## kLog

## A Language for Logical and Relational Learning with Kernels

Paolo Frasconi ${ }^{1} \quad$ Fabrizio Costa ${ }^{2} \quad$ Luc De Raedt ${ }^{3} \quad$ Kurt De Grave ${ }^{3}$<br>${ }^{1}$ Università di Firenze, Italy ${ }^{2}$ Universität Freiburg, Germany ${ }^{3}$ K.U. Leuven, Belgium

CoLISD.ECML/PKDD — Athens, 09.09.2011

■ A language/framework for kernel-based relational learning

■ A language/framework for kernel-based relational learning
■ Currently embedded in Prolog

■ A language/framework for kernel-based relational learning
■ Currently embedded in Prolog

- Four simple concepts:
- Learning from interpretations

■ Entity/relationship data modeling

- Deductive databases

■ Graph kernels

## Goals

■ Make it possible to design and maintain complex features in a declarative fashion

## Goals

■ Make it possible to design and maintain complex features in a declarative fashion

■ Make it possible to define in the same framework several kinds of learning problems ranging from plain classification and regression to entity classification to (hyper)link prediction and even unsupervised learning

■ Make it possible to design and maintain complex features in a declarative fashion

■ Make it possible to define in the same framework several kinds of learning problems ranging from plain classification and regression to entity classification to (hyper)link prediction and even unsupervised learning
■ Modularity and separation of concerns:
■ Plug-in different graph kernels to create actual features
■ Plug-in different statistical, inference, optimization techniques
■ Simple semantics: the meaning of a kLog script only defines the learning problem and the associated features

## Supervised learning: A quite general formulation

- Fit a linear potential function on some feature space:

$$
F(x, y)=w^{\prime} \phi(x, y)
$$

where $x$ and $y$ are input and output ground atoms

## Supervised learning: A quite general formulation

- Fit a linear potential function on some feature space:

$$
F(x, y)=w^{\prime} \phi(x, y)
$$

where $x$ and $y$ are input and output ground atoms

- $F(x, y)$ measures the compatibility between $x$ and $y$


## Supervised learning: A quite general formulation

■ Fit a linear potential function on some feature space:

$$
F(x, y)=w^{\prime} \phi(x, y)
$$

where $x$ and $y$ are input and output ground atoms
■ $F(x, y)$ measures the compatibility between $x$ and $y$
■ Predictions can be obtained as

$$
f(x)=\arg \max _{y} F(x, y)
$$

This "inference" step is intractable in general (depending on the structure of the interdependencies between variables)

## A classic trilogy

## Propositional

Naïve Bayes

## A classic trilogy

## Propositional

Naïve Bayes
Logistic
regression

## A classic trilogy

## Propositional

Naïve Bayes

Logistic
regression
SVM

## A classic trilogy

## Propositional



## A classic trilogy

## Propositional Sequences



## A classic trilogy

## Propositional Sequences



## General relations

Relational generative models, e.g. MLN, PRM

Relational discriminative models, e.g. MLN, CRF

Max-margin relational machines, e.g. $\mathrm{M}^{3} \mathrm{~N}$

## A classic trilogy

## Propositional Sequences General relations



Similar loss

## kLog by example: UW-CSE



## kLog by example: UW-CSE



■ Classic E/R diagram
■ Boxes are entities

- Diamonds are relationships

■ Ovals are properties

- Underlined properties are entity identifiers (not directly used to create features)


## kLog by example: UW-CSE



```
signature student(
    student_id::self
)::extensional.
signature in_phase(
    student_id::student,
    phase::property)::extensional.
signature years_in_program(
    student_id::student,
    years::property
)::extensional.
signature professor(
    prof_id::self
)::extensional.
signature has_position(
    prof_id::professor,
    position::property
)::extensional.
```


## kLog by example: UW-CSE



```
signature student(
    student_id::self
)::extensional.
signature in_phase(
    student_id::student,
    phase::property)::extensional.
signature years_in_program(
    student_id::student,
    years::property
)::extensional.
signature professor(
    prof_id::self
)::extensional.
signature has_position(
    prof_id::professor,
    position::property
)::extensional.
signature advised_by(
    student_id::student,
    prof_id::professor
```

): :extensional.

## Data

- Data is a set of interpretations (in the pure logical sense)
- One interpretation is a set of ground facts


## Data

- Data is a set of interpretations (in the pure logical sense)
- One interpretation is a set of ground facts

■ Interpretations are independent
■ In UW-CSE there is one interpretation for every research group (AI, Graphics, etc.)

## Data

■ Data is a set of interpretations (in the pure logical sense)

- One interpretation is a set of ground facts
- Interpretations are independent

■ In UW-CSE there is one interpretation for every research group (AI, Graphics, etc.)
■ Interpretations are invisible at the level of kLog scripts (since they are independent, you are not allowed to create interactions)

## Data

■ Data is a set of interpretations (in the pure logical sense)

- One interpretation is a set of ground facts

■ Interpretations are independent
■ In UW-CSE there is one interpretation for every research group (AI, Graphics, etc.)
■ Interpretations are invisible at the level of kLog scripts (since they are independent, you are not allowed to create interactions)
■ The keyword extensional declares that all true ground facts for the given predicate are actually given as data (under the usual CWA).

## Example of interpretation

```
interpretation(ai,student(person311)).
interpretation(ai, student(person14)).
```

interpretation(ai, professor(person7)).
interpretation(ai, professor(person185)).
interpretation(ai,has_position(person292,faculty_affiliate)).
interpretation(ai,has_position(person79,faculty)).
interpretation(ai,in_phase(person139, post_quals)).
interpretation(ai,in_phase(person333,pre_quals)).
interpretation(ai,years_in_program(person382,year_3)).
interpretation(ai,years_in_program(person333,year_2)).
interpretation(ai, advised_by (person265, person168)).
interpretation(ai, advised_by (person 352 , person415)).

## Interpretations may contain more relations

```
interpretation(ai,publication(title25,person284)).
interpretation(ai,publication(title284,person14)).
interpretation(ai,publication(title110,person14)).
interpretation(ai,taught_by(course12,person211,autumn_0001)).
interpretation(ai,taught_by(course123,person150,autumn_0001)).
interpretation(ai,taught_by(course44,person293,winter_0001)).
interpretation(ai,ta(course44,person193,winter_0304)).
interpretation(ai,ta(course128,person271,winter_0304)).
interpretation(ai,ta(course128,person392,winter_0304)).
```


## Intensional signatures



```
signature on_same_paper(
    student_id::student,
    prof_id::professor
)::intensional.
```


## Intensional signatures



```
signature on_same_paper(
    student_id::student,
    prof_id::professor
) ::intensional.
on_same_paper(S,P) :-
    student(S), professor(P),
    publication(Pub, S),
    publication(Pub,P).
```


## Intensional signatures



```
signature on_same_paper(
    student_id::student,
    prof_id::professor
) ::intensional.
on_same_paper(S,P) :-
    student(S), professor(P),
    publication(Pub, S),
    publication(Pub,P).
signature on_same_course(
    student_id::student,
    prof_id::professor
)::intensional.
on_same_course(S,P) :-
    professor(P), student(S),
    ta(Course,S,Term),
    taught_by(Course,P,Term).
```


## Graphicalization

■ Second semantic layer: map each interpretation into a simple graph (not a hypergraph).

## Graphicalization

■ Second semantic layer: map each interpretation into a simple graph (not a hypergraph).
■ The mapping is lossless:
■ There is one vertex for every ground fact, labeled by the fact itself

## Graphicalization

■ Second semantic layer: map each interpretation into a simple graph (not a hypergraph).

- The mapping is lossless:

■ There is one vertex for every ground fact, labeled by the fact itself
■ One (undirected) edge between $u$ and $v$ iff:

1) $u$ is an entity-fact
2) $v$ is a relationship-fact
3) $v$ refers to the identifier in $u$
(so the graph is bipartite)

## Graphicalization

■ Second semantic layer: map each interpretation into a simple graph (not a hypergraph).
■ The mapping is lossless:
■ There is one vertex for every ground fact, labeled by the fact itself
■ One (undirected) edge between $u$ and $v$ iff:

1) $u$ is an entity-fact
2) $v$ is a relationship-fact
3) $v$ refers to the identifier in $u$
(so the graph is bipartite)
■ Graphicalization is essentially grounding the E/R diagram

## Graphicalization in UW-CSE



## Graphicalization in UW-CSE



## Supervised learning jobs

■ A supervised learning job is defined by marking some signature(s) as target (aka query, aka output)

## Supervised learning jobs

■ A supervised learning job is defined by marking some signature(s) as target (aka query, aka output)
■ This means to kLog: learn a statistical model capable of predicting tuples for the corresponding relation(s)

## Supervised learning jobs

■ A supervised learning job is defined by marking some signature(s) as target (aka query, aka output)
■ This means to kLog: learn a statistical model capable of predicting tuples for the corresponding relation(s)
■ The focus of a job is on what, not on how (different statistical models can solve the same job - maybe with different performances)

## Single task binary classification

■ Job type obtained when we specify a single target signature with no properties.

■ Example:

```
signature advised_by(
    s::student,
    p::professor
)::extensional.
```

■ In this example $y$ consists of all ground atoms of the relation advised_by
■ Each tuple of identifiers in the target relation, e.g. a (student, professor) pair, is called a case (or instance)
■ if the target signature has entity sets $\mathcal{E}_{1}, \cdots, \mathcal{E}_{k}$, the set of cases is their the Cartesian product

## Other jobs types

■ Single-task multiclass classification: if the target signature contains a categorical property

```
signature pageclass(
        url::webpage,
        category::property
    ) ::extensional.
```


## Other jobs types

■ Single-task multiclass classification: if the target signature contains a categorical property

```
signature pageclass(
    url::webpage,
    category::property
    ) ::extensional.
```

■ Single-task regression: if the target signature contains a numerical property

```
signature intelligence(
        student_it::student,
        qi::property
) ::extensional.
```


## Other jobs types

■ Single-task multiclass classification: if the target signature contains a categorical property

```
signature pageclass(
    url::webpage,
    category::property
    ) ::extensional.
```

■ Single-task regression: if the target signature contains a numerical property

```
signature intelligence(
    student_it::student,
    qi::property
) ::extensional.
```

■ Multi-task: if there are several target signatures or a single target signature with several properties.

## Overview of job types

| $\#$ <br> properties | 0 |
| :---: | :--- |
| 0 | of <br> Binary classification of <br> interpretations |
| 1 | Multiclass / regression <br> on interpretations <br> Multitask on interpre- <br> tations |

Relational arity
Relational arity
1
2

Binary classification of Link prediction entities
Multiclass / regression on entities Multitask predictions Multitask attributed on entities link prediction

## Features (via graph kernels)

■ The next semantic layer of kLog concerns feature vectors
■ Here we use graph kernels

## Features (via graph kernels)

- The next semantic layer of kLog concerns feature vectors

■ Here we use graph kernels
■ In principle any graph kernel can be used and the architecture of kLog is open enough to allow different feature generators to be plugged in

## Features (via graph kernels)

- The next semantic layer of kLog concerns feature vectors
- Here we use graph kernels

■ In principle any graph kernel can be used and the architecture of kLog is open enough to allow different feature generators to be plugged in
■ In practice we have implemented a generalization of the Neighborhood Subgraph Pairwise Distance Kernel (NSPDK, Costa \& De Grave, ICML 2010)

## NSPDK: Core ideas

- Decompose graphs into subgraphs rooted at certain designated vertices called kernel-points (KP)
- Consider all pairs of such subgraphs
- Count the number of common pairs between two graphs

■ Use hashing to approximate subgraph isomorphism

## The NP-relation

■ Given graph $G=(V, E)$ and $u, v \in V$, let

$$
\delta_{u, v}=\left\{\begin{array}{cc}
\operatorname{SPD}(u, v) & \text { if } u, v \in \mathrm{KP} \\
\infty & \text { otherwise }
\end{array}\right.
$$

where SPD is for shortest-path-distance

## The NP-relation

■ Given graph $G=(V, E)$ and $u, v \in V$, let

$$
\delta_{u, v}=\left\{\begin{array}{cc}
\operatorname{SPD}(u, v) & \text { if } u, v \in \mathrm{KP} \\
\infty & \text { otherwise }
\end{array}\right.
$$

where SPD is for shortest-path-distance
■ Let $\mathcal{N}_{r}^{v}(G)$ denote the subgraph of $G$ induced by all $x \in V$ s.t. $\operatorname{SPD}(x, v) \leq r$

## The NP-relation

■ Given graph $G=(V, E)$ and $u, v \in V$, let

$$
\delta_{u, v}=\left\{\begin{array}{cc}
\operatorname{SPD}(u, v) & \text { if } u, v \in \mathrm{KP} \\
\infty & \text { otherwise }
\end{array}\right.
$$

where SPD is for shortest-path-distance
■ Let $\mathcal{N}_{r}^{\nu}(G)$ denote the subgraph of $G$ induced by all $x \in V$ s.t. $\operatorname{SPD}(x, v) \leq r$

- The neighborhood-pair (NP) relation is the set of triplets

$$
R_{r, d}=\left\{(A, B, G): A \cong \mathcal{N}_{r}^{v}(G), B \cong \mathcal{N}_{r}^{u}(G), \delta_{u, v}=d\right\}
$$

where $\cong$ is graph isomorphism

NP's for fixed $d=6$


NP's for fixed $d=6$


NP's for fixed $d=6$

$u \sim 6 \sim v$

$$
r=0
$$

NP's for fixed $d=6$


NP's for fixed $d=6$


## NP's for fixed $d=6$



NP's for fixed $r=2$


NP's for fixed $r=2$


NP's for fixed $r=2$


## NP's for fixed $r=2$



## NP's for fixed $r=2$



## Definition of the NSPDK

- $\kappa_{r, d}$ counts common NP's between two graphs:

$$
\kappa_{r, d}\left(G, G^{\prime}\right)=\sum_{\substack{(A, B) \in R_{r, d}^{-1}(G) \\\left(A^{\prime}, B^{\prime}\right) \in R_{r, d}^{-1}\left(G^{\prime}\right)}} \delta\left(A, A^{\prime}\right) \delta\left(B, B^{\prime}\right)
$$

where the "inverse" of a relation $R \subset \mathcal{A} \times \mathcal{B} \times \mathcal{C}$ is the multiset $R^{-1}(c)=\{(a, b): R(a, b, c)\}$

## Definition of the NSPDK

- $\kappa_{r, d}$ counts common NP's between two graphs:

$$
\kappa_{r, d}\left(G, G^{\prime}\right)=\sum_{\substack{(A, B) \in R_{r, d}^{-1}(G) \\\left(A^{\prime}, B^{\prime}\right) \in R_{r, d}^{-1}\left(G^{\prime}\right)}} \delta\left(A, A^{\prime}\right) \delta\left(B, B^{\prime}\right)
$$

where the "inverse" of a relation $R \subset \mathcal{A} \times \mathcal{B} \times \mathcal{C}$ is the multiset $R^{-1}(c)=\{(a, b): R(a, b, c)\}$
■ Overall kernel:

$$
K\left(G, G^{\prime}\right)=\sum_{r=0}^{R} \sum_{d=0}^{D} \kappa_{r, d}\left(G, G^{\prime}\right)
$$

## Soft matches

■ The hard-match might produce very "rare" features depending on the structure of the graph

## Soft matches

- The hard-match might produce very "rare" features depending on the structure of the graph

■ Bad if vertices have high degree

## Soft matches

■ The hard-match might produce very "rare" features depending on the structure of the graph
■ Bad if vertices have high degree
■ Soft match kernel:

$$
\kappa_{r, d}\left(G, G^{\prime}\right)=\sum_{\substack{(A, B) \in R_{r, d}^{-1}(G) \\\left(A^{\prime}, B^{\prime}\right) \in R_{r, d}^{-1}\left(G^{\prime}\right)}} \sum_{\substack{v \in V(A) \cup V(B) \\ v^{\prime} \in V\left(A^{\prime}\right) \cup V\left(B^{\prime}\right)}} \delta\left(\mathcal{L}(v), \mathcal{L}\left(v^{\prime}\right)\right)
$$

where $\mathcal{L}(v)$ is the label of vertex $v$

## Example: small molecules



```
signature atm(
    atom_id::self,
    element::property)::extensional.
signature bnd(
    atom_1@b::atm,
    atom_1@b::atm,
    type::property)::extensional.
signature fgroup(
    fgroup_id::self,
    group_type::property
    ) ::intensional.
signature fgmember(
    fg::fgroup,
    atom::atm)::intensional.
signature fg_linked(
    fg::fgroup,
    alichain::fgroup,
    saturation::property)::intensional.
```

signature mutagenic: :extensional.

## A whole kLog script

```
:- use_module('klog').
begin_domain.
signature atm(atom_id::self,element::property)::extensional.
signature activity(act::property): :extensional.
kernel_points([atm, fgroup]).
end_domain.
experiment :-
    new_feature_generator(my_fg,nspdk),
    set_klog_flag(my_fg,radius, 4),
    set_klog_flag(my_fg,distance,8),
    attach(bursi_ext),
    new_model (my_model, libsvm_c_svc),
    set_klog_flag(my_model,c,0.5),
    stratified_kfold(mutagenic,10,my_model,my_fg,muta_stratum).
```


## Small molecules (regression/classification)

Biodegradability

| Setting | RMSE | SCC | MAPE |
| :--- | :--- | :--- | :--- |
| Functional groups | $1.07 \pm 0.01$ | $0.54 \pm 0.01$ | $14.0 \pm 0.1$ |
| Atom bonds | $1.13 \pm 0.01$ | $0.48 \pm 0.01$ | $14.5 \pm 0.1$ |

## Small molecules (regression/classification)

Biodegradability

| Setting | RMSE | SCC | MAPE |
| :--- | :--- | :--- | :--- |
| Functional groups | $1.07 \pm 0.01$ | $0.54 \pm 0.01$ | $14.0 \pm 0.1$ |
| Atom bonds | $1.13 \pm 0.01$ | $0.48 \pm 0.01$ | $14.5 \pm 0.1$ |
| Bursi |  |  |  |
| Setting | AUROC | F1 | Error\% |
| Functional groups | $0.91 \pm 0.01$ | $86.78 \pm 1.05$ | $14.7 \pm 1.5$ |
| Atom bonds | $0.90 \pm 0.01$ | $85.21 \pm 1.37$ | $16.9 \pm 1.5$ |

## Small molecules (regression/classification)

## Biodegradability

| Setting | RMSE | SCC | MAPE |
| :--- | :--- | :--- | :--- |
| Functional groups | $1.07 \pm 0.01$ | $0.54 \pm 0.01$ | $14.0 \pm 0.1$ |
| Atom bonds | $1.13 \pm 0.01$ | $0.48 \pm 0.01$ | $14.5 \pm 0.1$ |

Functional groups $0.91 \pm 0.01 \quad 86.78 \pm 1.05 \quad 14.7 \pm 1.5$

| Atom bonds | $0.90 \pm 0.01 \quad 85.21 \pm 1.37 \quad 16.9 \pm 1.5$ |
| :--- | :--- | :--- | :--- |

With functional groups



## Is the NPDK kernel general enough?

- What about multiple interdependent predictions within the same interpretation?


## Is the NPDK kernel general enough?

- What about multiple interdependent predictions within the same interpretation?
- Two possible answers:


## Is the NPDK kernel general enough?

■ What about multiple interdependent predictions within the same interpretation?

- Two possible answers:
- The graph kernel creates joint features $\phi(x, y)$ so go for collective (structured-output) prediction i.e. argmax $w^{\prime} \phi(x, y)$ over an exponential number of assignments to $y$. This is expecially challenging because intensional predicates need to be re-evaluated for different assignments.


## Is the NPDK kernel general enough?

- What about multiple interdependent predictions within the same interpretation?
- Two possible answers:
- The graph kernel creates joint features $\phi(x, y)$ so go for collective (structured-output) prediction i.e. $\operatorname{argmax} w^{\prime} \phi(x, y)$ over an exponential number of assignments to $y$. This is expecially challenging because intensional predicates need to be re-evaluated for different assignments.
■ Project the collective problem into several i.i.d. views


## Viewpoints and i.i.d. views (non-collective)

- Let $c \in y$ be a case


## Viewpoints and i.i.d. views (non-collective)

- Let $c \in y$ be a case

■ The viewpoint of $c, W_{c}$, is the set of vertices that touch $c$ in the graph

## Viewpoints and i.i.d. views (non-collective)

- Let $c \in y$ be a case

■ The viewpoint of $c, W_{c}$, is the set of vertices that touch $c$ in the graph

- Consider the mutilated graph $G_{c}$ where all vertices in $y$ except c are removed


## Viewpoints and i.i.d. views (non-collective)

- Let $c \in y$ be a case
- The viewpoint of $c, W_{c}$, is the set of vertices that touch $c$ in the graph
- Consider the mutilated graph $G_{c}$ where all vertices in $y$ except c are removed
■ Define a kernel $\hat{\kappa}$ on mutilated graphs: like NSPDK but with the restriction that the first endpoint must be in $W_{c}$

$$
\hat{R}_{r, d}=\left\{\left(A, B, G_{c}\right): A \cong \mathcal{N}_{r}^{v}, B \cong \mathcal{N}_{r}^{u}, v \in W_{c}, \delta_{u, v}=d\right\}
$$

## Viewpoints example



## View points and i.i.d. views (non-collective)

■ We get in this way a kernel "centered" around case c:

$$
\hat{K}\left(G_{c}, G_{c^{\prime}}^{\prime}\right)=\sum_{r, d} \sum_{\substack{A, B \in \hat{R}_{r . d}^{-1}\left(G_{c}\right) \\ A^{\prime}, B^{\prime} \in \hat{R}_{r, d}\left(G_{c^{\prime}}^{\prime}\right)}} \delta\left(A, A^{\prime}\right) \delta\left(B, B^{\prime}\right)
$$

## View points and i.i.d. views (non-collective)

■ We get in this way a kernel "centered" around case c:

$$
\hat{K}\left(G_{c}, G_{c^{\prime}}^{\prime}\right)=\sum_{r, d} \sum_{\substack{A, B \in \hat{R}_{r . d}^{-1}\left(G_{c}\right) \\ A^{\prime}, B^{\prime} \in \hat{R}_{r, d}^{\prime-1}\left(G_{c^{\prime}}^{\prime}\right)}} \delta\left(A, A^{\prime}\right) \delta\left(B, B^{\prime}\right)
$$

■ Finally let

$$
K\left(G, G^{\prime}\right)=\sum_{c \in y, c^{\prime} \in y^{\prime}} \hat{K}\left(G_{c}, G_{c^{\prime}}^{\prime}\right)
$$

## View points and i.i.d. views (non-collective)

■ We get in this way a kernel "centered" around case $c$ :

$$
\hat{K}\left(G_{c}, G_{c^{\prime}}^{\prime}\right)=\sum_{r, d} \sum_{\substack{A, B \in \hat{R}_{r . d}^{-1}\left(G_{c}\right) \\ A^{\prime}, B^{\prime} \in \hat{R}_{r, d}^{-1}\left(G_{c^{\prime}}^{\prime}\right)}} \delta\left(A, A^{\prime}\right) \delta\left(B, B^{\prime}\right)
$$

■ Finally let

$$
K\left(G, G^{\prime}\right)=\sum_{c \in y, c^{\prime} \in y^{\prime}} \hat{K}\left(G_{c}, G_{c^{\prime}}^{\prime}\right)
$$

- This kernel corresponds to the potential

$$
F(x, y)=w^{\prime} \sum_{c} \hat{\phi}(x, c)
$$

which is clearly maximized by maximizing, independently, all sub-potentials $w^{\prime} \hat{\phi}(x, c)$ with respect to $c$.

## UW-CSE: All information



## Stacking

■ Alternative setting: we only know about persons without knowing whether they are professors or students

## Stacking

■ Alternative setting: we only know about persons without knowing whether they are professors or students
■ Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by

## Stacking

■ Alternative setting: we only know about persons without knowing whether they are professors or students
■ Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
■ In kLog it is easy to define a stacked (pipelined) prediction method:

## Stacking

■ Alternative setting: we only know about persons without knowing whether they are professors or students
■ Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
■ In kLog it is easy to define a stacked (pipelined) prediction method:

- First, learn to discriminate between professors and students


## Stacking

■ Alternative setting: we only know about persons without knowing whether they are professors or students
■ Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
■ In kLog it is easy to define a stacked (pipelined) prediction method:

- First, learn to discriminate between professors and students
- Assert induced groundings (predicted in cross-validation mode)


## Stacking

■ Alternative setting: we only know about persons without knowing whether they are professors or students
■ Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
■ In kLog it is easy to define a stacked (pipelined) prediction method:

- First, learn to discriminate between professors and students
- Assert induced groundings (predicted in cross-validation mode)

■ Learn the binary relation taking saved groundings as additional data

## UW-CSE: Partial information




## WebKB



```
signature csNNN_in_url(
        pageid::page
) ::intensional.
csNNN_in_url(Url) :-
    page(Url),
    atom_codes(Url,CUrl),
    regexp("cs(e*)[0-9]+",CUrl,[],[_Match]).
signature category(
    page_id::page,
    cat::property
) ::extensional.
```


## WebKB: results

```
# Cases: 1039
Case error rate: 12.42%
Interpretation error rate: 100.00%
Contingency table: (rows are predictions)
    researc faculty course student
\begin{tabular}{rrrrrlllllll} 
researc & 59 & 11 & 4 & 15 & \(a, p, r, f 1=\) & 0.94 & 0.66 & 0.70 & 0.68 \\
faculty & 9 & 125 & 2 & 50 & \(a, p, r, f 1=0.91\) & 0.67 & 0.82 & 0.74 \\
course & 0 & 0 & 233 & 0 & \(a, p, r, f 1=\) & 0.99 & 1.00 & 0.95 & 0.98 \\
student & 16 & 17 & 5 & 493 & \(a, p, r, f 1=\) & 0.90 & 0.93 & 0.88 & 0.91
\end{tabular}
Average p,r,f1 = 0.89 0.88 0.88
```


## Internet Movies Database


signature blockbuster(film_id::film)::intensional.
blockbuster (M) :-
opening_weekend(M, Receipts), Receipts > 2000000 .
signature blockbuster (film_id: :film): :intensional.
blockbuster(M) :-
opening_weekend (M, Receipts), Receipts > 2000000 .
signature individual(individual_id::self)::intensional.
individual(P) :-

```
    person(P,_Name), active_enough(P).
```

has_active_role $(P, M)$ : $-\operatorname{acted}$ in $(P, M)$.
has_active_role $(P, M)$ : $-\operatorname{directed}(P, M)$.
has_active_role $(P, M):-\operatorname{produced}(P, M)$.
active_enough(P) :-

$$
\text { setof }(M, \text { has_active_role }(P, M), M s), \quad \text { length }(M s, N), N>2
$$

signature blockbuster(film_id::film)::intensional.
blockbuster(M) :opening_weekend (M, Receipts), Receipts > 2000000.
signature individual(individual_id::self): intensional.
individual(P) :-
person( P, _Name), active_enough ( P ).
has_active_role(P, M) :- acted_in(P, M).
has_active_role(P, M) :- directed(P,M).
has_active_role(P, M) :- produced (P, M).
active_enough(P) :-
setof(M,has_active_role(P,M), Ms), length(Ms,N), N>2.
signature in_blockbuster(individual_id::individual)::intensional.
in_blockbuster(P) :-
has_active_role(P, M),
blockbuster (M).
signature bb_cast_len(film_id::film, $n:: p r o p e r t y):: i n t e n s i o n a l$.
bb_cast_len (M, N) :-
setof(Actor, (acted_in(Actor, M), in_blockbuster(Actor)), Set), length (Set, N).

## Slicing

- In a data set like IMDb there is one single interpretation
- How to split training and test data?


## Slicing


$\square=$ invisible $\quad \square=$ visible $\quad \square^{---}=$targets $\quad \vdots=$ to be predicted

## IMDb: results

| Year | movies | facts | AUROC |
| ---: | ---: | :--- | :--- |
| 1995 | 74 | 2483 | - |
| 1996 | 223 | 6406 | - |
| 1997 | 311 | 8031 | 0.85 |
| 1998 | 332 | 7822 | 0.92 |
| 1999 | 348 | 7842 | 0.88 |
| 2000 | 381 | 8531 | 0.95 |
| 2001 | 363 | 8443 | 0.94 |
| 2002 | 370 | 8691 | 0.93 |
| 2003 | 343 | 7626 | 0.94 |
| 2004 | 371 | 8850 | 0.94 |
| 2005 | 388 | 9093 | 0.92 |
| All |  |  | $0.92 \pm 0.03$ |

## Conclusions

- Highlights

■ Complex feature generation thanks to graph kernels

- Easy but powerful declaration of jobs

■ Most statistical learners pluggable-in (even as external programs)

## Conclusions

■ Highlights
■ Complex feature generation thanks to graph kernels

- Easy but powerful declaration of jobs

■ Most statistical learners pluggable-in (even as external programs)
■ To be done (or to be tried)
■ Collective classification (e.g. label propagation, MaxWalkSAT, ...)
■ Constraints
■ Multitask regularization

## Conclusions

- Highlights

■ Complex feature generation thanks to graph kernels

- Easy but powerful declaration of jobs

■ Most statistical learners pluggable-in (even as external programs)
■ To be done (or to be tried)
■ Collective classification (e.g. label propagation, MaxWalkSAT, ...)
■ Constraints
■ Multitask regularization

- Applications (work in progress)

■ Information extraction from text, e.g. spatial role labeling (Kordjamshidi et al. 2011)
■ Hedge cue detection, e.g. recognition of weasel sentences (Verbeke et al. 2011)
■ Vision, e.g. image segmentation/labeling (Antanas et al. 2011)

