved by linear
equations, an example of which was discussed in Section 2.9.2. Let us denote the
optimal solution of the minimization problem by p∗. We will assume that f is
convex and twice continuously differentiable and that it attains a finite optimal
value p∗. Most unconstrained minimization techniques produce a sequence of
points x(k) ∈ D, k = 0, 1, . . . such that f

(
x(k)

)
→ p∗ as k →∞ or, ∇f

(
x(k)

)
→

0 as k → ∞. Iterative techniques for optimization, further require a starting
point x(0) ∈ D and sometimes that epi(f) is closed. The epi(f) can be inferred
to be closed either if D = <n or f(x)→∞ as x→ ∂D. The function f(x) = 1

x
for x > 0 is an example of a function whose epi(f) is closed.

While there exist convergence proofs (including guarantees on number of
optimization iterations) for many convex optimization algorithms, the proofs
assume many conditions,many of which are either not verifiable or involve un-
known constants (such as the Lipshitz constant). Thus, most convergence proofs
for convex optimization problems are useless in practice, though it is good to
know that there are conditions under which the algorithm converges. Since con-
vergence proofs are only of theoretical importance, we will make the strongest
possible assumption under which convergence can be proved easily, which is that
the function f is strongly convex (c.f. Section 3.2.7 for definition of strong con-
vexity) with the strong convexity constant c > 0 for which ∇2f(x) � cI ∀x ∈ D.
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Further, it can be proved that for a strongly convex function f , ∇2f(x) � DI
for some constant D ∈ <. The ratio D

c is an upper bound on the condition
number of the matrix ∇2f(x).

3.5.1 Descent Methods

Descent methods for unconstrained optimization have been in use since the last
70 years or more. The general idea in descent methods is that the next iterate
x(k+1) is the current iterate x(k) added with a descent or search direction ∆x(k)

(a unit vector), which is multiplied by a scale factor t(k), called the step length.

x(k+1) = x(k) + t(k)∆x(k)

The incremental step is determined while ensuring that f(x(k+1)) < f(x(k)).
We assume that we are dealing with the extended value extension of the convex
function f (c.f. definition 46), which returns∞ for any point outside its domain.
However, if we do so, we need to make sure that the initial point indeed lies in
the domain D.

A single iteration of the general descent algorithm (shown in Figure 3.45)
consists of two main steps, viz., determining a good descent direction ∆x(k),
which is typically forced to have unit norm and determining the step size using
some line search technique. If the function f is convex, and we require that
f(x(k+1)) < f(x(k)) then, we must have ∇T f(x(k+1))(x(k+1) − x(k)) < 0. This
can be seen from the necessary and sufficient condition for convexity stated in
equation (3.44) within Section 3.2.9 and restated here for reference.

f(x(k+1)) ≥ f(x(k)) +∇T f(x(k))(x(k+1) − x(k))

Since t(k) > 0, we must have

∇T f(x(k))∆x(k) < 0

That is, the descent direction ∆x(k) must make an obtuse angle (θ ∈
(
π
2 ,

3π
2

)
)

with the gradient vector.

Find a starting point x(0) ∈ D
repeat

1. Determine ∆x(k).
2. Choose a step size t(k) > 0 using raya search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k + 1.

until stopping criterion (such as ||∇f(x(k+1))|| < ε) is satisfied

aMany textbooks refer to this as line search, but we prefer to call it ray search, since the
step must be positive.

Figure 3.45: The general descent algorithm.
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There are many different empirical techniques for ray search, though it mat-
ters much less than the search for the descent direction. These techniques reduce
the n−dimensional problem to a 1−dimensional problem, which can be easy to
solve by use of plotting and eyeballing or even exact search.

1. Exact ray search: The exact ray search seeks a scaling factor t that
satisfies

t = argmin
t>0

f(x + t∆x) (3.89)

2. Backtracking ray search: The exact line search may not be feasible
or could be expensive to compute for complex non-linear functions. A
relatively simpler ray search iterates over values of step size starting from
1 and scaling it down by a factor of β ∈ (0, 1

2 ) after every iteration till
the following condition, called the Armijo condition is satisfied for some
0 < c1 < 1.

f(x + t∆x) < f(x) + c1t∇T f(x)∆x (3.90)

Based on equation (3.44), it can be inferred that the Armijo inequality
can never hold for c1 = 1; for c1 = 1, the right hand side of the Armijo
condition gives a lower bound on the value of f(x + t∆x). The Armijo
condition simply ensures that t decreases f sufficiently. Often, another
condition is used for inexact line search in conjunction with the Armijo
condition.

∣∣∆xT∇f(x + t∆x)
∣∣ ≤ c2 ∣∣∆xT∇f(x)

∣∣ (3.91)

where 1 > c1 > c2 > 0. This condition ensures that the slope of the
function f(x+t∆x) at t is less than c2 times that at t = 0. The conditions
in (3.90) and (3.91) are together called the strong Wolfe conditions. These
conditions are particularly very important for non-convex problems.

A finding that is borne out of plenty of empirical evidence is that exact ray
search does better than empirical ray search in a few cases only. Further, the
exact choice of the value of β and α seems to have little effect on the convergence
of the overall descent method.

The trend of specific descent methods has been like a parabola - starting
with simple steepest descent techniques, then accomodating the curvature hes-
sian matrix through a more sophisticated Newton’s method and finally, trying
to simplify the Newton’s method through approximations to the hessian inverse,
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culminating in conjugate gradient techniques, that do away with any curvature
matrix whatsoever, and form the internal combustion engine of many sophis-
ticated optimization techniques today. We start the thread by describing the
steepest descent methods.

Steepest Descent

Let v ∈ <n be a unit vector under some norm. By theorem 60, for convex f ,

f(x(k))− f(x(k) + v) ≤ −∇T f(x(k))v

For small v, the inequality turns into approximate equality. The term−∇T f(x(k))v
can be thought of as (an upper-bound on) the first order prediction of decrease.
The idea in the steepest descent method [?] is to choose a norm and then deter-
mine a descent direction such that for a unit step in that norm, the first order
prediction of decrease is maximized. This choice of the descent direction can be
stated as

∆x = argmin
{
∇T f(x)v | ||v|| = 1

}
The algorithm is outlined in Figure 3.46.

Find a starting point x(0) ∈ D.
repeat

1. Set ∆x(k) = argmin
{
∇T f(x(k))v | ||v|| = 1

}
.

2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k + 1.

until stopping criterion (such as ||∇f(x(k+1))|| ≤ ε) is satisfied

Figure 3.46: The steepest descent algorithm.

The key to understanding the steepest descent method (and in fact many
other iterative methods) is that it heavily depends on the choice of the norm. It
has been empirically observed that if the norm chosen is aligned with the gross
geometry of the sub-level sets22, the steepest descent method converges faster
to the optimal solution. If the norm chosen is not aligned, it often amplifies
the effect of oscillations. Two examples of the steepest descent method are the
gradient descent method (for the eucledian or L2 norm) and the coordinate-
descent method (for the L1 norm). One fact however is that no two norms
should give exactly opposite steepest descent directions, though they may point
in different directions.

Gradient Descent

A classic greedy algorithm for minimization is the gradient descent algorithm.
This algorithm uses the negative of the gradient of the function at the current

22The alignment can be determined by fitting, for instance, a quadratic to a sample of the
points.



3.5. ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 247

point x∗ as the descent direction ∆x∗. It turns out that this choice of ∆x∗

corresponds to the direction of steepest descent under the L2 (eucledian) norm.
This can be proved in a straightforward manner using theorem 43. The algo-
rithm is outlined in Figure 3.47. The steepest descent method can be thought

Find a starting point x(0) ∈ D
repeat

1. Set ∆x(k) = −∇f(x(k)).
2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k + 1.

until stopping criterion (such as ||∇f(x(k+1))||2 ≤ ε) is satisfied

Figure 3.47: The gradient descent algorithm.

of as changing the coordinate system in a particular way and then applying the
gradient descent method in the changed coordinate system.

Coordinate-Descent Method

The co-ordinate descent method corresponds exactly to the choice of L1 norm
for the steepest descent method. The steepest descent direction using the L1

norm is given by

∆x = −∂f(x)
∂xi

ui

where,
∂f(x)
∂xi

= ||∇f(x)||∞

and ui was defined on page 175 as the unit vector pointing along the ith co-
ordinate axis. Thus each iteration of the coordinate descent method involves
optimizing over one component of the vector x(k) and then updating the vec-
tor. The component chosen is the one having the largest absolute value in the
gradient vector. The algorithm is outlined in Figure 3.48.

Convergence of Steepest Descent Method

For the gradient method, it can be proved that if f is strongly convex,

f(x(k)− p∗ ≤ ρk
(
f(x(0) − p∗

)
(3.92)

The value of ρ ∈ (0, 1) depends on the strong convexity constant c (c.f. equation
(3.64) on page 221), the value of x(0) and type of ray search employed. The
suboptimality f(x(k)) − p∗ goes down by a factor ρ < 1 at every step and
this is referred to as linear convergence23. However, this is only of theoretical

23A series s1, s2, . . . is said to have
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Find a starting point x(0) ∈ D.
Select an appropriate norm ||.||.
repeat

1. Let ∂f(x(k))

∂x
(k)
i

= ||∇f(x||∞ .

2. Set ∆x(k) = −∂f(x(k))

∂x
(k)
i

ui.

3. Choose a step size t(k) > 0 using exact or backtracking ray search.
4. Obtain x(k+1) = x(k) + t(k)∆x(k).
5. Set k = k + 1.

until stopping criterion (such as ||∇f(x(k+1))||∞ ≤ ε) is satisfied

Figure 3.48: The coordinate descent algorithm.

importance, since this method is often very slow, indicated by values of ρ, very
close to 1. Use of exact line search in conjunction with gradient descent also has
the tendency to overshoot the next best iterate. It is therefore rarely used in
practice. The convergence rate depends greatly on the condition number of the
Hessian (which is upperbounded by D

c ). It can be proved that the number of
iterations required for the convergence of the gradient descent method is lower-
bounded by the condition number of the hessian; large eigenvalues correspond
to high curvature directions and small eigenvalues correspond to low curvature
directions. Many methods (such as conjugate gradient) try to improve upon
the gradient method by making the hessian better conditioned. Convergence
can be very slow even for moderately well-conditioned problems, with condition
number in the 100s, even though computation of the gradient at each step is
only an O(n) operation. The gradient descent method however works very well
if the function is isotropic, that is if the level-curves are spherical or nearly
spherical.

The convergence of the steepest descent method can be stated in the same
form as in 3.92, using the fact that any norm can be bounded in terms of the
Euclidean norm, i.e., there exists a constant η ∈ (0, 1] such that

||x|| ≥ η||x||2

1. linear convergence to s if lim
i→∞

|si+1−s|
|si−s|

= δ ∈ (0, 1). For example, si = (γ)i has linear

convergence to s = 0 for any γ < 1. The rate of decrease is also sometimes called
exponential or geometric. This is considered quite slow.

2. superlinear convergence to s if lim
i→∞

|si+1−s|
|si−s|

= 0. For example, si = 1
i!

has superlinear

convergence. This is the most common.

3. quadratic convergence to s if lim
i→∞

|si+1−s|
|si−s|2

= δ ∈ (0,∞). For example, si = (γ)2i has

quadratic convergence to s = 0 for any γ < 1. This is considered very fast in practice.
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3.5.2 Newton’s Method

Newton’s method [?] is based on approximating a function around the current
iterate x(k) using a second degree Taylor expansion.

f(x) ≈ f̃(x) = f(x(k))+∇T f(x(k))(x−x(k))+
1
2

(x−x(k))T∇2f(x(k))(x−x(k))

If the function f is convex, the quadratic approximation is also convex. Newton’s
method is based on solving it exactly by finding its critical point x(k+1) as a
function of x(k). Setting the gradient of this quadratic approximation (with
respect to x) to 0 gives

∇T f(x(k)) +∇2f(x(k))(x(k+1) − x(k)) = 0

solving which yields the next iterate as

x(k+1) = x(k) −
(
∇2f(x(k))

)−1

∇f(x(k)) (3.93)

assuming that the Hessian matrix is invertible. The term x(k+1) − x(k) can
be thought of as an update step. This leads to a simple descent algorithm,
outlined in Figure 3.49 and is called the Newton’s method. It relies on the
invertibility of the hessian, which holds if the hessian is positive definite as in
the case of a strictly convex function. In case the hessian is invertible,cholesky
factorization (page 150) of the hessian can be used to solve the linear system
(3.93). However, the Newton method may not even be properly defined if the
hessian is not positive definite. In this case, the hessian could be changed to
a nearby positive definite matrix whenever it is not. Or a line search could be
added to seek a new point having a positive definite hessian.

This method uses a step size of 1. If instead, the stepsize is chosen using
exact or backtracking ray search, the method is called the damped Newton’s
method. Each Newton’s step takes O(n3) time (without using any fast matrix
multiplication methods).

The Newton step can also be looked upon as another incarnation of the
steepest descent rule, but with the quadratic norm defined by the (local) Hessian
∇2f(x(k)) evaluated at the current iterate x(k), i.e.,

||u||∇2f(x(k)) =
(
u∇2f(x(k))u

) 1
2

The norm of the Newton step, in the quadratic norm defined by the Hessian at
a point x is called the Newton decrement at the point x and is denoted by λ(x).
Thus,

λ(x) = ||∆x||∇2f(x) = ∇T f(x)
(
∇2f(x)

)−1∇f(x)

The Newton decrement gives an ‘estimate’ of the proximity of the current iterate
x to the optimal point x∗ obtained by measuring the proximity of x to the
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Find a starting point x(0) ∈ D.
Select an appropriate tolerance ε > 0.
repeat

1. Set ∆x(k) = −
(
∇2f(x(k))

)−1∇f(x).

2. Let λ2 = ∇T f(x(k))
(
∇2f(x(k))

)−1∇f(x(k)).
3. If λ2

2 ≤ ε, quit.
4. Set step size t(k) = 1.
5. Obtain x(k+1) = x(k) + t(k)∆x(k).
6. Set k = k + 1.

until

Figure 3.49: The Newton’s method.

minimum point of the quadratic approximation f̃(x). The estimate is 1
2λ(x)2

and is given as
1
2
λ(x)2 = f(x)−min f̃(x)

Additionally, λ(x)2 is also the directional derivative in the Newton direction.

λ(x)2 = ∇T f(x)∆x

The estimate 1
2λ(x)2 is used to test the convergence of the Newton algorithm

in Figure 3.49.
Next, we state an important property of the Newton’s update rule.

Theorem 68 If ∆x(k) = −
(
∇2f(x(k))

)−1∇f(x(k)), ∇2f(x(k)) is symmetric
and positive definite and ∆x(k) 6= 0, then ∆x(k) is a descent direction at x(k),
that is, ∇T f(x(k))∆x(k) < 0.

Proof: First of all, if ∇2f(x−1) is symmetric and positive definite, then it is
invertible and its inverse is also symmetric and positive definite. Next, we see
that

∇T f(x(k))∆x(k) = −∇T f(x)
(
∇2f(x(k))

)−1

∇f(x(k)) < 0

because
(
∇2f(x)

)−1 is symmetric and positive definite. 2

The Newton method is independent of affine changes of coordinates. That
is, if optimizating a function fx) using the Newton’s method with an initial
estimate x(0) involves the series of iterates x(1),x(2), . . . ,x(k), . . ., then optimiz-
ing the same problem using the Newton’s method with a change of coordinates
given by x = Ay and the intial estimate y(0) such that x(0) = Ay(0) yields the
series of iterates y(1),y(2), . . . ,y(k), . . ., such that x(k) = Ay(k). This is a great
advantage over the gradient method, whose convergence can be very sensitive
to affine transformation.

Another well known feature of the Newton’s method is that it converges very
fast, if at all. The convergence is extremely fast in the vicinity of the point of
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optimum. This can be loosely understood as follows. If x∗ is the critical point
of a differentiable convex function f , defined on an open domain, the function is
approximately equal to its second order taylor approximation in the vicinity of
x∗. Further, ∇f(x∗) = 0. This gives the following approximation at any point
x in the vicinity of x∗.

f(x) ≈ f(x∗) +∇T f(x∗)(x− x∗) +
1
2

(x− x∗)T∇2f(x∗)(x− x∗)

= f(x∗) +
1
2

(x− x∗)T∇2f(x∗)(x− x∗)

Thus, the level curves of a convex function are approximately ellipsoids near the
point of minimum x∗. Given this geometry near the minimum, it then makes
sense to do steepest descent in the norm induced by the hessian, near the point
of minimum (which is equivalent to doing a steepest descent after a rotation of
the coordinate system using the hessian). This is exactly the Newton’s step.
Thus, the Newton’s method24 converges very fast in the vicinity of the solution.

This convergence analysis is formally stated in the following theorem and is
due to Leonid Kantorovich.

Theorem 69 Suppose f(x) : D → < is twice continuously differentiable on D
and x∗ is the point corresponding to the optimal value p∗ (so that ∇f(x∗) = 0).
Let f be strongly convex on D with constant c > 0. Also, suppose ∇2f(x∗) is
Lipschitz continuous on D with a constant L > 0 (which measures how well f
can be approximated by a quadratic function or how fast the second derivative
of f changes), that is

||∇2f(x)−∇2f(y)||2 ≤ L||x− y||2

Then, there exist constants α ∈ (0, c
2

L ) and β > 0 such that

1. Damped Newton Phase: If ||∇2f(x)||2 ≥ α, then f(x(k+1))−f(x(k)) ≤
−β. That is, at every step of the iteration in the damped Newton phase,
the function value decreases by atleast β and the phase ends after at most
f(x(0))−p∗

β iterations, which is a finite number.

2. Quadratically Convergent Phase: If ||∇2f(x)||2 < α, then L
2c2 ||∇f(x(k+1))||2 ≤(

L
2c2 ||∇f(x(k))||2

)2
. When applied recursively this inequality yields

L

2c2
||∇f(x(k))||2 ≤

(
1
2

)2k−q

where q is iteration number, starting at which ||∇2f(x(q))||2 < α. Using
the result for strong convexity in equation (3.50) on page 217, we can
derive

24Newton originally presented his method for one-dimensional problems. Later on Raphson
extended the method to multi-dimensional problems.
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f(x(k))− p∗ ≤ 1
2c
||∇f(x(k))||22 ≤

2c3

L2

(
1
2

)2k−q+1

(3.94)

Also, using the result in equation (3.52) on page 217, we get a bound on
the distance between the current iterate and the point x∗ corresponding to
the optimum.

||x(k) − x̂∗||2 ≤
2
c
||∇f(x(k))||2 ≤

c

L

(
1
2

)2k−q

(3.95)

Inequality (3.94) shows that convergence is quadratic once the second condition
is satisfied after a finite number of iterations. Roughly speaking, this means
that, after a sufficiently large number of iterations, the number of correct digits
doubles at each iteration25. In practice, once in the quadratic phase, you do not
even need to bother about any convergence criterion; it suffices to apply a fixed
few number of Newton iterations to get a very accurate solution. Inequality
(3.95) states that the sequence of iterates converges quadratically. The Lips-
chitz continuity condition states that if the second derviative of the function
changes relatively slowly, applying Newton’s method can be useful. Again, the
inequalities are technical junk as far as practical application of Newton’s method
is concerned, since L, c and α are generally unknown, but it helps to understand
the properties of the Newton’s method, such as its two phases and identify them
in problems. In practice, Newton’s method converges very rapidly, if at all.

As an example, consider a one dimensional function f(x) = 7x− lnx. Then
f ′(x) = 7 − 1

x and f ′′(x) = 1
x2 . The Newton update rule at a point x is

xnew = x − x2
(
7− 1

x

)
. Starting with x(0) = 0 is really infeasible and useless,

since the updates will always be 0. The unique global minimizer of this function
is x∗ = 1

7 . The range of quadratic convergence for Newton’s method on this
function is x ∈

(
0, 2

7

)
. However, if you start with an initial infeasible point

x(0) = 0, the function will quadratically tend to −∞!
There are some classes of functions for which theorem 69 can be applied very

constructively. They are

• −
∑m
i=1 lnxi

• − ln t2 − xTx for t > 0

• − ln det(X)

Further, theorem 69 also comes handy for linear combinations of these functions.
These three functions are also at the heart of modern interior points method
theory.

25Linear convergence adds a constant number of digits of accuracy at each iteration.
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3.5.3 Variants of Newton’s Method

One important aspect of the algorithm in Figure 3.49 is the step (1), which
involves solving a linear system ∇2f(x(k))∆x(k) = ∇f(x(k)). The system can
be easy to solve if the Hessian is a 100×100 sparse matrix, but it can get hairy if
it is a larger and denser matrix. Thus it can be unfair to claim that the Newton’s
method is faster than the gradient descent method on the grounds that it takes
a fewer number of iterations to converge as compared to the gradient descent,
since each iteration of the Newton’s method involves inverting the hessian to
solve a linear system, which can take time26 O(n3) for dense systems. Further,
the method assumes that the hessian is positive definite and therefore invertible,
which might not always be so. Finally, the Newton’s method might make huge-
uncontrolled steps, especially when the hessian is positive semi-definite (for
example, if the function is flat along the direction corresponding to a 0 or nearly
0 eigenvalue). Due to these disadvantages, most optimization packages do not
use Newton’s method.

There is a whole suite of methods called Quasi-Newton methods that use
approximations of the hessian at each iteration in an attempt to either do less
work per iteration or to handle singular hessian matrices. These methods fall
in between gradient methods and Newton’s method and were introduced in the
1960’s. Work on quasi-Newton methods sprang from the belief that often, in a
large linear system, most variables should not depend on most other variables
(that is, the system is generally sparse).

We should however note that in some signal and image processing problems,
the hessian has a nice structure, which allows one to solve the linear system
∇2f(x(k))∆x(k) = ∇f(x(k)) in time much less than O(n3) (often in time com-
parble to that required for quasi Newton methods), without having to explicitly
store the entire hessian. We next discuss some optimization techniques that use
specific approximations to the hessian ∇2f(x) for specific classes of problems,
by reducing the time required for computing the second derivatives.

3.5.4 Gauss Newton Approximation

The Gauss Newton method decomposes the objective function (typically for a
regression problem) as a composition of two functions27 f = l◦m; (i) the vector
valued model or regression function m : <n → <p and (ii) the scalar-valued
loss (such as the sum squared difference between predicted outputs and target
outputs) function l. For example, if mi is yi − r(ti,x), for parameter vector
x ∈ <n and input instances (yi, ti) for i = 1, 2, . . . , p, the function f can be
written as

f(x) =
1
2

p∑
i=1

(yi − r(ti,x))2

26O(n2.7) to be precise.
27Here, n is the number of weights.
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An example of the function r is the linear regression function r(ti,x) = xT ti.
Logistic regression poses an example objective function, which involves a cross-
entropy loss.

f(x) = −
p∑
i=1

(
yi log

(
σ(xT ti)

)
+ (1− yi) log

(
σ(−xT ti)

))
where σ(k) = 1

1+e−k
is the logistic function.

The task of the loss function is typically to make the optimization work well
and this gives freedom in choosing l. Many different objective functions share
a common loss function. While the sum-squared loss function is used in many
regression settings, cross-entropy loss is used in many classification problems.
These loss functions arise from the problem of maximizing log-likelihoods in
some reasonable way.

The Hessian ∇2f(x) can be expressed using a matrix version of the chain
rule, as

∇2f(x) = Jm(x)T∇2l(m)Jm(x)︸ ︷︷ ︸
Gf (x)

+
p∑
i=1

∇2mi(x)(∇l(m))i

where Jm is the jacobian28 of the vector valued function m. It can be shown
that if ∇2l(m) � 0, then Gf (x) � 0. The term Gf (x) is called the Gauss-
Newton approximation of the Hessian ∇2f(x). In many situtations, Gf (x) is
the dominant part of ∇2f(x) and the approximation is therefore reasonable.
For example, at the point of minimum (which will be the critical point for a
convex function), ∇2f(x) = Gf (x). Using the Gauss-Newton approximation to
the hessian ∇2f(x), the Newton update rule can be expressed as

∆x = (Gf (x))−1∇f(x) = (Gf (x))−1JTm(x)∇l(m)

where we use the fact that (∇f(x))i =
∑p
k=1

∂l
∂mk

∂mk
∂xi

, since the gradient of a
composite function is a product of the jacobians.

For the cross entropy classification loss or the sum-squared regression loss
l, the hessian is known to be positive semi-definite. For example, if the loss
function is the sum of squared loss, the objective function is f = 1

2

∑p
i=1mi(x)2

and ∇2l(m) = I. The Newton update rule can be expressed as

∆x = (Jm(x)TJm(x))−1Jm(x)Tm(x)

Recall that (Jm(x)TJm(x))−1Jm(x)T is the Moore-Penrose pseudoinverse Jm(x)+

of Jm(x). The Gauss-Jordan method for the sum-squared loss can be interpreted
as multiplying the gradient ∇l(m) by the pseudo-inverse of the jacobian of m

28The Jacobian is a p× n matrix of the first derivatives of a vector valued function, where
p is arity of m. The (i, j)th entry of the Jacobian is the derivative of the ith output with

respect to the jth variable, that is ∂mi
∂xj

. For m = 1, the Jacobian is the gradient vector.
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instead of its transpose (which is what the gradient descent method would do).
Though the Gauss-Newton method has been traditionally used for non-linear
least squared problems, recently it has also seen use for the cross entropy loss
function. This method is a simple adoption of the Newton’s method, with the
advantage that second derivatives, which can be computationally expensive and
challenging to compute, are not required.

3.5.5 Levenberg-Marquardt

Like the Gauss-Newton method, the Levenberg-Marquardt method has its main
application in the least squares curve fitting problem (as also in the minimum
cross-entropy problem). The Levenberg-Marquardt method interpolates be-
tween the Gauss-Newton algorithm and the method of gradient descent. The
Levenberg-Marquardt algorithm is more robust than the Gauss Newton algo-
rithm - it often finds a solution even if it starts very far off the final minimum. On
the other hand, for well-behaved functions and reasonable starting parameters,
this algorithm tends to be a bit slower than the Gauss Newton algorithm. The
Levenberg-Marquardt method aims to reduce the uncontrolled step size often
taken by the Newton’s method and thus fix the stability issue of the Newton’s
method. The update rule is given by

∆x = − (Gf (x) + λ diag(Gf ))− 1JTm(x)∇l(m)

where Gf is the Gauss-Newton approximation to ∇2f(x) and is assumed to
be positive semi-definite. This method is one of the work-horses of modern
optimization. The parameter λ ≥ 0 adaptively controlled, limits steps to an
elliptical model-trust region29. This is achieved by adding λ to the smallest
eigenvalues of Gf , thus restricting all eigenvalues of the matrix to be above λ so
that the elliptical region has diagonals of shorter length that inversely vary as
the eigenvalues (c.f. page 2.11.3). While this method fixes the stability issues in
Newtons method, it still requires the O(n3) time required for matrix inversion.

3.5.6 BFGS

The Broyden-Fletcher-Goldfarb-Shanno30 (BFGS) method uses linear algebra
to iteratively update an estimate B(k) of

(
∇2f(x(k))

)−1
(the inverse of the

curvature matrix), while ensuring that the approximation to the hessian inverse
is symmetric and positive definite. Let ∆x(k) be the direction vector for the kth

step obtained as the solution to

∆x(k) = −B(k)∇f(x(k))

The next point x(k+1) is obtained as

x(k+1) = x(k) + t(k)∆x(k)

29Essentially the algorithm approximates only a certain region (the so-called trust region)
of the objective function with a quadratic as opposed to the entire function.

30The the 4 authors wrote papers for exactly the same method at exactly at the same time.
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where t(k) is the step size obtained by line search. Let ∆g(k) = ∇f(x(k+1)) −
∇f(x(k)). Then the BFGS update rule is derived by imposing the following
logical conditions:

1. ∆x(k) = −B(k)∇f(x(k)) with B(k) � 0. That is, ∆x(k) is the minimizer
of the convex quadratic model

Q(k)(p) = f(x(k)) +∇T f(x(k))p +
1
2
pT
(
B(k)

)−1

p

2. x(k+1) = x(k) + t(k)∆x(k), where t(k) is obtained by line search.

3. The gradient of the functionQ(k+1) = f(x(k+1))+∇T f(x(k+1))p+ 1
2pT

(
B(k+1)

)−1
p

at p = 0 and p = −t(k)∆x(k) agrees with gradient of f at x(k+1) and x(k)

respectively. While the former condition is naturally satisfied, the latter
need to be imposed. This quasi-Newton condition yields(

B(k+1)
)−1 (

x(k+1) − x(k)
)

= ∇f(x(k+1))−∇f(x(k)).

This equation is called the secant equation.

4. Finally, among all symmetric matrices satisfying the secant equation,
B(k+1) is closest to the current matrix B(k) in some norm. Different
matrix norms give rise to different quasi-Newton methods. In particular,
when the norm chosen is the Frobenius norm, we get the following BGFS
update rule

B(k+1) = B(k) +R(k) + S(k)

where,

R(k) =
∆x(k)

(
∆x(k)

)T(
∆x(k)

)T ∆g(k)
−
B(k)∆g(k)

(
∆g(k)

)T (
B(k)

)T(
∆g(k)

)T
B(k)∆g(k)

and
S(k) = u

(
∆x(k)

)T
B(k)∆x(k)uT

with

u =
∆x(k)(

∆x(k)
)T ∆g(k)

− B(k)∆g(k)(
∆g(k)

)T
B(k)∆g(k)

We have made use of the Sherman Morrison formula that determines how
updates to a matrix relate to the updates to the inverse of the matrix.

The approximation to the Hessian is updated by analyzing successive gra-
dient vectors and thus the Hessian matrix does not need to be computed at
any stage. The initial estimate B(0) can be taken to be the identity matrix, so
that the first step is equivalent to a gradient descent. The BFGS method has
a reduced complexity of O(n2) time per iteration. The method is summarized
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Find a starting point x(0) ∈ D and an approximate B(0) (which could be
I).
Select an appropriate tolerance ε > 0.
repeat

1. Set ∆x(k) = −B(k)∇f(x(k)).
2. Let λ2 = ∇T f(x(k))B(k)∇f(x(k)).
3. If λ2

2 ≤ ε, quit.
4. Set step size t(k) = 1.
5. Obtain x(k+1) = x(k) + t(k)∆x(k).
6. Compute ∆g(k) = ∇f(x(k+1))−∇f(x(k)).
7. Compute R(k) and S(k).
8. Compute B(k+1) = B(k) +R(k) + S(k).
6. Set k = k + 1.

until

Figure 3.50: The BFGS method.

in Figure 3.50 The BFGS [?] method approaches the Newton’s method in be-
haviour as the iterate approaches the solution. They are much faster than the
Newton’s method in practice. It has been proved that when BFGS is applied
to a convex quadratic function with exact line search, it finds the minimizer
within n steps. There is a variety of methods related to BFGS and collectively
they are known as Quasi-Newton methods. They are preferred over the New-
ton’s method or the Levenberg-Marquardt when it comes to speed. There is a
variant of BFGS, called LBFGS [?], which stands for ”Limited memory BFGS
method”. LBFGS employs a limited-memory quasi-Newton approximation that
does not require much storage or computation. It limites the rank of the inverse
of the hessian to some number γ ∈ < so that only nγ numbers have to be stored
instead of n2 numbers. For general non-convex problems, LBFGS may fail when
the initial geometry (in the form of B(0)) has been placed very close to a saddle
point. Also, LBFGS is very sensitive to line search.

Recently, L-BFGS has been observed [?] to be the most effective parameter
estimation method for Maximum Entropy model, much better than improved
iterative scaling [?] (IIS) and generalized iterative scaling [?] (GIS).

3.5.7 Solving Systems Large Sparse Systems

In many convex optimization problems such as least squares, newton’s method
for optimization, etc., one has to deal with solving linear systems involving large
and sparse matrices. Elimination with ordering can be expensive in such cases.
A lot of work has gone into solving such problems efficiently31 using iterative

31Packages such as LINPack (which is now renamed to LAPACK), EiSPACK, MINPACK,
etc., which can be found under the netlib respository, have focused on efficiently solving large
linear systems under general conditions as well as specific conditions such as symmetry or
positive definiteness of the coefficient matrix.
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methods instead of direct elimination methods. An example iterative method
is for solving a system Ax = b by repeated multiplication of a large and sparse
matrix A by vectors to quickly get an answer x̂ that is sufficiently close to the
optimal solution x∗. Multiplication of an n× n sparse matrix A having k non-
zero entries with a vector of dimension n takes O(kn) time only, in contrast to
O(n3) time for Gauss elimination. We will study three types of methods for
solving systems with large and sparse matrices:

1. Iterative Methods.

2. Multigrid Methods.

3. Krylov Methods.

The most famous and successful amongst the Krylov methods has been the
conjugate gradient method, which works for problems with positive definite ma-
trices.

Iterative Methods

The central step in an iteration is

Pxk+1 = (P −A)xk + b

where xk is the estimate of the solution at the kth step, for k = 0, 1, . . .. If the
iterations converge to the solution, that is, if xk+1 = xk one can immediatly
see that the solution is reached. The choice of matrix P , which is called the
preconditioner, determines the rate of convergence of the solution sequence to
the actual solution. The initial estimate x0 can be arbitrary for linear systems,
but for non-linear systems, it is important to start with a good approximation.
It is desirable to choose the matrix P reasonably close to A, though setting
P = A (which is referred to as perfect preconditioning) will entail solving the
large system Ax = b, which is undesirable as per our problem definition. If x∗

is the actual solution, the relationship between the errors ek and ek+1 at the
kth and (k + 1)th steps respectively can be expressed as

Pek+1 = (P −A)ek

where ek = xk − x∗. This is called the error equation. Thus,

ek+1 = (I − P−1A)ek = Mek

Whether the solutions are convergent or not is controlled by the matrix M .
The iterations are stationary (that is, the update is of the same form at every
step). On the other hand, Multigrid and Krylov methods adapt themselves
across iterations to enable faster convergence. The error after k steps is given
by

ek = Mke0 (3.96)
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Using the idea of eigenvector decomposition presented in (2.99), it can be
proved that the error vector ek → 0 if the absolute values of all the eigenvalues
of M are less than 1. This is the fundamental theorem of iteration. In this
case, the rate of convergence of ek to 0 is determined by the maximum absolute
eigenvalue of M , called the spectral radius of M and denoted by ρ(M).

Any iterative method should attempt to choose P so that it is easy to com-
pute xk+1 and at the same time, the matrixM = I−P−1A has small eigenvalues.
Corresponding to various choices of the preconditioner P , there exist different
iterative methods.

1. Jacobi: In the simplest setting, P can be chosen to be a diagonal matrix
with its diagonal borrowed from A. This choice of A is correponds to the
Jacobi method. The value of ρ(M) is less than 1 for the Jacobi method,
though it is often very close to 1. Thus, the Jacobi method does converge,
but the convergence can be very slow in practice. While the residual
r̂ = Ax̂ − b converges rapidly, the error x = x̂ − x∗ decreases rapidly in
the beginning, but the rate of decrease of x reduces as iterations proceed.
This happens because x = A−1r̂ and A−1 happens to have large condition
number for sparse matrices. In fact, it can be shown that Jacobi can take
upto nβ iterations to reduce the error x by a factor β.

We will take an example to illustrate the Jacobi method. Consider the
following n× n tridiagonal matrix A.

A =



2 −1 0 . . . 0 0 0 . . . 0
−1 2 −1 . . . 0 0 0 . . . 0
. . . . . . . . . . . . .

. . . . . . . . . . . . .

0 0 0 . . . −1 2 −1 . . . 0
0 0 0 . . . 0 −1 2 . . . 0
. . . . . . . . . . . . .

. . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . 2


(3.97)

The absolute value of the ith eigenvalue of M is cos jπ
n+1 and its spectral

radius is ρ(M) = cos π
n+1 . For extremely large n, the spectral radius is

approximately 1 − 1
2

(
π
n+1

)2

, which is very close to 1. Thus, the Jacobi
steps converge very slowly.

2. Gauss-Seidel: The second possibility is to choose P to be the lower-
triangular part of A. The method for this choice is called the Gauss-
Siedel method. For the example tridiagonal matrix A in (3.97), matrix
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P − A will be the strict but negated upper-triangular part of A. For
the Gauss-Seidel technique, the components of xk+1 can be determined
from xk using back-substitution. The Gauss-sidel method provides only a
constant factor improvement over the Jacobi method.

3. Successive over-relaxation: In this method, the preconditioner is obtained
as a weighted composition of the preconditioners from the above two meth-
ods. It is abbreviated as SOR. In history, this was the first step of progress
beyond Jacobi and Gauss-Seidel.

4. Incomplete LU: This method involves an incomplete elimination on the
sparse matrix A. For a sparse matrix A, many entries in its LU decompo-
sition will comprise of nearly 0 elements; the idea behind this method is
to treat such entries as 0’s. Thus, the L and U matrices are approximated
based on the tolerance threshold; if the tolerance threshold is very high,
the factors are exact. Else they are approximate.

Multigrid Methods

Multigrid methods come very handy in solving large sparse systems, especially
differential equations using a hierarchy of discretizations. This approach often
scales linearly with the number of unknowns n for a pre-specified accuracy
threshold. The overall multi-grid algorithm for solving Ahuh = bh with residual
given by rh = b−Auh is

1. Smoothing: Perform a few (say 2-3) iterations on Ahu = bh using either
Jacobi or Gauss-sidel. This will help remove high frequency components of
the residual r = b−Ahu. This step is really outside the core of the multi-
grid method. Denote the solution obtained by uh. Let rh = b−Ahuh.

2. Restriction: Restrict rh to coarse grid by setting r2h = Rrh. That is,
rh is downsampled to yield r2h Let k < n characterize the coarse grid.
Then, the k × n matrix R is called the restriction matrix and it takes the
residuals from a finer to a coarser grid. It is typically scaled to ensure that
a vector of 1’s on the fine mesh gets transformed to a vector of 1’s on a
coarse mesh. Calculations on the coarse grid are way faster than on the
finer grid.

3. Solve A2he2h = r2h with A2h = RAhN , which is a natural construction for
the coarse mesh operation. This could be done by running few iterations
of Jacobi, starting with e2h = 0.

4. Interpolation/Prolongation: This step involves interpolating the cor-
rection computed on a coarses grid to a finer grid. Interpolate back to
eh = Ne2h. Here N is a k×n interpolation matrix and it takes the resid-
uals from a coarse to a fine grid. It is generally a good idea to connect N
to R by setting N = αRT for some scaling factor α. Add eh to uh. The
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analytical expression for eh is

eh = N(A2h)−1RAh(u− uh) =
(
N(RAN)−1RAh(u− uh)

)︸ ︷︷ ︸
S

(u− uh)

A property of the n×nmatrix S is that S2 = S. Thus, the only eigenvalues
of S are 0 and 1. Since S is of rank k < n, k of its eigenvalues are 1 and
n − k are 0. Further, the eigenvectors for the 1 eigenvalues, which are
in the null space of I − S form the coarse mesh (and correspond to low
frequency vectors) whereas the eigenvectors for the 0 eigenvalues, which
are in the null space of S form the fine mesh (and correspond to high
frequency vectors). We can easily derive that k eigenvalues of I − S will
be 0 and n− k of them will be 1.

5. Finally as a post-smoothing step, iterate Auh = bh starting from the
improved uh + eh, using Jacobi or Gauss-Sidel.

Overall, the error ek after k steps will be of the form

ek = (M t(I − S)M t)e0 (3.98)

where t is the number of Jacobi steps performed in (1) and (5). Typically t
is 2 or 3. When you contrast (3.98) against (3.96), we discover that ρ(M) ≥≥
ρ(M t(I−S)M t). As t increases, ρ(M t(I−S)M t) further decreases by a smaller
proportion.

In general, you could have multiple levels of coarse grids corresponding to
2h, 4h, 8h and so on, in which case, steps (2), (3) and (4) would be repeated
as many times with varying specifications of the coarseness. If A is an n × n
matrix, multi-grid methods are known to run in O(n2) floating point operations
(flops). The multi-grid method could be used an iterative method to solve a
linear system. Alternatively, it could be used to obtain the preconditioner.

Linear Conjugate Gradient Method

The conjugate gradient method is one of the most popular Krylov methods.
The Krylov matrix Kj , for the linear system Au = b is given by

Kj =
[
b Ab A2b . . . Aj−1b

]
The columns of Kj are easy to compute; each column is a result of a matrix
multiplication A with the previous column. Assuming we are working with
sparse matrices, (often symmetric matrices such as the Hessian) these compu-
tations will be inexpensive. The Krylov space Kj is the column space of Kj .
The columns of Kj are computed during the first j steps of an iterative method
such as Jacobi. Most Krylov methods opt to choose vectors from Kj instead of a
fixed choice of the jth column of Kj . A method such as MinRes chooses a vector



262 CHAPTER 3. CONVEX OPTIMIZATION

uj ∈ Kj that minimizes b − Auj . One of the well-known Krylov methods is
the Conjugate gradient method, which assumes that the matrix A is symmetric
and positive definite and is faster than MinRes. In this method, the choice of
uj is made so that b− Auj⊥Kj . That is, the choice of uj is made so that the
residual rj = b − Auj is orthogonal to the space Kj . The conjugate gradient
method gives an exact solution to the linear system if j = n and that is how
they were originally designed to be (and put aside subsequently). But later,
they were found to give very good approximations for j << n.

The discussions that follow require the computation of a basis for Kj . It
is always prefered to have a basis matrix with low condition number32, and an
orthonormal basis is a good choice, since it has a condition number of 1 (the
basis consisting of the columns of Kj turns out to be not-so-good in practice).
The Arnoldi method yields an orthonormal Krylov basis q1,q2, . . . ,qj to get
something that is numerically reasonable to work on. The method is summarized
in Figure 3.51. Though the underlying idea is borrowed from Gram-Schmidt
at every step, there is a difference; the vector t is t = AQj as against simply
t = qj . Will it be expensive to compute each t? Not if A is symmetric. First
we note that by construction, AQ = QH, where qj is the jth column of Q.
Thus, H = QTAQ. If A is symmetric, then so is H. Further, since H has only
one lower diagonal (by construction), it must have only one higher diagonal.
Therefore, H must be symmetric and tridiagonal. If A is symmetric, it suffices
to subtract only the components of t in the direction of the last two vectors
qj−1 and qj from t. Thus, for a symmetric A, the inner ‘for’ loop needs to
iterate only over i = j − 1 and i = j.

Since A and H are similar matrices, they have exactly the same eigenvalues.
Restricting the computation to a smaller number of orthonormal vectors (for
some k << n), we can save time for computing Qk and Hk. The k eigenvalues
of Hk are good approximations to the first k eigenvalues of H. This is called
the Arnoldi-Lanczos method for finding the top k eigenvalues of a matrix.

As an example, consider the following matrix A.

A =


0.5344 1.0138 1.0806 1.8325
1.0138 1.4224 0.9595 0.8234
1.0806 0.9595 1.0412 1.0240
1.8325 0.8234 1.0240 0.7622


32For any matrix A, the condition number κ(A) =

σmax(A)
σmin(A)

, where σmax(A) and σmin(A)

are maximal and minimal singular values of A respectively. Recall from Section 2.13 that
the ith eigenvalue of ATA (the gram matrix) is the square of the ith singular value of A.

Further, if A is normal, κ(A) =
∣∣∣λmax(A)
λmin(A)

∣∣∣, where λmax(A) and λmin(A) are eigevalues of

A with maximal and minimal magnitudes respectively. All orthogonal, symmetric, and skew-
symmetric matrices are normal. The condition number measures how much the columns/rows
of a matrix are dependent on each other; higher the value of the condition number, more is
the linear dependence. Condition number 1 means that the columns/rows of a matrix are
linearly independent.
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Set q1 = 1
||b||b. //The first step in Gram schmidt.

for j = 1 to n− 1 do
t = Aqj .
for i = 1 to j do

//If A is symmetric, it will be i = max(1, j − 1) to j.
Hi,j = qTi t.
t = t−Hi,jqi.

end for
Hj+1,j = ||t||.
qj+1 = 1

||t||t.
end for
t = Aqn.
for i = 1 to n do

//If A is symmetric, it will be i = n− 1 to n.
Hi,n = qTi t.
t = t−Hinqi.

end for
Hj+1,j = ||t||.
qj+1 = 1

||t||t.

Figure 3.51: The Arnoldi algorithm for computing orthonormal basis.

and the vector b

b =
[

0.6382 0.3656 0.1124 0.5317
]T

The matrix K4 is

K4 =


0.6382 1.8074 8.1892 34.6516
0.3656 1.7126 7.5403 32.7065
0.1124 1.7019 7.4070 31.9708
0.5317 1.9908 7.9822 34.8840


Its condition number is 1080.4.

The algorithm in Figure 3.51 computed the following basis for the matrix
K4.

Q4 =


0.6979 -0.3493 0.5101 -0.3616
0.3998 0.2688 0.2354 0.8441
0.1229 0.8965 0.1687 -0.3908
0.5814 0.0449 -0.8099 -0.0638
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The coefficient matrix H4 is

H4 =


3.6226 1.5793 0 0
1.5793 0.6466 0.5108 0

0 0.5108 -0.8548 0.4869
0 0 0.4869 0.3459


and its eigenvalues are 4.3125, 0.5677, −1.2035 and 0.0835. On the other hand,
the following matrix H3 (obtained by restricting to K3) has eigenvalues 4.3124,
0.1760 and −1.0741.

The basic conjugate gradient method selects vectors in xk ∈ Kk that ap-
proach the exact solution to Ax = b. Following are the main ideas in the
conjugate gradient method.

1. The rule is to select an xk so that the new residual rk = b − Axk is
orthogonal to all the previous residuals. Since Axk ∈ Kk+1, we must have
rk ∈ Kk+1 and rk must be orthogonal to all vectors in Kk. Thus, rk must
be a multiple of qk+1. This holds for all k and implies that

rTk ri = 0

for all i < k.

2. Consequently, the difference rk − rk−1, which is a linear combination of
qk+1 and qk, is orthogonal to each subspace Ki for i < k.

3. Now, xi−xi−1 lies in the subspace Ki. Thus, ∆r = rk−rk−1 is orthogonal
to all the previous ∆x = xi−xi−1. Since rk− rk−1 = −A(xk−xk−1), we
get the following ‘conjugate directions’ condition for the updates

(xi − xi−1)TA(xk − xk−1) = 0

for all i < k. This is a necessary and sufficient condition for the orthogo-
nality of the new residual to all the previous residuals. Note that while the
residual updates are orthogonal in the usual inner product, the variable
updates are orthogonal in the inner product with respect to A.

The basic conjugate gradient method consists of 5 steps. Each iteration of
the algorithm involves a multiplication of vector dk−1 by A and computation of
two inner products. In addition, an iteration also involves around three vector
updates. So each iteration should take time upto (2+θ)n, where θ is determined
by the sparsity of matrix A. The error ek after k iterations is bounded as follows.

||ek||A = (xk − x)TA(xk − x) ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
||e0||

The ‘gradient’ part of the name conjugate gradient stems from the fact that
solving the linear system Ax = b is corresponds to finding the minimum value
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x0 = 0, r0 = b, d0 = r0, k = 1.
repeat

1. αk = rTk−1rk−1

dTk−1Adk−1
. //Step length for next update. This corresponds to

the entry Hk,k.
2. xk = xk−1 + αkdk−1.
3. rk = rk−1 − αkAdk−1. //New residual obtained using rk − rk−1 =
−A(xk − xk−1).
4. βk = rTk rk

rTk−1rk−1
. //Improvement over previous step. This corresponds

to the entry Hk,k+1.
5. dk = rk + βkdk−1. //The next search direction, which should be
orthogonal to the search direction just used.
k = k + 1.

until βk < θ.

Figure 3.52: The conjugate gradient algorithm for solving Ax = b or equiva-
lently, for minimizing E(x) = 1

2xTAx− xTb.

of the convex (for positive definite A) energy function E(x) = 1
2xTAx−bTx = r

by setting its gradient Ax− b to the zero vector. The steepest descent method
makes a move along at the direction of the residual r at every step but it
does not have a great convergence; we land up doing a lot of work to make
a little progress. In contrast, as reflect in the step dk = rk + βkdk−1, the
conjugate gradient method makes a step in the direction of the residual, but
only after removing any component βk along the direction of the step it just
took. Figures 3.53 and 3.54 depict the steps taken by the steepest descent
and the conjugate descent techniques respectively, on the level-curves of the
function E(x) = 1

2xTAx−xTb, in two dimensions. It can be seen that while the
steepest descent technique requires many iterations for convergence, owing to its
oscillations, the conjugate gradient method takes steps that are orthogonal with
respect to A (or are orthogonal in the transfomed space obtained by multiplying
with A), thus taking into account the geometry of the problem and taking
a fewer number of steps. If the matrix A is a hessian, the steps taken by
conjugate gradient are orthogonal in the local Mahalonobis metric induced by
the curvature matrix A. Note that if x(0) = 0, the first step taken by both
methods will be the same.

The conjugate gradient method is guaranteed to reach the minimum of the
energy function E in exactly n steps. Further, if A has only r distinct eigen-
values, then the conjugate gradient method will terminate at the solution in at
most r iterations.

3.5.8 Conjugate Gradient

We have seen that the Conjugate Gradient method in Figure 3.52 can be
viewed as a minimization algorithm for the convex quadratic function E(x) =
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Figure 3.53: Illustration of the steepest descent technique on level curves of the
function E(x) = 1

2xTAx− xTb.

Figure 3.54: Illustration of the conjugate gradient technique on level curves of
the function E(x) = 1

2xTAx− xTb.

1
2xTAx − xTb. Can the approach be adapted to minimize general nonlinear
convex functions? Nonlinear variants of the conjugate gradient are well stud-
ied [?] and have proved to be quite successful in practice. The general conjugate
gradient method is essentially an incremental way of doing second order search.

Fletcher and Reeves showed how to extend the conjugate gradient method
to nonlinear functions by making two simple changes33 to the algorithm in
Figure 3.52. First, in place of the exact line search formula in step (1) for the
step length αk, we need to perform a line search that identifies an approximate
minimum of the nonlinear function f along d(k−1). Second, the residual r(k),
which is simply the gradient of E (and which points in the direction of decreasing
value of E), must be replaced by the gradient of the nonlinear objective f , which
serves a similar purpose. These changes give rise to the algorithm for nonlinear
optimization outlined in Figure 3.55. The search directions d(k) are computed
by Gram-Schmidt conjugation of the residuals as with linear conjugate gradient.
The algorithm is very sensitive to the line minimization step and it generally
requires a very good line minimization. Any line search procedure that yields
an αk satisfying the strong Wolfe conditions (see (3.90) and (3.91)) will ensure
that all directions d(k) are descent directions for the function f , otherwise, d(k)

may cease to remian a descent direction as iterations proceed. We note that
each iteration of this method costs on O(n), as against the Newton or quasi-
newton methods which cost atleast O(n2) owing to matrix operations. Most
often, it yields optimal progress after h << n iterations. Due to this property,
the conjugate gradient method drives nearly all large-scale optimization today.

33We note that in the algorithm in Figure 3.52, the residuals r(k) in successive iterations
(which are gradients of E) are orthogonal to each other, while the corresponding update
directions are orthogonal with respect to A. While the former property is difficult to enforce
for general non-linear functions, the latter condition can be enforced.
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Select x(0), Let f0 = f(x(0)), f0 = ∇f(x(0)), d(0) = −∇f0, k = 1.
repeat

1. Compute αk by line search.
2. Set x(k) = x(k−1) + αkd(k−1).
3. Evaluate f (k) = ∇f(x(k)).

4. βk = (f (k))T f (k)

(f (k−1))T f (k−1)
.

5. dk = −f (k) + βkd(k−1).
k = k + 1.

until ||f
(k)||

f (0) < θ OR k > maxIter.

Figure 3.55: The conjugate gradient algorithm for optimizing nonlinear convex
function f .

It revolutionalized optimization ever since it was invented in 1954.
Variants of the Fletcher-Reeves method use different choices of the parameter

βk. An important variant, proposed by Polak and Ribiere, defines βk as

βPRk =

(
f (k)
)T (

f (k) − f (k−1)
)(

f (k)
)T

f (k)

The Fletcher-Reeves method converges if the starting point is sufficiently close
to the desired minimum. However, convergence of the Polak-Ribiere method
can be guaranteed by choosing

βk = max
{
βPRk , 0

}
Using this value is equivalent to restarting34 conjugate gradient if βPRk < 0.
In practice, the Polak-Ribiere method converges much more quickly than the
Fletcher-Reeves method. It is generally required to restart the conjugate gradi-
ent method after every n iterations, in order to get back conjugacy, etc.

If we choose f to be the strongly convex quadratic E and αk to be the
exact minimizer, this algorithm reduces to the linear conjugate gradient method,
Unlike the linear conjugate gradient method, whose convergence properties are
well understood and which is known to be optimal (see page 265), nonlinear
conjugate gradient methods sometimes show bizarre convergence properties. It
has been proved by Al-Baali that if the level set L =

{
x|f(x) ≤ f(x(0)

}
of a

convex function f is bounded and in some open neighborbood of L, f is Lipshitz
continuously differentiable and that the algorithm is implemented with a line
search that satisfies the strong Wolfe conditions, with 0 < c1 < c2 < 1, then

lim
k→∞

inf ||f (k)|| = 0

34Restarting conjugate gradient means forgetting the past search directions, and start it
anew in the direction of steepest descent.
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In summary, quasi-Newton methods are robust. But, they require O(n2)
memory space to store the approximate Hessian inverse, and so they are not
directly suited for large scale problems. Modificationsof these methods called
Limited Memory Quasi-Newton methods use O(n) memory and they are suited
for large scale problems. Conjugate gradient methods also work well and are
well suited for large scale problems. However they need to be implemented
carefully, with a carefully set line search. In some situations block coordinate
descent methods (optimizing a selected subset of variables at a time) can be
very much better suited than the above methods.

3.6 Algorithms for Constrained Minimization

The general form of constrained convex optimization problem was given in (3.20)
and is restated below.

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.99)

For example, when f is linear and gi’s are polyhedral, the problem is a linear
program, which was stated in (3.83) and whose dual was discussed on page 233.
Linear programming is a typical example of constraint minimization problem
and will form the subject matter for discussion in Section 3.7. As another
example, when f is quadratic (of the form xTQx+bTx) and gi’s are polyhedral,
the problem is called a quadratic programming problem. A special case of
quadratic programming is the least squares problem, which we will take up in
details in Section 3.8.

3.6.1 Equality Constrained Minimization

The simpler form of constrained convex optimization is when there is only the
equality constrained in problem (3.99) and it turns out to be not much different
from the unconstrained case. The equality constrained convex problem can be
more explicitly stated as in (3.100).

minimize f(x)
subject to Ax = b

(3.100)

where f is a convex and twice continuously differentiable function and A ∈ <p×n
has rank p. We will assume that the finite primal optimal value p∗ is attained
by f at some point x̂. The following fundamental theorem for the equality con-
strained convex problem (3.100) can be derived using the KKT conditions stated
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in Section 3.4.4 that were proved to be necessary and sufficiency conditions for
optimality of a convex problem with differentible objective and constraint func-
tions.

Theorem 70 x̂ is optimal point for the primal iff there exists a µ̂ such that the
following conditions are satisfied.

∇f(x̂) +AT µ̂ = 0

Ax̂ = b
(3.101)

The term ∇f(x̂) + AT µ̂ is sometimes called the dual residual (rd) while the
term Ax̂−b is referred to as the primal residual (rp). The optimality condition
basically states that both rd and rp should both be 0 and the the success of this
test is a certificate of optimality.

As an illustration of this theorem, consider the constrained quadratic prob-
lem

minimize 1
2xTAx + bTx + c

subject to Px = q
(3.102)

By theorem 70, the necessary and sufficient condition for optimality of a point
(x̂, λ̂) is [

A PT

P 0

]
︸ ︷︷ ︸
KKT matrix

[
x̂

λ̂

]
=

[
−b

q

]

The KKT matrix35 is nonsingular iff, P + ATA � 0. In such an event, the
system of n+ p linear equations in n+ p unknowns will have a unique solution
corresponding to the point of global minimum of (3.102). The linearly con-
strained least squared problem is a specific example of this and is discussed in
Section 3.8.2.

Eliminating Equality Constraints

Figure 2.3 summarized the number of solutions to the system Ax = b under
different conditions. In particular, when the rank of A is the number of its
rows (p) and is less than the number of its columns (n), there are infinitely
many solutions. This was logically derived in (2.35), and we restate it here for
reference:

xcomplete = xparticular + xnullspace

where the three vectors are defined with respect to the reduced row echelon
form R of A (c.f. Section 2.6.2):

35This matrix comes up very often in many areas such as optimization, mechanics, etc.
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1. xcomplete: specifies any solution to Ax = b

2. xparticular: is obtained by setting all free variables (corresponding to
columns with no pivots) to 0 and solving Ax = b for pivot variables.

3. xnullspace: is any vector in the null space of the matrix A, obtained as a
linear combination of the basis vectors for N(A).

Using formula (2.27) on page 113 to derive the null basis N ∈ <n×n−p
(that is, AN = 0 and the columns of N span N(A)), we get the following free
parameter expression for the solution set to Ax = b:

{x |Ax = b} =
{
Nz + xparticular

∣∣z ∈ <n−p}
We can express the constrained problem in (3.100) in terms of the variables

z ∈ <n−p (that is through an affine change of coordinates) to get the following
equivalent problem:

minimize
z∈<n−1

f(Nz + xparticular) (3.103)

This problem is equivalent to the original problem in (3.100), has no equality
constraints and has p fewer variables. The optimal solutions x̂ and µ̂ to the
primal and dual of (3.100) respectively can be expressed in terms of the optimal
solution ẑ to (??) as:

x̂ = N ẑ + xparticular
µ̂ = −(AAT )−1A∇f(x̂)

(3.104)

Any iterative algorithm that is applied to solve the problem (3.104) will
ensure that all intermediate points are feasible, since for any z ∈ <n−p, x =
Fz + xparticular is feasible, that is, Ax = b. However, when the Newton’s
method is applied, the iterates are independent of the exact affine change of
coordinates induced by the choice of the null basis F (c.f. page 250). The
Newton update rule ∆z(k) for (3.103) is given by the solution to:

N∇2f(Nz(k) + xparticular)NT∆z(k) = N∇f(Nz(k) + xparticular)

Due the affine invariance of Newton’s method, if z(0) is the starting iterate
and x(0) = Nz(0) + xparticular, the kth iterate x(k) = Nz(k) + xparticular is
independent of the choice of the null basis N . We therefore do not need seperate
convergence analysis. The algorithm for the Newton’s method was outlined in
Figure 3.49. Techniques for handling constrained optimization using Newton’s
method given an infeasible starting point x(0) can be found in [?].
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3.6.2 Inequality Constrained Minimization

The general inequality constrained convex minimization problem is

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.105)

where f as well as the gi’s are convex and twice continuously differentiable. As
in the case of equality constrained optimization, we will assume that A ∈ <p×n
and has rank p. Further, we will also assume that the finite primal optimal value
p∗ is attained by f at some point x̂. Finally, we will assume that the Slaters
constraint qualification (c.f. page 236) conditions hold so that strong duality
holds and the dual optimum is attained. Linear programs (LP), quadratically
constrained quadratic programs (QCQP) (all listed in table 3.4 on page 236) and
geometric programs36 (GP) are some examples of convex optimization problems
with inequality constraints. An example geometric program (in its convex form)
is

minimize
y∈<n

log
(∑q

k=1 e
aTk y+bk

)
subject to log

(∑r
k=1 e

cTk y+dk
)
≤ 0 i = 1, 2, . . . , p

gTi y + hi i = 1, 2, . . . ,m

(3.106)

Semi-definite programs (SDPs) do not satisfy conditions such as zero duality
gap, etc., but can be handled by extensions of interior-point methods to prob-
lems having generalized inequalities.

Logarithmic Barrier

One idea for solving a minimization problem with inequalities is to replace the
inequalities by a so-called barrier term. The barrier term is subtracted from the
objective function with a weight µ on it. The solution to (3.105) is approximated
by the solution to the following problem.

minimize B(x, µ) = f(x)− µ
∑m
i=1 ln (−gi(x))

subject to Ax = b
(3.107)

36Although geometric programs are not convex in their natural form, they can, however, be
transformed to convex optimization problems, by a change of variables and a transformation
of the objective and constraint functions.
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The objective function B(x, µ) is called the logarithmic barrier function. This
function is convex, which can be proved by invoking the composition rules de-
scribed in Section 3.2.10. It is also twice continuously differentiable. The bar-
rier term, as a function of x approaches +∞ as any feasible interior point x
approaches the boundary of the feasible region. Because we are minimizing,
this property prevents the feasible iterates from crossing the boundary and be-
coming infeasible. We will denote the point of optimality x̂(µ) as a function of
µ.

However, the optimal solution to the original problem (a typical example
being the LP discussed in Section 3.7) is typically a point on the boundary
of the feasible region (we will see this in the case of linear programming in
Section 3.7). To obtain such a boundary point solution, it is necessary to keep
decreasing the parameter µ of the barrier function to 0 in the limit. As a
very simple example, consider the following inequality constrained optimization
problem.

minimize x2

subject to x ≥ 1

The logarithmic barrier formulation of this problem is

minimize x2 − µ ln (x− 1)

The unconstrained minimizer for this convex logarithmic barrier function is
x̂(µ) = 1

2 + 1
2

√
1 + 2µ. As µ → 0, the optimal point of the logarithmic barrier

problem approaches the actual point of optimality x̂ = 1 (which, as we can
see, lies on the boundary of the feasible region). The generalized idea, that as
µ→ 0, f(x̂)→ p∗ (where p∗ is the optimal for (3.105)) will be proved next.

Properties of the estimate f(x̂(µ))

The following are necessary and sufficient conditions for x̂(µ) to be a solution
to (3.107) for a fixed µ (see KKT conditions in (3.88)):

1. The point x̂(µ) must be strictly feasible. That is,

Ax̂(µ) = b

and
gi(x̂(µ)) < 0

2. There must exist a η ∈ <p such that

∇f(x̂(µ)) +
m∑
i=1

−µ
gi(x̂(µ))

∇gi(x̂(µ)) +AT η̂ = 0 (3.108)
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Define
λ̂i(µ) =

−µ
gi(x̂(µ))

and
η̂(µ) = η̂µ

We claim that the pair (λ̂(µ), η̂(µ)) is dual feasible. The following steps prove
our claim

1. Since gi(x̂(µ)) < 0 for i = 1, 2, . . . ,m, λ̂(µ) � 0.

2. Based on the proof of theorem 67, we can infer that L(x, λ, η) is convex
in x.

L(x, λ, η) = f(x) +
m∑
i=1

λigi(x) + ηT (Ax− b)

Since the lagrangian is convex in x and since it is differentiable on its
domain, from (3.108), we can conclude that x̂(µ) is a critical point of
L(x, λ, η) and therefore minimizes it for (λ̂(µ), η̂(µ)).

3. That is, the dual L∗(λ̂(µ), η̂(µ)) is defined and therefore, (λ̂(µ), η̂(µ)) is
dual feasible.

L∗(λ̂(µ), η̂(µ)) = f(x̂(µ))+
m∑
i=1

λ̂igi(x̂(µ))+η̂(µ)T (Ax̂(µ)−b) = f(x̂(µ))−mµ

(3.109)

From the weak duality theorem 66, we know that d∗ ≤ p∗, where d∗ and p∗ are
the primal and dual optimals respectively, for (3.105). Since L∗(λ̂(µ), η̂(µ)) ≤ d∗
(by definition), we will have from (3.109), f(x̂(µ))−mµ ≤ p∗. Or equivalently,

f(x̂(µ))− p∗ ≤ mµ (3.110)

The inequality in (3.110) forms the basis of the barrier method; it confirms the
intuitive idea that x̂(µ) converges to an optimal point as µ → 0. We will next
discuss the barrier method.

The Barrier Method

The barrier method is a simple extension of the unconstrained minimization
method to inequality constrained minimization. This method is based on the
property in (3.110). This method solves a sequence of unconstrained (or linearly
constrained) minimization problems, using the last point found as the starting
point for the next unconstrained minimization problem. It computes x̂(µ) for a
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sequence of decreasing values of µ, until mµ ≤ ε, which guarantees that we have
an ε-suboptimal solution of the original problem. It was originally proposed
as the sequential unconstrained minimization technique (SUMT) technique by
Fiacco and McCormick in the 1960s. A simple version of the method is outlined
in Figure 3.56.

Find a strictly feasible starting point x̂, µ = µ(0) > 0, α > 0.
Select an appropriate tolerance ε > 0.
repeat

1. Centering Step: Compute x̂(µ) by minimizing B(x, µ) (optionally
subject to Ax = b) starting at x.
2. Update x = x̂(µ).
3. If mµ ≤ ε, quit.
4. Decrease µ: µ = αµ.

until

Figure 3.56: The Barrier method.

The centering step (1) can be executed using any of the descent techniques
discussed in Section 3.5. It can be proved [?] that the duality gap is mµ(0)αk

after k iterations. Therefore, the desired accuracy ε can be achieved by the

barrier method after exactly


log

(
mµ(0)

ε

)
−log(α)

 steps.

Successive minima x̂(µ) of the Barrier function B(x, µ) can be shown to have
the following properties. Let µ < µ for sufficiently small µ, then

1. B(x̂(µ), µ) < B(x̂(µ), µ)

2. f(x̂(µ)) ≤ f(x̂(µ))

3. −
∑m
i=1 ln (−gi(x̂(µ))) ≥ −

∑m
i=1 ln (−gi(x̂(µ)))

When a strictly feasible point x̂ is not known, the barrier method is pre-
ceded by a preliminary stage, called phase I, in which a strictly feasible point is
computed (if it exists). The strictly feasible point found during phase I is then
used as the starting point for the barrier method. This is discussed in greater
details in [?].

3.7 Linear Programming

Linear programming has been widely used in the industry for maximizing profits,
minimizing costs, etc. The word linear implies that the cost function is linear
in the form of an inner product.

The inputs to the program are

1. c, a cost vector of size n.
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2. An m× n matrix A.

3. A vector b of size m.

The unknown is a vector x of size n, and this is what we will try to determine.
In linear programming (LP), the task is to minimize a linear objective func-

tion of the form
n∑
j=1

cjxj , subject to linear inequality constraints37 of the form

n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m and xi > 0. The problem can be stated as in

(3.111). In contrast to the LP specification on page 233, where the constraint
x ≥ 0 was absorbed into the more general constraint −Ax + b ≤ 0, here we
choose to specify it as a seperate constraint.

min
x∈<n

xT c

subject to −Ax + b ≤ 0 x ≥ 0
(3.111)

The flip side of this problem is that it has no analytical formula as a solution.
However, that does not make a big difference in practice, because there exist
reliable and efficient algorithms and software for linear programming. The com-
putational time is roughly proportional to n2m, if m ≥ n. This is basically the
cost of one iteration in an interior point method.

Linear programming (LP ) problems are harder to recognize in practice and
often need reformulations to get into the standard form in (3.111). Minimizing
a piecewise linear function of x is not an LP , thought it can be written and
solved as an LP . Other problems involving 1 or ∞ norms can also be written
as linear programming problems.

The basis for linear programing was mentioned on page 194; linear functions
have no critical points and therefore, by theorem 45, the extreme values are
always assumed at the boundary of the feasible set. In the case of linear pro-
grams, the feasible set is itself defined by linear inequalities: {x| −Ax + b ≤ 0}.
Applying the argument recursively, it can be proved that the extreme values for
a linear program are assumed at some corners (i.e., vertices) of the feasible set.
A corner is the intersection point of n different planes, each given by a single
equation. That is, a corner point is obtained by turning n of the n+m inequali-
ties into equalities and finding their intersection38 An edge is the intersection of
n − 1 inequalities and connects two corners. Geometrically, it can be observed
that when you maximize or minimize some linear function, as your progress in
one direction in the search space, the objective will either increase monotoni-
cally or decrease monotonically. Therefore, the maximum and minimum will be
found at the corners of the allowed region.

37It is a rare feature to have linear inequality constraints.
38In general, there are

(n+m)!
n!m!

intersections.
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Figure 3.57: Example of the feasible set of a linear program for n = 3.

The feasible set is in the form of a finite interval in n dimensions. Figure 3.57
pictorially depicts a typical example of the feasible region for n = 3. The
constraints Ax ≥ b and x ≥ 0 would allow a tetrahedron or pyramid in the
first (or completely positive) octant. If the constraint was an equality, Ax = b,
the feasible set would be the shaded traingle in the figure. In general for any n,
the constraint Ax ≥ b,x ≥ 0 would yield as the feasible set, a polyhedron. The

task of maximizing (or miminizing) the linear objective function xT c =
n∑
i=1

cixi

translates to finding a solution at one of the corners of the feasible region.
Corners are points where some of the inequality constraints are tight or active,
and others are not. At the corners, some of the inequality constraints translate
to equalities. It is just a question of finding the right corner.

Why not just search all corners for the optimal answer? The trouble is that
there are lots of corners. In n dimensions, with m constraints, the number of
corners grows exponentially and there is no way to check all of them. There is
an interesting competition between two quite different approaches for solving
linear programs:

1. The simplex method

2. Interior point barrier method
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3.7.1 Simplex Method

The simplex algorithm [?] is one of the fundamenetal methods for linear pro-
gramming, developed in the late 1940s by Dantzig. It is the best established
approach for solving linear problems. In the worst case, the algorithm takes a
number of steps that is exponential in n; but, in practice it is the most efficient
method for solving linear programs.

The simplex method first constructs an admissible solution at a corner
(which can be quite a bit of a job) of the polyhedron and then moves along
its edges to vertices with successively higher values of the objective function
until the optimum is reached. The movement along an edge originating at a
vertex is performed by ‘loosening’ one of the inequalities that were tight at the
vertex. The inequality chosen for ‘loosening’ is the one promising the fastest
drop in the objective function xT c. The rate of decrease along an edge can
be measured using the gradient of the objective. This procedure is carried out
iteratively, till the method encounters a vertex which has no edge (constraint)
that is a promising descent direction (which means that the cost goes up along
all edges incident at that vertex). Since an edge corresponding to decreasing
value of the objective cannot correspond to its increasing value, no edge will be
traversed twice in this process.

We will first rewrite the constraints Ax ≥ b in the above LP as equations,
by introducing a new non-negative ”slack” variable sj for the jth constraint (for
all j’s) and subtracting it from the left-hand side of each inequality:

Ax− s = b

or equivalently in matrix notation

[−A + I]
[

x s
]

= −b

We will treat the m× n+m matrix M = [−A I] as our new coefficient matrix
and y = [x s]T as our new variable vector. With this, the above constraint can
be rewritten as

My = −b

The feasible set is now governed by these m equality constraints and the n+m
non-negativity constraints x ≥ 0 and y ≥ 0. The original cost vector c is
extended to a vector d by appending m more zero components. This leaves us
with the following problem, equivalent to the original LP (3.111).

min
y∈<n+m

yTd

subject to My = −b y ≥ 0
(3.112)

We will assume that the matrix A (and therefore M) is of full row rank, that
is of rank m. In practice, a preprocessing phase is applied to the user-supplied



278 CHAPTER 3. CONVEX OPTIMIZATION

data to remove some redundancies from the given constraints to get a full row
rank matrix.

The following definitions and observations will set the platform for the sim-
plex algorithm, which we will describe subsequently.

1. A vector y is a basic feasible point if it is feasible and if there exists a
subset B of the index set {1, 2, ..., n} such that

(a) B contains exactly m indices.

(b) y ≥ 0.

(c) yi ≥ 0 can be inactive (that is yi > 0) only if i ∈ B. In other words,
i /∈ B ⇒ yi = 0.

(d) If mi is the ith column of M , the m ×m matrix B defined as B =
[mi]i∈B is nonsingular.

A set B satisfying these properties is called a basis for the problem (3.112).
The corresponding matrix B is called the basis matrix. Any variable yi
for i ∈ B is called a basic variable, while any variable yi for i /∈ B is called
a free variable.

2. It can be seen that all basic feasible points of (3.112) are corners of the
feasible simplex S = {x|Ax ≥ b,x ≥ 0} and vice versa. In other words, a
corner of S corresponds to a point y in the new representation that has n
components as zeroes.

3. Any two corners connected by an edge will have exactly m − 1 common
basic variables. Each corner has n incident edges (corresponding to the
addition of any one of n new basic variables and the corresponding drop
of a basic variable).

4. Further, it can be proved that

(a) If (3.112) has a nonempty feasible region, then there is at least one
basic feasible point

(b) If (3.112) has solutions, then at least one such solution is a basic
optimal point

(c) If (3.112) is feasible and bounded, then it has an optimal solution.

This is known as the fundamental theorem of linear programming.

Using the ideas and notations presented above, the simplex algorithm can
be outlined as follows.

1. Each iterate generated by the simplex algorithm is a basic feasible point
of (3.112).
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2. Entering free variable: The next iterate is determined by moving along
an edge from one basic feasible solution to another. As discussed above,
movement along an edge will mean that m− 1 variables will remain basic
while one will become free. On the other hand, a new free variable will
become basic. The real decision is which variable should be removed from
the basis and which should be added. The idea in the simplex algorithm
is to include that free variable yk, which has the most negative component
dk (something like steepest descent in the L1 norm).

3. Leaving basic variable: The basic variable from the current basis that will
leave next is determined using a pivot rule. A commonly applied pivot
rule is to determine the leaving basic variable through the constraint (say
the jth one) that has the smallest non-negative ratio of the right hand
side b

′

j of the constraint to the coefficient m
′

jk of the entering variable yk.
If the coefficients of yk are negative in all the constraints, it implies an
unbounded case; the cost can be made −∞ by arbitrarily increasing the
value of yk.

4. In order to facilitate the easy identification of leaving basic variables, we
bring the equations into a form such that the basic variables stand by
themselves. This is done by treating the new entering variable yk as a
‘pivot’ in the jth equation and substituting its value in terms of the other
variables in the jth equation into the other equations (as well as the cost
function yTd). In this form,

(a) the protocol is that variables corresponding to all columns of M that
are in unit form are basic variables, while the rest are free variables.

(b) the choice of an equality in the step above automatically entails the
choice of the leaving variable - the basic variable yl corresponding to
row j will be the next leaving variable.

5. In a large problem, it is possible for a leaving variable to reenter the basis
at a later stage. Unless there is degeneracy, the costs keep going down
and it can never happen that all of the m basic variables are the same
as before. Thus, no corner is revisited and the method must end at the
optimal corner or conclude that the cost is unbounded below. Degenracy
is said to occur if more than the usual n components of x are 0 (in which
case, cycling might occur but extremely rarely).

Since each simplex step involves decisions (choice of entering and leaving
basic variables) and row operations (pivoting etc.), it is convenient to fit the
data into a large matrix or tableau. The operations of the simplex method
outlined above can be systematically translated to operations on the tableau.

1. The starting tableau is just a bigger m+ 1×m+ n matrix

T =

[
M −b

d 0

]
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2. Our first step is to get one basic variable alone on each row. Without loss of
generality, we will renumber the variables and rearrange the corresponding
coefficients of M so that at every iteration, y1, y2, . . . ym are the basic
variables and the rest are free (i.e., 0). The first m columns of A form an
m×m square matrix B and the last n form an m×n matrix N . The cost
vector d can also be split as dT = [dTB dTN ] and the variable vector can
be split as yT = [yTB yTN ] with yN = 0. To operate with the tableau, we
will split it as [

B N −b

dTB dTN 0

]

Performing Gauss Jordan elimination on the columns corresponding to
basic variables, we get the equations into the form that will be preserved
across iterations. [

I B−1N −B−1b

dTB dTN 0

]
Further, we will ensure that all the columns corresponding to basic vari-
ables are in the unit form.[

I B−1N −B−1b

dTB − dTBI = 0 dTN − dTBB
−1N dTBB

−1b

]

This corresponds to a solution yB = −B−1b with cost dTy = −dTBB
−1b,

which is the negative of the expression on the right hand bottom corner.

3. In the above tableau, the components of the expression r = dTN−dTBB
−1N

are the reduced costs and capture what it costs to use the existing set of
free variables; if the direct cost in dN is less than the saving due to use
of the other basic variables, it will help to try a free variable. This guides
us in the choice of the entering variable. If r = dTN − dTBB

−1N has any
negative component, then the variable corresponding to the most negative
component is picked up as the next entering variable and this choice cor-
responds to moving from a corner of the polytope S to an adjacent corner
with lower cost. Let yk be the entering variable and dk the corresponding
cost.

4. As the entering component yk is increased, to maintain My = −b, the
first component yj that decreases to 0 becomes the leaving variable and
transforms from a basic to a free variable. The other components of yB
would have moved around but would remain positive. Thus, the one that
drops to zero should satisfy

j = argmin
t=1,2,...,m (B−1N)tk>0

(
−B−1b

)
t

(B−1N)tk
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Note that the minimum is taken only over the positive components
(
B−1N

)
tk

.
If there are no positive components, the next corner is infinitely far away
and the cost can be reduced forever to yield a minimum cost of −∞.

5. With the new choice of basic variables, steps (2)-(4) are repeated till the
reduced cost is completely non-negative. The variables corresponding to
the unit columns in the final tableau are the basic variables at the opti-
mum.

What we have not discussed so far is how to obtain the initial basic feasible
point. If x = 0 satisfies Ax ≥ b, we can have an initial basic feasible point with
the basic variables comprising of s and x constituting the free variables. This
is illustrated through the following example. Consider the problem

min
x1,x2,x3∈<

−15x1 − 18x2 − 20x3

subject to − 1
6x1 − 1

4x2 − 1
2x3 ≥ −60

−40x1 − 50x2 − 60x3 ≥ −2880
−25x1 − 30x2 − 40x3 ≥ −2400
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

The initial tableau is
1
6

1
4

1
2 1 0 0

40 50 60 0 1 0
25 30 40 0 0 1
−15 −18 −20 0 0 0

∣∣∣∣∣∣∣∣∣∣
60

2880
2400

0


The most negative component of the reduced cost vector is for k = 3. The

pivot row number is 2 = argmin
t=1,2,...,m (B−1N)tk>0

(B−1b)
t

(B−1N)tk
. Thus, the leaving basic

variable is s2 (the basic variable corresponding to the second row) while the
entering free variable is x3. Performing Gauss elimination to obtain column
k = 3 in the unit form, we get

− 1
6 − 1

6 0 1 − 1
120 0

2
3

5
6 1 0 1

60 0
− 5

3 − 10
3 0 0 − 2

3 1
− 5

3 − 4
3 0 0 1

3 0

∣∣∣∣∣∣∣∣∣∣
36
48
480
960


This tableau corresponds to the solution x1 = 0, x2 = 0, x3 = 48, s1 = 0, s2 =
36, s3 = 480 and cost cTx = −960 (negative of the number on the right hand
bottom corner). Since the reduced cost vector has still some negative compo-
nents, it is possible to find a basic feasible solution with lower cost. Using the
most negative component of the reduced cost vector, we select the next pivot
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element to be m21 = 2
3 . Again performing Gaussian elimination, we obtain the

tableau corresponding to the next iterate.
0 1

24
1
4 1 − 1

240 0
1 5

4
3
2 0 1

40 0
0 − 5

4
5
2 0 − 5

8 1
0 3

4
5
2 0 3

8 0

∣∣∣∣∣∣∣∣∣∣
48
72
600
1080


Note that the optimal solution has been found, since the reduced cost vector
is non-negative. The optimal solution is x1 = 72, x2 = 0, x3 = 0, s1 = 48, s2 =
0, s3 = 600 and cost cTx = −1080

What if x = 0 does not satisfy Ax ≥ b? The choice of s as the basic
variables and x as the free variables will not be valid. As an example, consider
the problem

min
x1,x2,x3∈<

30x1 + 60x2 + 70x3

subject to x1 + 3x2 + 4x3 ≥ 14
2x1 + 2x2 + 3x3 ≥ 16
x1 + 3x2 + 2x3 ≥ 12
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

The initial tableau is
−1 −3 −4 1 0 0
−2 −2 −3 0 1 0
−1 −3 −2 0 0 1
30 60 70 0 0 0

∣∣∣∣∣∣∣∣∣∣
−14
−16
−12

0


With the choice of basic and free variables as above, we are not even in the
feasible region to start off with. In general, if we have any negative number in
the last column of the tableau, x = 0 is not in the feasible region. Further,
we have no negative numbers in the bottom row, which does not leave us with
any choice of cost reducing free variable. But this is not of primary concern,
since we first need to maneuver our way into the feasible region. We do this
by moving from one basic point (that is, a point having not more than n zero
components) to another till we land in the feasible region, which is indicated
by all positive components in the extreme right hand column. This movement
from one basic point to another is not driven by negative components in the
cost vector, but rather by the negative components in the right hand column.
The new rules for moving from one basic point to another are:

1. Pick39 any negative number in the far right column (excluding the last
row). Let this be in the qth row for q < m+ 1.

39Note that there is no priority here.
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2. In the qth row, move40 to left to a column number k where there is another
negative number. The variable yk will be the next entering variable.

3. Choose pivot element mjk which gives the smallest positive ratio of an
element in the jth row of the last column to the element mjk. The leaving
variable will be yj .

4. Once the pivot element is chosen, proceed as usual to convert the pivot
element to 1 and the other elements in the pivot column to 0.

5. Repeat steps (1)-(4) on the modified tableau until there is no negative
element in the right-most column.

Applying this procedure to the tableau above, we pick m2,1 = −2 as our
first pivot element and do row elimination to get the first column in unit form.

0 −2 − 5
2 1 − 1

2 0
1 1 3

2 0 − 1
2 0

0 −2 − 1
2 0 − 1

2 1
0 30 25 0 15 0

∣∣∣∣∣∣∣∣∣∣
−6
8
−4
−240


We pick m35 = − 1

2 as our next pivot element and do similar row elimination
operations to obtain

0 0 −2 1 0 −1
1 3 2 0 0 −1
0 4 1 0 1 −2
0 −30 10 0 0 30

∣∣∣∣∣∣∣∣∣∣
−2
12
8
−360


We have still not obtained a feasible basic point. We choose m16 = −1 as the
next pivot and do row eliminations to get the next tableau.

0 0 2 −1 0 1
1 3 4 −1 0 0
0 4 5 −2 1 0
0 −30 −50 30 0 0

∣∣∣∣∣∣∣∣∣∣
2
14
12
−420


This tableau has not negative numbers in the last column and gives a basic
feasible point x1 = 14, x2 = 0, x3 = 0. Once we obtain the basic feasible point,
we rever to the standard simplex procedure discussed earlier. The most negative
component of the reduced cost vector is −50 and this leads to the pivot element
m13 = 2. Row elimination yields

0 0 1 − 1
2 0 1

2

1 3 0 1 0 −2
0 4 0 1

2 1 − 5
2

0 −30 0 5 0 25

∣∣∣∣∣∣∣∣∣∣
1
10
7
−370


40Note that there is no priority here either.
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Our next pivot element is m32 = 4. Row elimination yields
0 0 1 − 1

2 0 1
2

1 0 0 5
8 − 3

4 − 1
8

0 1 0 1
8

1
4 − 5

8

0 0 0 35
4

15
2

25
4

∣∣∣∣∣∣∣∣∣∣
1
19
4
7
4

− 635
2


We are done! The reduced cost vector has no more negative components. The
optimal basic feasible point is x1 = 4.75, x2 = 1.75, x3 = 1 and the optimal cost
is 317.5.

Revised Simplex Method

The simplex method illustrated above serves two purposes:

1. Doing all the eliminations completely makes the idea clear.

2. It easier to follow the process when working out the solution by hand.

For computational purposes however, it is uncommon now to use the method
as described earlier. This is because, once r is computed, none of the columns
above r, (except for that corresponding to the leaving variable) are used. There-
fore, computing them is a useless effort. Doing the eliminations completely at
each step cannot be justified practically. Instead, the more efficient version of
the simplex method, as outlined below, is used by software packages. It is called
the revised simplex method and is essentially the simplex method itself, boiled
down.

Compute the reduced costs r = dN − (dB)B−1N .
while r 6≥ 0 do

1. Let rk be the most negative component of r.
2. Compute v = B−1ni, where ni is the ith column of N .

3. Let j = argmin
t=1,2,...,m (B−1ni)t>0

(−B−1b)
t

(B−1ni)t
.

4. Update B (or B−1) and xB = B−1b to reflect the jth leaving column
and the kth entering variable.
Compute the new reduced costs r = dN − (dB)B−1N .

end while

Figure 3.58: The revised simplex method.

3.7.2 Interior point barrier method

Researchers have dreamt up pathological examples for the simplex method, for
which the simplex method takes an exponential amount of time. In practice,
however, the simplex method is one of the most efficient methods for a majority
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of the LPs. Application of interior point methods to LP have led to a new
competitor to the simplex method in the form of interior point methods for
linear programming. In contrast to the simplex algorithm, which finds the
optimal solution by progressing along points on the boundary of a polyhedral
set, interior point methods traverse to the optimal through the interior of the
feasible region (polyhedral set in the case of LPs). The first in this league was the
iterative Karmarkar’s method [?], developed by Narendra Karmarkar in 1984.
Karmarkar also proved that the algorithm was polynomial time. This line of
research was inspired by the ellipsoid method for linear programming, outlined
by Leonid Khachiyan in 1979; the ellipsoid algorithm itself was introduced by
Naum Z. Shor, et. al. in 1972 and used by Leonid Khachiyan [?] to prove the
polynomial-time solvability of linear programs r linear programming , which was
the first such algorithm known to have a polynomial running time.

This competitor to the simplex method takes a Newton’s method-like ap-
proach through the interior of the feasible region. Newton steps are taken till
the ‘barrier’ is encountered. It stirred up the world of optimization and in-
spired the whole class of barrier methods. Following this, a lot of interest was
generated in the application of the erstwhile interior point methods for general
non-linear constrainted optimization problems. The Karmarkar’s algorithm is
now replaced by an improved logarithmic barrier method that makes use of the
primal as well as the dual for solving an LP. Shanno and Bagchi [?] showed that
Karmarkars method is just a special case of the logarithmic barrier function
method. We will restrict our discussion to the primal-dual barrier method [?].

The dual (3.113) for the linear program (3.111) can be derived in manner
similar to the dual on page 233.

max
λ∈<m

λTb

subject to ATλ ≤ c

λ ≥ 0

The weak duality theorem (theorem 66) states that the objective function value
of the dual at any feasible solution is always less than or equal to the objective
function value of the primal at any feasible solution. That is, for any primal
feasible x and any dual feasible λ,

cTx− bTλ ≥ 0

For this specific case, the weak duality is easy to see: bTλ ≤ xTATλ ≤ xT c.
Further, it can be proved using the Farkas’ lemma that if the primal has an

optimal solution x∗ (which is assumed to be bounded), then the dual also has
an optimal solution41 λ∗, such that cTx∗ = bTλ∗.

The following steps will set the platform for the interior point method.
41For an LP and its dual D, there are only four possibilities:

1. (LP) is bounded and feasible and (D) is bounded and feasible.
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1. As on page 3.7.1, we will rewrite the constraints Ax ≥ b in the above
LP as equations, by introducing a new non-negative ”slack” variable sj
for the jth constraint (for all j’s) and subtracting it from the left-hand
side of each inequality. This gives us the constraint My = −b, where
M = [−A I] and y = [x s]T . As before, the original cost vector c is
extended to a vector d by appending m more zero components. This gives
us the following problem, equivalent to the original LP (??).

min
y∈<n+m

yTd

subject to My = −b

y ≥ 0

(3.113)

Its dual problem is given by

max
λ∈<m

−λTb

subject to MTλ ≤ d
(3.114)

2. Next, we set up the barrier method formulation of the dual of the linear
program. Letting µ > 0 be a given fixed parameter, which is decreased
during the course of the algorithm. We also insert slack variables ξ =
[ξ1, ξ2, . . . , ξn]T ≥ 0. The barrier method formulation of the dual is then
given by:

max
λ∈<m

−λTb + µ
∑n
i=1 ln (ξi)

subject to MTλ+ ξ = d
(3.115)

The conditions ξi ≥ 0 are no longer needed since ln (ξi) → ∞ as ξi → 0,
if ξi > 0. This latter property means that ln (ξi) serves as a barrier,
discouraging ξi from going to 0.

3. To write the first-order necessary conditions for a minimum, we set the
partial derivatives of the Lagrangian

L(y, λ, ξ) = −λTb + µ

n∑
i=1

ln (ξi)− yT
(
MTλ+ ξ − d

)
2. (LP) is infeasible and (D) is unbounded and feasible.

3. (LP) is unbounded and feasible and (D) is infeasible.

4. (LP) is infeasible and (D) is infeasible.

This can be proved using the Farkas’ Lemma.
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with respect to y, λ, ξ to zero. This results in the set of following three
equations:

MTλ+ ξ = d

My = −b

diag(ξ) diag(y)1 = µ1

(3.116)

which include the dual and primal feasibility conditions excluding y ≥ 0
and ξ ≥ 0.

4. We will assume that our current point y(k) is primal feasible and the cur-
rent point (λ(k), ξ(k)) is dual feasible. We determine a new search direction(
∆y(k),∆λ(k),∆ξ(k)

)
so that the new point

(
y(k) + ∆y(k), λ(k) + ∆λ(k), ξ(k) + ∆ξ)(k)

)
satisfies (3.116). This gives us the so-called Newton equations:

MT∆λ+ ∆ξ = 0

M∆y = 0

(yi + ∆yi)(ξi + ∆ξi) = µ i = 1, 2, . . . , n

(3.117)

Ignoring the second order term ∆yi∆ξi in the third equation, and solving
the system of equations in (3.117), we get the following update rules:

∆λ(k) = −
(
M diag(y(k)) diag(ξ(k))−1MT

)−1
M diag(ξ(k))−1

(
µ1− diag(y(k)) diag(ξ(k))1

)
∆ξ(k) = −MT∆λ(k)

∆y(k) = diag(ξ(k))−1
(
µ1− diag(y(k)) diag(ξ(k))1

)
− diag(y(k)) diag(ξ(k))−1∆ξ(k)

(3.118)

An affine variant of the algorithm can be developed by setting µ = 0 in
the equations (3.118).

5. ∆y(k) and (∆λ(k),∆ξ(k)) correspond to partially constrained Newton steps,
which might not honour the constraints y(k)+∆y(k) ≥ 0 and ξ(k)+∆ξ(k) ≥
0. Since we have a separate search direction ∆y(k) in the primal space and
a separate search direction (∆λ(k),∆ξ(k)) in the dual space, we could com-
pute the maximum step length t(k)

(max,P ) that maintains the pending primal

inequality y(k)+t(k)
(max,P )∆y(k) ≥ 0 and the maximum step length t(k)

(max,D)

that maintains the pending dual inequality ξ(k) + t
(k)
(max,D)∆ξ

(k) ≥ 0.

6. Now we have a feasible primal solution y(k+1) and feasible dual solution
(λ(k+1), ξ(k+1)) given by
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y(k+1) = y(k) + t
(k)
(max,P )∆y(k)

λ(k+1) = λ(k) + ∆λ(k)

ξ(k+1) = ξ(k) + t
(k)
(max,D)∆ξ

(k)

(3.119)

7. For user specified small thresholds of ε1 > 0 and ε2 > 0, if the duality gap
dTy(k+1) + bTλ(k+1) is not sufficiently close to 0, i.e.,

dTy(k+1) + bTλ(k+1) > ε1

for a µ not yet sufficiently close to 0, i.e.,

µ > ε2

we decrease µ by a user specified factor ρ < 1 (such as ρ = 0.1).

µ = µ× ρ

8. Set k = k + 1. If µ was not modified in step (7), the duality gap is
sufficiently small and the termination condition has been reached. So
EXIT. Else, the last condition in (3.116) no longer holds with the modified
value of µ. So steps (4)-(7) are re-executed.

In practice, the interior point method for LP gets down the duality gap to
within 10−8 in just 20-80 steps (which is still slower than the simplex method
for many problems), independent of the size of the problem specified through
values of m and n.

3.8 Least Squares

Least squares was motivated in Section 2.9.2, based on the idea of projection.
Least squares problems appear very frequently in practice. The objective for
minimization in the case of least squares is the square of the eucledian norm of
Ax−b, where A is a m×n matrix, x is a vector of n variables and b is a vector
of m knowns.

min
x∈<n

||Ax− b||22 (3.120)

Very often one has a system of linear constraints on problem (3.120).

min
x∈<n

||Ax− b||22
subject to CTx = 0

(3.121)
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This problem is called the least squares problem with linear constraints.
In practice, incorporating the constraints CTx = 0 properlymakes quite a

difference. In lots of regularization problems, the least squares problem often
comes with quadratic constraints in the following form.

min
x∈<n

||Ax− b||22
subject to ||x||22 = α2

(3.122)

This problem is termed as the least squares problem with quadratic constraints.
The classical statistical model assumes that all the error occurs in the vector

b. But sometimes, the data matrix A is itself not very well known, owing to
errors in the variables. This is the model we have in the simplest version of the
total least squares problem, which is stated as follows.

min
x∈<n,E∈<m×n,r∈<m

||E||2F + ||r||22

subject to (A+ E)x = b + r
(3.123)

While there is always a solution to the least squares problem (3.120), there is
not always a solution to the total least squares problem (3.133). Finally, you
can have a combination of linear and quadratic constraints in a least squares
problem to yield a least squares problem with linear and quadratic constraints.

We will briefly discuss the problem of solving linear least squares problems
and total least squares problems with linear or a quadratic constraint (due to
regularization) The importance of lagrange multipliers will be introduced in the
process. We will discuss stable numerical methods when the data matrix A
is singular or near singular. We will also present iterative methods for large
and sparse data matrices. There are many applications of least squares prob-
lems, which include statistical methods, image processing, data interpolation
and surface fitting and finally geometrical problems.

3.8.1 Linear Least Squares

As a user of least squares in practice, one of the most important things to be
known is that when A is of full column rank, it has an analytical solution given
by x∗ (which was derived in Section 2.9.2 and gives a dual interpretation).

Analytical solution: x∗ = (ATA)−1ATb (3.124)

This analytic solution can also be obtained by observing that

1. ||y||22 is a convex function for y ∈ <m.
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2. Square of the convex eucledian norm function, applied to an affine trans-
form is also convex. Thus ||Ax− b||22 is convex.

3. Every critical point of a convex function defined on an open domain cor-
responds to its local minimum. The critical point x∗ of ||Ax−b||22 should
satisfy

∇(Ax− b)T (Ax− b) = 2ATAx∗ − 2ATb = 0

Thus,
x∗ = (ATA)−1ATb

corresponds to a point of local minumum of (3.120) if ATA is invertible.

This is the classical way statisticians solve least squares problem. It can be
solved very efficiently, and there exist many softwares that implement this solu-
tion. The computation time is linear in the number of rows of A and quadratic
in the number of columns. For extremely large A, it can become important to
look at the structure of A to solve it efficiently, but for most problems, it is
efficient. In practice least-squares is very easy to recognize as an objective func-
tion. There are a few standard tricks to increase the flexibility. For example,
constraints can be handled to a certain extent by adding weights. When the
matrix A is not full column rank, the solution to (3.120) may not be unique.

We should note that while we get a closed form solution to the problem
of minimizing the square of the eucledian norm, it is not so for most other
norms such as the infinity norm. However, there exist iterative methods for
solving least squares with infinity norm that yield a solution in as much time
as is taken in computing the solution using the analytical formula in 3.124.
Therefore, having a closed form solution is not always computationally helpful.
In general, the method of solution to a least squares problem depends on the
sparsity as well as the size of A and the degree of accuracy desired.

In practice, however, it is not recommended to solve least squares problem
using the classical equation in 3.124 since the method is numerically unsta-
ble. Numerical linear algebra instead recommends the QR decomposition to
accurately solve the least squares problem. This method is slower, but more
numerically stable than the classical method. In theorem ??, we state a theory
that compares the analytical solution (3.124) and the QR approach to the least
squares problem.

Let A be an m × n matrix of either full row or full column rank. For the
case of n > m, we saw on page ?? (summarised in Figure 2.3) that the system
Ax = b will have at least one solution which means that minimum value of the
objective function will be 0, corresponding to the solution. We are interested in
the case m ≥ n, for which there will either be no solution or a single solution
to Ax = b and we are interested in one that minimizes ||Ax− b||22.

1. We first decompose A into the product of an orthonormal m×m matrix
Q with an upper traingular m× n matrix R, using the gram-schmidt or-
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thonormalization process42 discussed in Section 2.9.4. The decomposition
can also be performed using the Householder43 transformation or Givens
rotation. Householder transformation has the added advantage that new
rows or columns can be introduced without requiring a complete redo of
the decomposition process. The last m − n rows of R will be zero rows.
Since Q−1 = QT , the QR decomposition yields the system

QTA =

[
R1

0

]

2. Applying the same orthogonal matrix to b, we get

QTb =

[
c

d

]

where d ∈ <m−n.

3. The solution to the least squares problem is found by solving R1x = c.
The solution to this can be found by simple back-substitution.

The next theorem examines how the least squares solution and its residual
||Ax − b|| are affected by changes in A and b. Before stating the theorem, we
will introduce the concept of the condition number.

Condition Number

The condition number associated with a problem is a measure of how numerically
well-posed the problem is. A problem with a low condition number is said to
be well-conditioned, while a problem with a high condition number is said to be
ill-conditioned. For a linear system Ax = b, the condition number is defined as
maximum ratio of the relative error in x (measured using any particular norm)
divided by the relative error in b. It can be proved (using the Cauchy Shwarz
inequality) that the condition number equals ||A−1A|| and is independent of b.
It is denoted by κ(A) and is also called the condition number of the matrix A.

κ(A) = ||A−1A||

If ||.||2 is the L2 norm, then

κ(A) =
σmax(A)
σmin(A)

= ||A||2||(ATA)−1AT ||2

42The classical Gram-Schmidt method is often numerically unstable. Golub [?] suggests a
modified Gram-Schmidt method that is numerically stable.

43Householder was a numerical analyst. However, the first mention of the Householder
transformation dates back to the 1930s in a book by Aikins, a statistician and a numerical
analyst.
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where σmax(A) and σmin(A) are maximal and minimal singular values of A
respectively. For a real square matrix A, the square roots of the eigenvalues of
ATA, are called singular values. Further,

κ(A)2 = ||A||22||(ATA)−1||22

Theorem 71 By ||.||, we will refer to the L2 norm. Let

x∗ = argmin ||Ax− b||

x̂ = argmin ||(A+ δA)x− (b + δb||

where A and δA are in <m×n with m ≥ n. Let b and δb be in <m with b 6= 0.
Let us set

r∗ = b−Ax∗

r̂ = b−Ax̂

and
ρ∗ = ||Ax∗ − b||

If

ε = max

{
||δA||
||A||

,
δb
b

}
<
σn(A)
σ1(A)

and
sin θ =

ρ∗

||b||
6= 1

then,
||x̂− x∗||
||x∗||

≤ ε
{

2κ(A)
cos θ

+ tan θκ(A)2

}
+O(ε2)

In this inequality most critical term for our discussion is κ(A)2 and this is
the term that can kill the analytical solution to least squares. Now matter how
accurate an algorithm you use, you still have κ(A)2, provided tan θ is non-
zero. Now tan θ does not appear if you are solving a linear system, but if you
solve a least squares problem this term appears, bringing along κ(A)2. Thus,
solving least squares problem is inherently more difficult and sensitive than linear
equations. The perturbation theory for the residual vector depends just on the
condition number κ(A) (and not its square):

||r̂− r∗||
||b||

≤ ε {1 + 2κ(A)}min {1,m− n}+O(ε2) +O(ε2)

However, having a small residual does not necessarily imply that you will have
a good approximate solution.

The theorem implies that the sensitivity of the analytical solution x∗ for
non-zero residual problems is measured by the square of the condition number.
Whereas, sensitivity of the residual depends just linearly on κ(A). We note that
the QR method actually solves a nearby least squares problem.
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Linear Least Squares for Singular Systems

To solve the linear least squares problem (3.120) for a matrix A that is of rank
r < min{m,n}, we can compute the pseudo-inverse (c.f. page 154) A+ and
obtain the least squares solution44 as

x̂ = A+b

A+ can be computed by first computing a singular orthogonal factorization

A = Q

[
R 0
0 0

]
ZT

where QTQ = Im×m and ZTZ = In×n and R is an r × r upper traingular
matrix. A+ can be computed in a straightforward manner as

A+ = Z

[
R−1 0

0 0

]
QT

The above least squares solution can be justified as follows. Let

QTb =

[
c

d

]
and

ZTx =

[
w

y

]
Then

||Ax− b||2 = ||QTAZZTx−QTb||2 = ||Rw − c||2 + ||d||2

The least squares solution is therefore given by

x̂ = Z

[
R−1c

0

]
One particular decomposition that can be used is the singular value decompo-
sition (c.f. Section 2.13) of A, with QT ≡ UT and Z ≡ V and UTAV = Σ. The
pseudo-inverse A+ has the following expression.

A+ = V Σ−1UT

It can be shown that this A+ is the unique minimal Frobenius norm solution to
the following problem.

A+ = argmin
X∈<n×m

||AX − Im×m||

44Note that this solution not only minimizes ||Ax− b|| but also minimizes ||x||. This may
or may not be desirable.



294 CHAPTER 3. CONVEX OPTIMIZATION

This also shows that singular value decomposition can be looked upon as an
optimization problem.

A greater problem is with systems that are nearly singular. Numerically
and computationally it seldom happens that the rank of matrix is exactly r. A
classical example is the following n × n matrix K, which has a determinant of
1.

K =



1 −1 . . . −1 −1 . . . −1
0 1 . . . −1 −1 . . . −1
. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 1 −1 . . . −1
0 0 . . . 0 1 . . . −1
. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 0 0 . . . 1


The eigenvalues of this matrix are also equal to 1, while its rank is n. However,
a very small perturbation to this matrix can reduce its rank to n− 1; the rank
of K−2−(n−1)In×n is n−1! Such catastrophic problems occur very often when
you do large computations. The solution using SVD is applicable for nearly
singular systems as well.

3.8.2 Least Squares with Linear Constraints

We first reproduce the least squares problem with linear constraints that was
stated earlier in (3.121).

min
x∈<n

||Ax− b||2

subject to CTx = 0

Let C ∈ <n×p, A ∈ <m×n and b ∈ <m. We note that ||Ax − b||2 is a convex
function (since L2 norm is convex and this function is the L2 norm applied to
an affine transform). We can thus solve this constrained problem by invoking
the necessary and sufficient KKT conditions discussed in Section 3.4.4. The
conditions can be worked out to yield[

ATA C

CT 0

][
x

λ

]
=

[
ATb

0

]
We need to now solve not only for the unknowns x, but also for the lagrange
multipliers; we have increased the dimensionality of the problem to n+p. If x̂ =
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(ATA)−1ATb denotes the solution of the unconstrained least squares problem,
then, using the first system of equality above, x can be expressed as

x = x̂− (ATA)−1Cλ (3.125)

In conjunction with the second system, this leads to

CT (ATA)−1Cλ = CT x̂ (3.126)

The unconstrained least squares solution can be obtained using methods in
Section 3.8.1. Next, the value of λ can be obtained by solving (3.126). If A is
singular or nearly singular, we can use the singular value decomposition (or a
similar decomposition) of A to determine x̂.

CTR−1(RT )−1Cλ = CT x̂

TheQR factorization of (RT )−1C can be efficiently used to determine λ. Finally,
the value of λ can be substituted in (3.125) to solve for x. This technique yields
both the solutions, provided that both exist.

Another trick that is often employed when ATA is singular or nearly sin-
gular is to decrease its condition number by augmenting it in (3.125) with the
‘harmless’ CWCT and solve

x = x̂− (ATA+ CWCT )−1Cλ

The addition of CWCT is considered harmless, since CTx = 0 is to be imposed
anyways. Matrix W can be chosen to be an identical or nearly identical matrix
that chooses a few columns of C, just to make ATA+ CWCT non-singular.

If we use the following notation:

A(W ) =

[
ATA+ CWCT C

CT 0

]
and

A = A(0) =

[
ATA C

CT 0

]
and if A and A(W ) are invertible for W 6= 0, it can be proved that

A−1(W ) = A−1 −

[
0 0
0 W

]
Consequently

κ(A(W )) ≤ κ(A) + ||W ||2||C||2 + α||W ||
for some α > 0. That is, the condition number of A(W ) is bounded by the
condition number of A and some positive terms.

Another useful technique is to find an approximation to (3.121) by solving
the following weighted unconstrained minimization problem.
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min
x∈<n

||Ax− b||2 + µ2||CTx||2

For large values of µ, the solution x̂(µ) of the unconstrained problem is a good
appproximation to the solution x̂ of the constrained problem (3.121). We can
use the generalized singular value decompositions of matrices A and CT , that
allows us to simultaneously diagonalize A and CT .

UTAX = diag(α1, . . . , αm)

V TCTX = diag(γ1, . . . , γm)

where U and V are orthogonal matrices and X is some general matrix. The
solution to the constrained problem can be expressed as

x̂ =
p∑
i=1

uTi b
αi

xi

The analytical solution x̂(µ) is then given as

x̂(µ) =
p∑
i=1

αiuTi b
α2
i + µ2γ2

i

xi + x̂

It can be easily seen that as µ2 →∞, x̂(µ)→ x̂.
Generally, if possible, it is better to eliminate the constraints, since this

makes the problem better conditioned. We will discuss one final approach to
solving the linearly constrained least squares problem (3.121), which reduces
the dimensionality of the problem by eliminating the constraints. It is hinged
on computing the QR factorization of C.

QTC =

(
R

0

)
p

n− p
(3.127)

This yields

AQT =
(
A1 A2

)
(3.128)

and

QTx =

(
y

z

)
p

n− p
(3.129)
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The constrained problem then becomes

min
x∈<n

||b−A1y −A2z||2

subject to RTy = 0

Since R is invertible, we must have y = 0. Thus, the solution x̂ to the con-
strained least squares problem can be determined as

x̂ = QT

(
0

ẑ

)
(3.130)

where
ẑ = argmax

z
||b−A2z||2

It can be proved that the matrix A2 is atleast as well-conditioned as the matrix
A. Often, the original problem is singular and imposing the constraints makes
it non-singular (and is reflected in a non-singular matrix A2.

3.8.3 Least Squares with Quadratic Constraints

The quadratically constrained least squares problem is often encountered in
regularization problems and can be stated as follows.

min
x∈<n

||Ax− b||22
subject to ||x||22 = α2

Since the objective function as well as the constraint function are convex, the
KKT conditions (c.f. Section 3.4.4) are necessary and sufficient conditions for
the optimality of the problem at the primal-dual variable pair given by (x̂, µ̂).
The KKT conditions lead to the following equations

(ATA+ µI)x = ATb (3.131)
xTx = α2 (3.132)

The expression in (3.131) is the solution to what the statisticians sometimes
refer to as the ridge regression problem. The solution to the problem under
consideration has the additional constraint though, that the norm of the solution
vector x̂ should equal |α|. The two equations above yield the so-called secular
equation stated below.

bTA(ATA+ µI)−2ATb− α2 = 0
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Further, the matrix A can be diagonalized using its singular value decom-
position A = UΣV T to obtain the following equation which is to be solved.

n∑
i=1

β2
i

σ2
i

(σ2
i + µ)2

− α2 = 0

3.8.4 Total Least Squares

The total least squares problem is stated as

min
x∈<n,E∈<m×n,r∈<m

||E||2F + ||r||22

subject to (A+ E)x = b + r



References

[CGH97] E. Castillo, J. M. Gutierrez, and A. S. Hadi. Expert systems and
probabilistic network models. Springer-Verlag, 1997.

[Jen01] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer,
2001.

[Jor98] M. I. Jordan. Learning in Graphical Models. MIT Press, 1998.

[Lau96] S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[SS90] Glenn Shafer and Prakash P. Shenoy. Probability propagation. Ann.
Math. Artif. Intell., 2:327–351, 1990.

299


