kLog

A Language for Logical and Relational Learning with Kernels

Paolo Frasconi1Fabrizio Costa2Luc De Raedt3Kurt De Grave3¹Università di Firenze, Italy²Universität Freiburg, Germany³K.U. Leuven, Belgium

CoLISD.ECML/PKDD — Athens, 09.09.2011

A language/framework for kernel-based relational learning

A language/framework for kernel-based relational learning
Currently embedded in Prolog

- A language/framework for kernel-based relational learning
- Currently embedded in Prolog
- Four simple concepts:
 - Learning from interpretations
 - Entity/relationship data modeling
 - Deductive databases
 - Graph kernels

 Make it possible to design and maintain complex features in a declarative fashion

- Make it possible to design and maintain complex features in a declarative fashion
- Make it possible to define in the same framework several kinds of learning problems ranging from plain classification and regression to entity classification to (hyper)link prediction and even unsupervised learning

- Make it possible to design and maintain complex features in a declarative fashion
- Make it possible to define in the same framework several kinds of learning problems ranging from plain classification and regression to entity classification to (hyper)link prediction and even unsupervised learning
- Modularity and separation of concerns:
 - Plug-in different graph kernels to create actual features
 - Plug-in different statistical, inference, optimization techniques
 - Simple semantics: the meaning of a kLog script only defines the learning problem and the associated features

Supervised learning: A quite general formulation

■ Fit a linear *potential* function on some feature space:

$$F(x, y) = w'\phi(x, y)$$

where x and y are input and output ground atoms

Supervised learning: A quite general formulation

■ Fit a linear *potential* function on some feature space:

$$F(x, y) = w'\phi(x, y)$$

where x and y are input and output ground atoms
F(x, y) measures the *compatibility* between x and y

Supervised learning: A quite general formulation

■ Fit a linear *potential* function on some feature space:

$$F(x, y) = w'\phi(x, y)$$

where x and y are input and output ground atoms

• F(x, y) measures the *compatibility* between x and y

Predictions can be obtained as

$$f(x) = \arg\max_{y} F(x, y)$$

This "inference" step is intractable in general (depending on the structure of the interdependencies between variables)

	Propositional	Sequences	
Similar features	Naïve Bayes	HMM	
	Logistic regression	Linear-chain CRF	
	SVM	SVM-HMM	

	Propositional	Sequences	General relations
Similar features	Naïve Bayes	НММ	Relational generative models, e.g. MLN, PRM
	Logistic regression	Linear-chain CRF	Relational discriminative models, e.g. MLN, CRF
	SVM	SVM-HMM	Max-margin relational ma- chines, e.g. M ³ N

	Propositional	Sequences	General relations		
- Les	Naïve Bayes	HMM	Relational generative models, e.g. MLN, PRM		
ar leau	Logistic regression	Linear-chain CRF	Relational discriminative models, e.g. MLN, CRF		
	SVM	SVM-HMM	Max-margin relational ma- chines, e.g. M ³ N		
Similar loss					

- Classic E/R diagram
- Boxes are entities
- Diamonds are relationships
- Ovals are properties
- Underlined properties are entity identifiers (not directly used to create features)

signature **student** (student id::self)::extensional. signature in phase (student id::student, phase::property)::extensional. signature years_in_program(student_id::student, years::property)::extensional. signature professor (prof_id::self)::extensional. signature **has_position**(prof_id::professor, position::property)::extensional.

signature student (student id::self)::extensional. signature in phase (student id::student, phase::property)::extensional. signature years_in_program(student_id::student, vears::property)::extensional. signature professor (prof_id::self)::extensional. signature **has_position**(prof_id::professor, position::property)::extensional. signature **advised_by**(student id::student, prof_id::professor

)::extensional.

Data is a set of interpretations (in the pure logical sense)One interpretation is a set of ground facts

- Data is a set of interpretations (in the pure logical sense)
- One interpretation is a set of ground facts
- Interpretations are independent
- In UW-CSE there is one interpretation for every research group (AI, Graphics, etc.)

- Data is a set of interpretations (in the pure logical sense)
- One interpretation is a set of ground facts
- Interpretations are independent
- In UW-CSE there is one interpretation for every research group (AI, Graphics, etc.)
- Interpretations are *invisible* at the level of kLog scripts (since they are independent, you are not allowed to create interactions)

- Data is a set of interpretations (in the pure logical sense)
- One interpretation is a set of ground facts
- Interpretations are independent
- In UW-CSE there is one interpretation for every research group (AI, Graphics, etc.)
- Interpretations are *invisible* at the level of kLog scripts (since they are independent, you are not allowed to create interactions)
- The keyword *extensional* declares that all true ground facts for the given predicate are actually given as data (under the usual CWA).

Example of interpretation

```
interpretation (ai, student (person311)).
interpretation (ai, student (person14)).
interpretation (ai, professor (person7)).
interpretation (ai, professor (person185)).
interpretation(ai, has_position(person292, faculty_affiliate)).
interpretation(ai, has_position(person79, faculty)).
interpretation(ai, in_phase(person139, post_quals)).
interpretation(ai, in_phase(person333, pre_quals)).
interpretation(ai, years_in_program(person382, year_3)).
interpretation(ai, years_in_program(person333, year_2)).
interpretation(ai, advised_by(person265, person168)).
interpretation (ai, advised_by (person352, person415)).
```

Interpretations may contain more relations

interpretation(ai,publication(title25,person284)). interpretation(ai,publication(title284,person14)). interpretation(ai,publication(title110,person14)).

. . .

interpretation(ai,taught_by(course12,person211,autumn_0001)).
interpretation(ai,taught_by(course123,person150,autumn_0001)).
interpretation(ai,taught_by(course44,person293,winter_0001)).

•••

interpretation(ai,ta(course44,person193,winter_0304)). interpretation(ai,ta(course128,person271,winter_0304)). interpretation(ai,ta(course128,person392,winter_0304)).

Intensional signatures

Intensional signatures

Intensional signatures

signature on_same_paper(
 student_id::student,
 prof_id::professor
)::intensional.

on_same_paper(S,P) : student(S), professor(P),
 publication(Pub, S),
 publication(Pub,P).

signature on_same_course(
 student_id::student,
 prof_id::professor
)::intensional.
on_same_course(S,P) : professor(P), student(S),
 ta(Course,S,Term),
 taught_by(Course,P,Term).

 Second semantic layer: map each interpretation into a simple graph (not a hypergraph).

- Second semantic layer: map each interpretation into a simple graph (not a hypergraph).
- The mapping is lossless:
 - There is one vertex for every ground fact, labeled by the fact itself

- Second semantic layer: map each interpretation into a simple graph (not a hypergraph).
- The mapping is lossless:
 - There is one vertex for every ground fact, labeled by the fact itself
 - One (undirected) edge between *u* and *v* iff:
 - 1) *u* is an entity-fact
 - 2) v is a relationship-fact
 - 3) v refers to the identifier in u

(so the graph is bipartite)

- Second semantic layer: map each interpretation into a simple graph (not a hypergraph).
- The mapping is lossless:
 - There is one vertex for every ground fact, labeled by the fact itself
 - One (undirected) edge between *u* and *v* iff:
 - 1) *u* is an entity-fact
 - 2) v is a relationship-fact
 - 3) v refers to the identifier in u

(so the graph is bipartite)

Graphicalization is essentially grounding the E/R diagram

Graphicalization in UW-CSE

Graphicalization in UW-CSE

Supervised learning jobs

 A supervised learning job is defined by marking some signature(s) as target (aka query, aka output)

Supervised learning jobs

- A supervised learning job is defined by marking some signature(s) as target (aka query, aka output)
- This means to kLog: learn a statistical model capable of predicting tuples for the corresponding relation(s)

Supervised learning jobs

- A supervised learning job is defined by marking some signature(s) as target (aka query, aka output)
- This means to kLog: learn a statistical model capable of predicting tuples for the corresponding relation(s)
- The focus of a job is on what, not on how (different statistical models can solve the same job – maybe with different performances)

Single task binary classification

- Job type obtained when we specify a single target signature with **no properties**.
- Example:

```
signature advised_by(
    s::student,
    p::professor
)::extensional.
```

- In this example y consists of all ground atoms of the relation advised_by
- Each tuple of identifiers in the target relation, e.g. a (student,professor) pair, is called a case (or instance)
- if the target signature has entity sets $\mathcal{E}_1, \cdots, \mathcal{E}_k$, the set of cases is their the Cartesian product

Other jobs types

 Single-task multiclass classification: if the target signature contains a categorical property

signature pageclass(
 url::webpage,
 category::property
)::extensional.

Other jobs types

 Single-task multiclass classification: if the target signature contains a categorical property

signature pageclass(
 url::webpage,
 category::property
)::extensional.

 Single-task regression: if the target signature contains a numerical property

signature intelligence(
 student_it::student,
 qi::property
)::extensional.

Other jobs types

 Single-task multiclass classification: if the target signature contains a categorical property

signature pageclass(
 url::webpage,
 category::property
)::extensional.

 Single-task regression: if the target signature contains a numerical property

signature intelligence(
 student_it::student,
 qi::property
)::extensional.

 Multi-task: if there are several target signatures or a single target signature with several properties.

Overview of job types

			Relational arity	
#	of	0	1	2
prope	rties	Binary classification of	Binary classification of	Link prediction
0		interpretations	entities	
1		Multiclass / regression on interpretations	Multiclass / regression on entities	Attributed link predic- tion
>	1	Multitask on interpre- tations	Multitask predictions on entities	Multitask attributed link prediction

Features (via graph kernels)

The next semantic layer of kLog concerns feature vectorsHere we use graph kernels

Features (via graph kernels)

- The next semantic layer of kLog concerns feature vectors
- Here we use graph kernels
- In principle any graph kernel can be used and the architecture of kLog is open enough to allow different feature generators to be plugged in

Features (via graph kernels)

- The next semantic layer of kLog concerns feature vectors
- Here we use graph kernels
- In principle any graph kernel can be used and the architecture of kLog is open enough to allow different feature generators to be plugged in
- In practice we have implemented a generalization of the Neighborhood Subgraph Pairwise Distance Kernel (NSPDK, Costa & De Grave, ICML 2010)

NSPDK: Core ideas

- Decompose graphs into subgraphs rooted at certain designated vertices called kernel-points (KP)
- Consider all pairs of such subgraphs
- Count the number of common pairs between two graphs
- Use hashing to approximate subgraph isomorphism

The NP-relation

Given graph G = (V, E) and $u, v \in V$, let

$$\delta_{u,v} = \begin{cases} \mathsf{SPD}(u,v) & \text{if } u, v \in \mathsf{KP} \\ \infty & \text{otherwise} \end{cases}$$

where SPD is for shortest-path-distance

The NP-relation

Given graph G = (V, E) and $u, v \in V$, let

$$\delta_{u,v} = \begin{cases} \mathsf{SPD}(u,v) & \text{if } u, v \in \mathsf{KP} \\ \infty & \text{otherwise} \end{cases}$$

where SPD is for shortest-path-distance

■ Let $\mathcal{N}_r^v(G)$ denote the subgraph of *G* induced by all $x \in V$ s.t. SPD $(x, v) \leq r$

The NP-relation

Given graph G = (V, E) and $u, v \in V$, let

$$\delta_{u,v} = \begin{cases} \mathsf{SPD}(u,v) & \text{if } u, v \in \mathsf{KP} \\ \infty & \text{otherwise} \end{cases}$$

where SPD is for shortest-path-distance

- Let $\mathcal{N}_r^v(G)$ denote the subgraph of *G* induced by all $x \in V$ s.t. SPD $(x, v) \leq r$
- The neighborhood-pair (NP) relation is the set of triplets

$$R_{r,d} = \{ (A, B, G) : A \cong \mathcal{N}_r^v(G), B \cong \mathcal{N}_r^u(G), \delta_{u,v} = d \}$$

where \cong is graph isomorphism

CoLISD.ECML/PKDD - Athens, 09.09.2011

CoLISD.ECML/PKDD - Athens, 09.09.2011

Definition of the NSPDK

• $\kappa_{r,d}$ counts common NP's between two graphs:

$$\kappa_{r,d}(G,G') = \sum_{\substack{(A,B) \in \mathbb{R}^{-1}_{r,d}(G) \\ (A',B') \in \mathbb{R}^{-1}_{r,d}(G')}} \delta(A,A')\delta(B,B')$$

where the "inverse" of a relation $R \subset \mathcal{A} \times \mathcal{B} \times \mathcal{C}$ is the multiset $R^{-1}(c) = \{(a, b) : R(a, b, c)\}$

• $\kappa_{r,d}$ counts common NP's between two graphs:

$$\kappa_{r,d}(G,G') = \sum_{\substack{(A,B) \in \mathbb{R}^{-1}_{r,d}(G) \\ (A',B') \in \mathbb{R}^{-1}_{r,d}(G')}} \delta(B,B')$$

where the "inverse" of a relation $R \subset \mathcal{A} \times \mathcal{B} \times \mathcal{C}$ is the multiset $R^{-1}(c) = \{(a, b) : R(a, b, c)\}$

Overall kernel:

$$\mathcal{K}(G,G') = \sum_{r=0}^{R} \sum_{d=0}^{D} \kappa_{r,d}(G,G').$$

Soft matches

The hard-match might produce very "rare" features depending on the structure of the graph

Soft matches

- The hard-match might produce very "rare" features depending on the structure of the graph
- Bad if vertices have high degree

Soft matches

- The hard-match might produce very "rare" features depending on the structure of the graph
- Bad if vertices have high degree
- Soft match kernel:

$$\kappa_{r,d}(G,G') = \sum_{\substack{(A,B) \in \mathbb{R}^{-1}_{r,d}(G) \\ (A',B') \in \mathbb{R}^{-1}_{r,d}(G')}} \sum_{\substack{v \in V(A) \cup V(B) \\ v' \in V(A') \cup V(B')}} \delta(\mathcal{L}(v), \mathcal{L}(v'))$$

where $\mathcal{L}(v)$ is the label of vertex v

signature atm(
 atom_id::self,
 element::property)::extensional.
signature bnd(
 atom_1@b::atm,
 atom_1@b::atm,
 type::property)::extensional.

```
signature fgroup(
  fgroup_id::self,
  group_type::property
  )::intensional.
signature fgmember(
  fg::fgroup,
  atom::atm)::intensional.
signature fg_linked(
  fg::fgroup,
  alichain::fgroup,
  saturation::property)::intensional.
```

signature mutagenic::extensional.

A whole kLog script

```
:- use_module('klog')
begin domain.
signature atm(atom_id::self,element::property)::extensional.
signature activity(act::property)::extensional.
kernel_points([atm,fgroup]).
end_domain.
experiment :-
  new_feature_generator(my_fg, nspdk),
   set_klog_flag(my_fg, radius, 4),
   set_klog_flag(my_fg, distance, 8),
   attach (bursi ext),
   new_model(my_model,libsvm_c_svc),
   set_klog_flag(my_model, c, 0.5),
   stratified_kfold(mutagenic, 10, my_model, my_fg, muta_stratum).
```

Small molecules (regression/classification)

Biodegradability			
Setting	RMSE	SCC	MAPE
Functional groups	1.07 ± 0.01	0.54 ± 0.01	14.0 ± 0.1
Atom bonds	1.13 ± 0.01	0.48 ± 0.01	14.5 ± 0.1
57			

Small molecules (regression/classification)

Biodegradability			
Setting	RMSE	SCC	MAPE
Functional groups	1.07 ± 0.01	0.54 ± 0.01	14.0 ± 0.1
Atom bonds	1.13 ± 0.01	0.48 ± 0.01	14.5 ± 0.1
Bursi			
Setting	AUROC	F1	Error%
Functional groups	0.91 ± 0.01	86.78 ± 1.05	14.7 ± 1.5
Atom bonds	0.90 ± 0.01	85.21 ± 1.37	16.9 ± 1.5
	9		

Small molecules (regression/classification)

DNACE		
RIVIJE	SCC	MAPE
1.07 ± 0.01	0.54 ± 0.01	14.0 ± 0.1
1.13 ± 0.01	0.48 ± 0.01	14.5 ± 0.1
		1 Marson
AUROC	F1	Error%
0.91 ± 0.01	86.78 ± 1.05	14.7 ± 1.5
0.90 ± 0.01	85.21 ± 1.37	16.9 ± 1.5
5	Atom bor	nd
0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	3 2 1 9 8 7 7 4 6 8 6 8	
	RIVISE 1.07 \pm 0.01 1.13 \pm 0.01 AUROC 0.91 \pm 0.01 0.90 \pm 0.01 s s 0.90 \pm 0.01 0.90 \pm	RMISE SCC 1.07 ± 0.01 0.54 ± 0.01 1.13 ± 0.01 0.48 ± 0.01 $AUROC$ $F1$ 0.91 ± 0.01 86.78 ± 1.05 0.90 ± 0.01 85.21 ± 1.37 Atom bor 0.90 ± 0.01 0.90 ± 0.01 85.21 ± 1.37 Atom bor 0.90 ± 0.01 0.90 ± 0.01 85.21 ± 1.37 0.90 ± 0.01 85.21 ± 1.37 0.90 ± 0.01
What about multiple interdependent predictions within the same interpretation?

- What about multiple interdependent predictions within the same interpretation?
- Two possible answers:

- What about multiple interdependent predictions within the same interpretation?
- Two possible answers:

• The graph kernel creates joint features $\phi(x, y)$ so go for collective (structured-output) prediction i.e. argmax $w'\phi(x, y)$ over an exponential number of assignments to y. This is expecially challenging because intensional predicates need to be re-evaluated for different assignments.

- What about multiple interdependent predictions within the same interpretation?
- Two possible answers:
 - The graph kernel creates joint features $\phi(x, y)$ so go for collective (structured-output) prediction i.e. argmax $w'\phi(x, y)$ over an exponential number of assignments to y. This is expecially challenging because intensional predicates need to be re-evaluated for different assignments.
 - Project the collective problem into several i.i.d. views

- Let $c \in y$ be a case
- The *viewpoint* of *c*, *W_c*, is the set of vertices that touch *c* in the graph

kLog

- Let $c \in y$ be a case
- The *viewpoint* of *c*, *W_c*, is the set of vertices that touch *c* in the graph
- Consider the mutilated graph G_c where all vertices in y except c are removed

• Let $c \in y$ be a case

- The *viewpoint* of *c*, *W*_{*c*}, is the set of vertices that touch *c* in the graph
- Consider the mutilated graph G_c where all vertices in y except c are removed
- Define a kernel $\hat{\kappa}$ on mutilated graphs: like NSPDK but with the restriction that the first endpoint must be in W_c

$$\hat{R}_{r,d} = \{ (A, B, G_c) : A \cong \mathcal{N}_r^v, B \cong \mathcal{N}_r^u, v \in W_c, \delta_{u,v} = d \}$$

Viewpoints example

• We get in this way a kernel "centered" around case *c*:

 $\hat{K}(G_c, G'_{c'}) = \sum \delta(A, A')\delta(B, B')$ r,d $A, B \in \hat{R}^{-1}_{r,d}(G_c)$ $A', B' \in \hat{R}_{r,d}^{-1}(G'_{c'})$

• We get in this way a kernel "centered" around case *c*:

$$\hat{K}(G_{c}, G_{c'}') = \sum_{r,d} \sum_{\substack{A, B \in \hat{R}_{r,d}^{-1}(G_{c}) \\ A', B' \in \hat{R}_{r,d}^{-1}(G_{c'})}} \delta(A, A') \delta(B, B')$$

Finally let

 $K(G,G') = \sum \hat{K}(G_c,G'_{c'})$ $c \in y, c' \in y'$

• We get in this way a kernel "centered" around case *c*:

$$\hat{K}(G_{c}, G_{c'}') = \sum_{r,d} \sum_{\substack{A, B \in \hat{R}_{r,d}^{-1}(G_{c}) \\ A', B' \in \hat{R}_{r,d}^{-1}(G_{c'}')}} \delta(A, A') \delta(B, B')$$

Finally let

$$\mathcal{K}(G,G') = \sum_{c \in y, c' \in y'} \hat{\mathcal{K}}(G_c,G'_{c'})$$

This kernel corresponds to the potential

$$F(x, y) = w' \sum_{c} \hat{\phi}(x, c)$$

which is clearly maximized by maximizing, independently, all sub-potentials $w'\hat{\phi}(x, c)$ with respect to c.

CoLISD.ECML/PKDD - Athens, 09.09.2011

UW-CSE: All information

 Alternative setting: we only know about persons without knowing whether they are professors or students

- Alternative setting: we only know about persons without knowing whether they are professors or students
- Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by

- Alternative setting: we only know about persons without knowing whether they are professors or students
- Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
- In kLog it is easy to define a stacked (pipelined) prediction method:

- Alternative setting: we only know about persons without knowing whether they are professors or students
- Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
- In kLog it is easy to define a stacked (pipelined) prediction method:

First, learn to discriminate between professors and students

- Alternative setting: we only know about persons without knowing whether they are professors or students
- Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
- In kLog it is easy to define a stacked (pipelined) prediction method:
 - First, learn to discriminate between professors and students
 - Assert *induced* groundings (predicted in cross-validation mode)

- Alternative setting: we only know about persons without knowing whether they are professors or students
- Without collective inference we also lack the ability of joint inference on the predicates student, professor, and advised_by
- In kLog it is easy to define a stacked (pipelined) prediction method:
 - First, learn to discriminate between professors and students
 - Assert *induced* groundings (predicted in cross-validation mode)
 - Learn the binary relation taking saved groundings as additional data

UW-CSE: Partial information

WebKB

WebKB

signature csNNN_in_url (pageid::page)::intensional. csNNN_in_url(Url) :page(Url), atom_codes(Url,CUrl),

regexp("cs(e*)[0-9]+",CUrl,[],[_Match]).

signature category (page_id::page, cat::property)::extensional.

WebKB: results

# Cases:	1039									
Case error rate:			12.42%							
Interpreta	ation e	error rate	: 100.0	0 %						
Contingency table: (rows are predictions)										
r	researd	c faculty	course	studer	nt					
researc	59	11	4	15	a,p,r,f1=	0.94	0.66	0.70	0.68	
faculty	9	125	2	50	a,p,r,f1=	0.91	0.67	0.82	0.74	
course	0	0	233	0	a,p,r,f1=	0.99	1.00	0.95	0.98	
student	16	17	5	493	a,p,r,f1=	0.90	0.93	0.88	0.91	
Average p,r,f1 = 0.89 0.88 0.88										

Internet Movies Database

IMDb

signature blockbuster(film_id::film)::intensional. blockbuster(M) :- opening_weekend(M,Receipts), Receipts > 2000000.

IMDb

```
signature blockbuster(film_id::film)::intensional.
blockbuster(M) :-
    opening_weekend(M, Receipts),
    Receipts > 2000000.
```

signature individual (individual_id::self)::intensional. individual(P) :-

```
person(P,_Name), active_enough(P).
has_active_role(P,M) :- acted_in(P,M).
has_active_role(P,M) :- directed(P,M).
has_active_role(P,M) :- produced(P,M).
active_enough(P) :-
```

setof(M, has_active_role(P, M), Ms), length(Ms, N), N>2.

IMDb

```
signature blockbuster(film_id::film)::intensional.
blockbuster(M) :-
    opening weekend (M. Receipts).
    Receipts > 2000000.
signature individual (individual_id::self)::intensional.
individual(P) :-
    person(P,_Name), active_enough(P).
has_active_role(P,M) :- acted_in(P,M).
has_active_role(P,M) :- directed(P,M).
has_active_role(P,M) :- produced(P,M).
active_enough(P) :-
    setof (M, has active role (P, M), Ms), length (Ms, N), N>2.
signature in_blockbuster(individual_id::individual)::intensional.
in_blockbuster(P) :-
has active role(P,M),
    blockbuster(M).
signature bb_cast_len(film_id::film,n::property)::intensional.
bb cast len(M,N) :-
    setof(Actor, (acted_in(Actor,M), in_blockbuster(Actor)), Set),
    length(Set,N).
```

In a data set like IMDb there is one single interpretationHow to split training and test data?

Slicing

IMDb: results

Year	movies	facts	AUROC
1995	74	2483	-
1996	223	6406	-
1997	311	8031	0.85
1998	332	7822	0.92
1999	348	7842	0.88
2000	381	8531	0.95
2001	363	8443	0.94
2002	370	8691	0.93
2003	343	7626	0.94
2004	371	8850	0.94
2005	388	9093	0.92
All			0.92 ± 0.03

Conclusions

Highlights

- Complex feature generation thanks to graph kernels
- Easy but powerful declaration of jobs
- Most statistical learners pluggable-in (even as external programs)

Conclusions

Highlights

- Complex feature generation thanks to graph kernels
- Easy but powerful declaration of jobs
- Most statistical learners pluggable-in (even as external programs)
- To be done (or to be tried)
 - Collective classification (e.g. label propagation, MaxWalkSAT, ...)
 - Constraints
 - Multitask regularization

Conclusions

Highlights

- Complex feature generation thanks to graph kernels
- Easy but powerful declaration of jobs
- Most statistical learners pluggable-in (even as external programs)
- To be done (or to be tried)
 - Collective classification (e.g. label propagation, MaxWalkSAT, ...)
 - Constraints
 - Multitask regularization
- Applications (work in progress)
 - Information extraction from text, e.g. spatial role labeling (Kordjamshidi et al. 2011)
 - Hedge cue detection, e.g. recognition of weasel sentences (Verbeke et al. 2011)
 - Vision, e.g. image segmentation/labeling (Antanas et al. 2011)