
S.V.N. Vishwanathan: Graph Kernels, Page 1

Graph Kernels
S.V.N. Vishwanathan

vishy@stat.purdue.edu
http://www.stat.purdue.edu/~vishy

Purdue University

Joint work with Karsten Borgwardt, Nic Schraudolph, and
Risi Kondor

http://www.stat.purdue.edu/~vishy

Graphs are Everywhere

S.V.N. Vishwanathan: Graph Kernels, Page 2

Two protein molecules The Internet

Comparing Graphs:
How similar are two graphs?

Comparing Nodes:
How similar are two nodes of a graph?

Adjacency Matrix

S.V.N. Vishwanathan: Graph Kernels, Page 3

1

2
3

4

5

6

7 8

vertices/nodes edges

Undirected Graph G(V, E)

A =

0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0
1 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0

sub-matrix of A = a subgraph of G

Degree Matrix

S.V.N. Vishwanathan: Graph Kernels, Page 4

1

2
3

4

5

6

7 8

D =

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

Normalized Adjacency matrix Ã = D−1A is a stochastic ma-
trix (each row sums to one)

Graph Laplacian

S.V.N. Vishwanathan: Graph Kernels, Page 5

1

2
3

4

5

6

7 8

L =

2 −1 0 0 0 0 −1 0
−1 2 −1 0 0 0 0 0

0 −1 3 −1 0 0 0 −1
0 0 −1 4 −1 −1 0 −1
0 0 0 −1 2 −1 0 0
0 0 0 −1 −1 3 −1 0
−1 0 0 0 0 −1 3 −1

0 0 −1 −1 0 0 −1 3

L = D − A

Normalized version

L̃ = D−
1
2(D − A)D−

1
2

Spectrum bounded between 0 and 2

Random Walk

S.V.N. Vishwanathan: Graph Kernels, Page 6

1

2
3

4

5

6

7 8

?

From a vertex i randomly jump to any adjacent vertex j

Probability of jumping to j proportional to Ãij

Walks of Length 2

S.V.N. Vishwanathan: Graph Kernels, Page 7

1

2
3

4

5

6

7 8

A2 =

2 0 1 0 0 1 0 1
0 2 0 1 0 0 1 1
1 0 3 1 1 1 1 1
0 1 1 4 1 1 2 1
0 0 1 1 2 1 1 1
1 0 1 1 1 3 0 2
0 1 1 2 1 0 3 0
1 1 1 1 1 2 0 3

Entries of A2 = number of length 2 walks

Entries of Ã2 = probability of length 2 walks

Idea!

S.V.N. Vishwanathan: Graph Kernels, Page 8

1

2
3

4

5

6

7 8

Count walks?

Count number of
walks between two
nodes

Two nodes are similar
if they are connected
by many walks

Does not work :(

If graph has cycles then number of walks goes to∞

A Better Idea!

S.V.N. Vishwanathan: Graph Kernels, Page 9

1

2
3

4

5

6

7 8

Count walks? Discount contribution
of longer walks

Count number of
walks between two
nodes

Two nodes are similar
if they are connected
by many walks

Works if discounting factor chosen appropriately!

Diffusion Kernels

S.V.N. Vishwanathan: Graph Kernels, Page 10

Discounting Factor:
Discount a k length walk by λk/k! for 0 ≤ λ ≤ 1

Similarity:
Similarity defined as

k(i, j) =

[∑
k

λk

k!
Ak

]
ij

= [exp(λA)]ij

Kondor and Lafferty:
Work with diffusion and hence the graph Laplacian

k(i, j) =

[∑
k

λk

k!
Lk

]
ij

= [exp(λL)]ij

They show that this is a valid p.s.d kernel

Extensions

S.V.N. Vishwanathan: Graph Kernels, Page 11

Laplacian as a regularizer:
For any real-valued function f on the vertices of a graph

〈f, Lf〉 = f>Lf = −1

2

∑
i∼j

(fi − fj)2

Can regularize differently if we replace L by

r(L) :=
∑
i

r(ρi)lil
>
i

Any monotonically increasing function of ρ admissible

Smola and Kondor

S.V.N. Vishwanathan: Graph Kernels, Page 12

Other Kernels:

r(ρ) = 1 + σ2ρ, K = (I + σ2L)−1 regularized Laplacian
r(ρ) = (1− λρ)−p, K = (I − λL)p p-step random walk

Comparing Graphs

S.V.N. Vishwanathan: Graph Kernels, Page 13

3

4

5

6

1

2

7 8

Count matching walks?

3'
1'

2'

4'
5'

Count number of
matching walks in
two graphs

Discount contribution
of longer walks

Two graphs are simi-
lar if many walks are
matching

Three Questions:
How to formalize this intuition?
How to compute this efficiently?
How is this related to diffusion kernels?

Direct Product Graph

S.V.N. Vishwanathan: Graph Kernels, Page 14

3'
1'

2'

4'

3
1

2

11' 21'
31'

12'

32'

22'

13'
23'

33'
14'

24'

34'

X

Formal Definition

V×(G×G′) ={(v, v′) : v ∈ V, v′ ∈ V ′}
E×(G×G′) ={((v, v′), (w,w′)) : (v, w) ∈ E, (v′, w′) ∈ E ′}

Key Insight

S.V.N. Vishwanathan: Graph Kernels, Page 15

Random Walk on Product Graph:
Equivalent to simultaneous random walk on input graphs

Kernel Definition:

k(G,G′) =
1

|G| |G′|
∑
k

λk

k!
e>Ak

× e =
1

|G| |G′|
e> exp(λA×) e

Extensions

S.V.N. Vishwanathan: Graph Kernels, Page 16

Different Decay Factor (Gärtner et al.):
Using a λk decay

k(G,G′) =
1

|G||G′|
∑
k

λk e>Ak
× e

=
1

|G||G′|
e>(I−λA×)−1 e

Taking expectations:
Instead of summing, take expectations

k(G,G′) =
∑
k

λk q>×A
k
×p× = q>×(I−λA×)−1p×

p× and q× are initial and stopping probabilities resp.

Efficient Computation

S.V.N. Vishwanathan: Graph Kernels, Page 17

Product Graph is Huge:
If G and G′ have n vertices then product graph has n2

vertices
Adjacency matrix A× is of size n2 × n2

Houston we have a problem:
Kernel computation involves

k(G,G′) = q>× exp(λA×)︸ ︷︷ ︸
O(n6) !

p×

or

k(G,G′) = q>× (I−λA×)−1︸ ︷︷ ︸
O(n6) !

p×

Kronecker Products

S.V.N. Vishwanathan: Graph Kernels, Page 18

Definition (by example):

A =

[
1 0
0 1

]
and B =

 2 5 2
5 2 5
1 5 2

then

A⊗B =

2 5 2 0 0 0
5 2 5 0 0 0
1 5 2 0 0 0
0 0 0 2 5 2
0 0 0 5 2 5
0 0 0 1 5 2

Key Insight

S.V.N. Vishwanathan: Graph Kernels, Page 19

The adjacency matrix of the product graph

A× = A⊗ A′

Can compute exp(A×) as

exp(A×) = exp(A)︸ ︷︷ ︸
O(n3)

⊗ exp(A′)︸ ︷︷ ︸
O(n3)

Computing (I−λA)−1 involves a bit more work . . .

Sylvester Equations

S.V.N. Vishwanathan: Graph Kernels, Page 20

Claim:
Computing the Gärtner et. al kernel is no harder than
solving

X = A′XA> + P

Sylvester Equations:
The above equation is called a Sylvester equation
Well studied in control theory
Efficiently solvable in O(n3) time
dylap method in Matlab

Before the proof . . .

S.V.N. Vishwanathan: Graph Kernels, Page 21

vec operator:

B =

 2 5 2
5 2 5
1 5 2

 and vec(B) =

2
5
1
5
2
5
2
5
2

Key Equation:

vec(ABC)= (C> ⊗ A) vec(B)

The Proof

S.V.N. Vishwanathan: Graph Kernels, Page 22

Rewrite the Sylvester equation as

vec(X) = vec(A′XA>) + vec(P)

Apply key equation

vec(X) = (A⊗ A′) vec(X) + vec(P)

Rearrange

(I−A⊗ A′) vec(X) = vec(P)

or equivalently

vec(X) = (I−A⊗ A′)−1 vec(P)

Let p× = vec(P) and multiply both sides by q×

q>× vec(X) = q>×(I−A⊗ A′)−1p× = K(G,G′)

Other Schemes

S.V.N. Vishwanathan: Graph Kernels, Page 23

Basic Idea:

vec(A′XA>)︸ ︷︷ ︸
O(n3)

= (A⊗ A′) vec(X)︸ ︷︷ ︸
O(n4)

Can exploit sparsity of A and A′ to speed up things

Fixed Point Iteration:
Solve for a fixed point (Kashima et. al):

(I−A⊗ A′) vec(X∞) = vec(X∞)

Conjugate Gradient:
Fast matrix-vector multiplication to speed up CG solver
Convergence depends on spectrum of A and A′

Relation to Diffusion Kernels

S.V.N. Vishwanathan: Graph Kernels, Page 24

Laplacian of the Direct Product Graph:
In general L× 6= L1 ⊗ L2 :(
But there is a fix ...

Cartesian Product of Graphs:

V� ={(v, v′) : v ∈ V, v′ ∈ V ′}
E� ={((v, v′), (w,w′)) : (v, w) ∈ E, (v′, w′) ∈ E ′}

For Cartesian products

A� = A1 ⊕ A2 := A1 ⊗ I + I ⊗ A2

L� = L1 ⊕ L2

All our efficient computation tricks apply!
Is the kernel PSD?

Experiments

S.V.N. Vishwanathan: Graph Kernels, Page 25

Scaling Behavior - I:
Begin with empty graphs of size 2k where k = 1, . . . 10

Randomly insert edges until
avg. degree at least 2 or
graph is full

Generate 10 random graphs and compute kernel matrix

Experiments

S.V.N. Vishwanathan: Graph Kernels, Page 26

Scaling Behavior - II:
Begin with empty graphs of size 32

Randomly insert edges until
avg. fill-in of adjacency matrix is 10% . . . 100% and
Graph is connected

Generate 10 random graphs and compute kernel matrix

Experiments

S.V.N. Vishwanathan: Graph Kernels, Page 27

Impact of the vec-trick:
Same graphs as the runtime vs nodes experiment
Use the vec trick in the fixed point iteration
Compare to original fixed point iteration

Experiments

S.V.N. Vishwanathan: Graph Kernels, Page 28

Unlabeled Graphs: We computed graph kernels on four
datasets for molecular function prediction: Mutag and
Ptc (chemical compounds), Enzyme and Protein (protein
structures). We report runtimes for computing a 100 × 100
kernel matrix.

dataset Mutag Ptc Enzyme Protein
nodes/graph 17.7 26.7 32.6 38.6
edges/node 2.2 1.9 3.8 3.7

Direct 18’09" 142’53" 31h* 36d*
Sylvester 25.9" 73.8" 48.3" 69’15"

Conjugate 42.1" 58.4" 44.6" 55.3"
Fixed-Point 12.3" 32.4" 13.6" 31.1"

Experiments

S.V.N. Vishwanathan: Graph Kernels, Page 29

Labeled Graphs: We repeated the above graph kernel com-
putation, now using either a linear or delta kernel between
node labels as well.

kernel delta linear
dataset Mutag Ptc Enzyme Protein

Direct 7.2h 1.4d* 2.4d* 5.3d*
Sylvester 3.9d* 2.7d* 89.8" 25’24"

Conjugate 2’35" 3’20" 124.4" 3’01"
Fixed Point 1’05" 1’31" 50.1" 1’47"

What I did not talk about

S.V.N. Vishwanathan: Graph Kernels, Page 30

Random walks on other semirings e.g. (min,+)

Why (min,+) does not yield p.s.d kernels

Differences between A, Ã, L, and L̃

Kernels on vertices (yields marginal graph kernels of
Kashima et. al)

Extensions to trajectories of ARMA models (joint work with
René Vidal and Alex Smola)

General theory using Binet-Cauchy theorem (joint work
with Alex Smola)

Connections to Rational kernels of Cortes et. al

Connections to R-Convolution kernels of Haussler

Overview of my Research

S.V.N. Vishwanathan: Graph Kernels, Page 31

Structured Input:
Strings
Graphs
ARMA models

Structured Output:
Exponential families in feature space

Optimization for Machine Learning:
Bundle methods
subBFGS

Theory
Fundamental limitations of kernels
Rates of convergence of boosting algorithms

Conclusion

S.V.N. Vishwanathan: Graph Kernels, Page 32

First unifying view of

Diffusion kernels
Regularization on graphs
Geometric and random walk kernels
Marginal graph kernels

Efficient computation by exploiting Kronecker products

Papers at http://www.stat.purdue.edu/~vishy

http://www.stat.purdue.edu/~vishy

Big Open Question

S.V.N. Vishwanathan: Graph Kernels, Page 33

Comparing paths in two different graphs is polynomial

Subgraph isomorphism is known to be NP-hard

Computing the so-called universal graph kernel which
counts all common subgraphs of two graphs is harder than
subgraph isomorphism

When we compare any other subgraphs e.g.

simple paths (where vertices do not repeat)
cycles
trees

we seem to lose polynomial run-time

Are there other subgraphs for which efficient computation
is possible?

References

S.V.N. Vishwanathan: Graph Kernels, Page 34

Journal Papers
[1] S. V. N. Vishwanathan, Karsten Borgwardt, Nicol N. Schraudolph, and Imre Risi Kondor. On graph kernels. J. Mach. Learn. Res.,

2008. submitted.

[2] S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical systems and its application to the analysis of
dynamic scenes. International Journal of Computer Vision, 73(1):95–119, 2007.

Conference Papers
[1] S. V. N. Vishwanathan, Karsten Borgwardt, and Nicol N. Schraudolph. Fast computation of graph kernels. Technical report, NICTA,

2006.

[2] S. V. N. Vishwanathan and A. J. Smola. Binet-Cauchy kernels. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 1441–1448, Cambridge, MA, 2005. MIT Press.

Applications to Bioinformatics
[1] Karsten M. Borgwardt, H.-P. Kriegel, S. V. N. Vishwanathan, and N. Schraudolph. Graph kernels for disease outcome prediction from

protein-protein interaction networks. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E Klein, editors,
Proceedings of the Pacific Symposium of Biocomputing 2007, Maui Hawaii, January 2007. World Scientific.

[2] Karsten M. Borgwardt, S. V. N. Vishwanathan, and H.-P. Kriegel. Class prediction from time series gene expression profiles us-
ing dynamical systems kernels. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E Klein, editors,
Proceedings of the Pacific Symposium of Biocomputing 2006, pages 547–558, Maui Hawaii, January 2006. World Scientific.

[3] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.P. Kriegel. Protein function prediction via
graph kernels. In Proceedings of Intelligent Systems in Molecular Biology (ISMB), Detroit, USA, 2005.

	
	 redGraph Kernelsblack
	redGraphs are Everywhereblack
	redAdjacency Matrixblack
	redDegree Matrixblack
	redGraph Laplacianblack
	redRandom Walkblack
	redWalks of Length 2black
	redIdea!black
	redA Better Idea!black
	redDiffusion Kernelsblack
	redExtensionsblack
	redSmola and Kondorblack
	redComparing Graphsblack
	redDirect Product Graphblack
	redKey Insightblack
	redExtensionsblack
	redEfficient Computationblack
	redKronecker Productsblack
	redKey Insightblack
	redSylvester Equationsblack
	redBefore the proof …black
	redThe Proofblack
	redOther Schemesblack
	redRelation to Diffusion Kernelsblack
	redExperimentsblack
	redExperimentsblack
	redExperimentsblack
	redExperimentsblack
	redExperimentsblack
	redWhat I did not talk aboutblack
	redOverview of my Researchblack
	redConclusionblack
	redBig Open Questionblack
	redReferencesblack

