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kLog

A language/framework for kernel-based relational learning

Currently embedded in Prolog

Four simple concepts:

Learning from interpretations

Entity/relationship data modeling

Deductive databases

Graph kernels
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Goals

Make it possible to design and maintain complex features in

a declarative fashion

Make it possible to define in the same framework several

kinds of learning problems ranging from plain classification

and regression to entity classification to (hyper)link

prediction and even unsupervised learning

Modularity and separation of concerns:

Plug-in different graph kernels to create actual features

Plug-in different statistical, inference, optimization techniques

Simple semantics: the meaning of a kLog script only defines the

learning problem and the associated features
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Supervised learning: A quite general formulation

Fit a linear potential function on some feature space:

F (x, y) = w ′φ(x, y)

where x and y are input and output ground atoms

F (x, y) measures the compatibility between x and y

Predictions can be obtained as

f (x) = arg max
y
F (x, y)

This “inference” step is intractable in general (depending on

the structure of the interdependencies between variables)
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A classic trilogy

Propositional

Sequences General relations

S
im

ila
r

fe
a

tu
re

s

Näıve Bayes

HMM
Relational generative

models, e.g. MLN, PRM

Logistic

regression

Linear-chain

CRF

Relational discriminative

models, e.g. MLN, CRF

SVM SVM-HMM
Max-margin relational ma-

chines, e.g. M3N

Similar loss

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 5/42



A classic trilogy

Propositional

Sequences General relations

S
im

ila
r

fe
a

tu
re

s
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kLog by example: UW-CSE

advised_by

position

phase

professor

student

years

advisee

advisor

student_id

prof_id

has_position

yrs_in_progrin_phase

Classic E/R diagram

Boxes are entities

Diamonds are relationships

Ovals are properties

Underlined properties are

entity identifiers (not

directly used to create

features)
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kLog by example: UW-CSE

advised_by

position

phase

professor

student

years

advisee

advisor

student_id

prof_id

has_position

yrs_in_progrin_phase

signature student(
student_id::self

)::extensional.
signature in_phase(

student_id::student,
phase::property)::extensional.

signature years_in_program(
student_id::student,
years::property

)::extensional.
signature professor(
prof_id::self

)::extensional.
signature has_position(

prof_id::professor,
position::property

)::extensional.

signature advised_by(
student_id::student,
prof_id::professor

)::extensional.
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Data

Data is a set of interpretations (in the pure logical sense)

One interpretation is a set of ground facts

Interpretations are independent

In UW-CSE there is one interpretation for every research

group (AI, Graphics, etc.)

Interpretations are invisible at the level of kLog scripts (since

they are independent, you are not allowed to create

interactions)

The keyword extensional declares that all true ground facts

for the given predicate are actually given as data (under the

usual CWA).
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Example of interpretation

interpretation(ai,student(person311)).
interpretation(ai,student(person14)).
...
interpretation(ai,professor(person7)).
interpretation(ai,professor(person185)).
...
interpretation(ai,has_position(person292,faculty_affiliate)).
interpretation(ai,has_position(person79,faculty)).
...
interpretation(ai,in_phase(person139,post_quals)).
interpretation(ai,in_phase(person333,pre_quals)).
...
interpretation(ai,years_in_program(person382,year_3)).
interpretation(ai,years_in_program(person333,year_2)).
...
interpretation(ai,advised_by(person265,person168)).
interpretation(ai,advised_by(person352,person415)).
...
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Interpretations may contain more relations

interpretation(ai,publication(title25,person284)).
interpretation(ai,publication(title284,person14)).
interpretation(ai,publication(title110,person14)).
...
interpretation(ai,taught_by(course12,person211,autumn_0001)).
interpretation(ai,taught_by(course123,person150,autumn_0001)).
interpretation(ai,taught_by(course44,person293,winter_0001)).
...
interpretation(ai,ta(course44,person193,winter_0304)).
interpretation(ai,ta(course128,person271,winter_0304)).
interpretation(ai,ta(course128,person392,winter_0304)).
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Intensional signatures

advised_by

position

phase

professor

student

years

advisee

advisor

student_id

prof_id

has_position

yrs_in_progrin_phase

on_same_paper

author

author

signature on_same_paper(
student_id::student,
prof_id::professor

)::intensional.

on_same_paper(S,P) :-
student(S), professor(P),
publication(Pub, S),
publication(Pub,P).

signature on_same_course(
student_id::student,
prof_id::professor

)::intensional.
on_same_course(S,P) :-

professor(P), student(S),
ta(Course,S,Term),
taught_by(Course,P,Term).
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Graphicalization

Second semantic layer: map each interpretation into a

simple graph (not a hypergraph).

The mapping is lossless:

There is one vertex for every ground fact, labeled by the fact itself

One (undirected) edge between u and v iff:

1) u is an entity-fact

2) v is a relationship-fact

3) v refers to the identifier in u

(so the graph is bipartite)

Graphicalization is essentially grounding the E/R diagram
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Graphicalization in UW-CSE

advised_by

position

phase

professor

student

years

advisee

advisor

student_id

prof_id

has_position

yrs_in_progrin_phase

on_same_paper

author

author
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Graphicalization in UW-CSE

advised_by

position

phase

professor

student

years

advisee

advisor

student_id

prof_id

has_position

yrs_in_progrin_phase

on_same_paper

author

author

*student
person284

>1<

*student
person14
>3<

*professor
person211
>15<

*professor
person407
>24<

*student
person45
>47<

*student
person21
>52<

*on_same_paper
>69<

*on_same_paper
>80<

*on_same_paper
>81<

*on_same_paper
>87<

*on_same_paper
>89<

*on_same_paper
>100<

*on_same_paper
>101<

*on_same_paper
>102<

*on_same_paper
>103<

*on_same_paper
>104<

*on_same_500_course
>108<

*on_same_course
>126<

has_position(faculty)
>132<

has_position(faculty)
>142<

advised_by
>145<

advised_by
>154<

advised_by
>158<

advised_by
>160<

advised_by
>164<

advised_by
>170<

in_phase(post_generals)
>197<

in_phase(post_generals)
>209<

in_phase(post_quals)
>224<

years_in_program(year_10)
>244<

years_in_program(year_5)
>256<

years_in_program(year_3)
>271<
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Supervised learning jobs

A supervised learning job is defined by marking some

signature(s) as target (aka query, aka output)

This means to kLog: learn a statistical model capable of

predicting tuples for the corresponding relation(s)

The focus of a job is on what, not on how (different

statistical models can solve the same job – maybe with

different performances)

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 14/42



Supervised learning jobs

A supervised learning job is defined by marking some

signature(s) as target (aka query, aka output)

This means to kLog: learn a statistical model capable of

predicting tuples for the corresponding relation(s)

The focus of a job is on what, not on how (different

statistical models can solve the same job – maybe with

different performances)

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 14/42



Supervised learning jobs

A supervised learning job is defined by marking some

signature(s) as target (aka query, aka output)

This means to kLog: learn a statistical model capable of

predicting tuples for the corresponding relation(s)

The focus of a job is on what, not on how (different

statistical models can solve the same job – maybe with

different performances)

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 14/42



Single task binary classification

Job type obtained when we specify a single target signature

with no properties.

Example:
signature advised_by(

s::student,
p::professor

)::extensional.

In this example y consists of all ground atoms of the relation

advised˙by

Each tuple of identifiers in the target relation, e.g. a

(student,professor) pair, is called a case (or instance)

if the target signature has entity sets E1, · · · , Ek , the set of

cases is their the Cartesian product
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Other jobs types

Single-task multiclass classification: if the target signature

contains a categorical property
signature pageclass(
url::webpage,
category::property

)::extensional.

Single-task regression: if the target signature contains a

numerical property
signature intelligence(
student_it::student,
qi::property

)::extensional.

Multi-task: if there are several target signatures or a single

target signature with several properties.
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Overview of job types

Relational arity

# of

properties

0 1 2

0 Binary classification of

interpretations

Binary classification of

entities

Link prediction

1 Multiclass / regression

on interpretations

Multiclass / regression

on entities

Attributed link predic-

tion

>1 Multitask on interpre-

tations

Multitask predictions

on entities

Multitask attributed

link prediction
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Features (via graph kernels)

The next semantic layer of kLog concerns feature vectors

Here we use graph kernels

In principle any graph kernel can be used and the

architecture of kLog is open enough to allow different

feature generators to be plugged in

In practice we have implemented a generalization of the

Neighborhood Subgraph Pairwise Distance Kernel (NSPDK,

Costa & De Grave, ICML 2010)
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NSPDK: Core ideas

Decompose graphs into subgraphs rooted at certain

designated vertices called kernel-points (KP)

Consider all pairs of such subgraphs

Count the number of common pairs between two graphs

Use hashing to approximate subgraph isomorphism
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The NP-relation

Given graph G = (V, E) and u, v ∈ V , let

δu,v =

{
SPD(u, v) if u, v ∈ KP

∞ otherwise

where SPD is for shortest-path-distance

Let N vr (G) denote the subgraph of G induced by all x ∈ V
s.t. SPD(x, v) ≤ r
The neighborhood-pair (NP) relation is the set of triplets

Rr,d = {(A,B,G) : A ∼= N vr (G), B ∼= N ur (G), δu,v = d}

where ∼= is graph isomorphism
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Rr,d = {(A,B,G) : A ∼= N vr (G), B ∼= N ur (G), δu,v = d}

where ∼= is graph isomorphism
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NP’s for fixed d = 6

u

a b

c d

e

f

g h

v
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NP’s for fixed d = 6
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NP’s for fixed r = 2

u

a b

c d

e

f

g h

v

N u
2

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 22/42



NP’s for fixed r = 2
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Definition of the NSPDK

κr,d counts common NP’s between two graphs:

κr,d(G,G ′) =
∑

(A,B) ∈ R−1
r,d (G)

(A′, B′) ∈ R−1
r,d (G′)

δ(A,A′)δ(B,B′)

where the “inverse” of a relation R ⊂ A× B × C is the

multiset R−1(c) = {(a, b) : R(a, b, c)}

Overall kernel:

K(G,G ′) =

R∑
r=0

D∑
d=0

κr,d(G,G ′).
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Soft matches

The hard-match might produce very “rare” features

depending on the structure of the graph

Bad if vertices have high degree

Soft match kernel:

κr,d(G,G ′) =
∑

(A,B) ∈ R−1
r,d (G)

(A′, B′) ∈ R−1
r,d (G′)

∑
v ∈ V (A) ∪ V (B)

v ′ ∈ V (A′) ∪ V (B′)

δ(L(v),L(v ′))

where L(v) is the label of vertex v
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Example: small molecules

mutagenic

atm

fgroup

fg_member

bnd

element

atom-id

b_type

fg_type

fg_linked

saturation

fgroup-id signature atm(
atom_id::self,
element::property)::extensional.

signature bnd(
atom_1@b::atm,
atom_1@b::atm,
type::property)::extensional.

signature fgroup(
fgroup_id::self,
group_type::property
)::intensional.

signature fgmember(
fg::fgroup,
atom::atm)::intensional.

signature fg_linked(
fg::fgroup,
alichain::fgroup,
saturation::property)::intensional.

signature mutagenic::extensional.
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A whole kLog script

:- use_module(’klog’).
begin_domain.
signature atm(atom_id::self,element::property)::extensional.
...
signature activity(act::property)::extensional.
kernel_points([atm,fgroup]).
end_domain.

experiment :-
new_feature_generator(my_fg,nspdk),
set_klog_flag(my_fg,radius,4),
set_klog_flag(my_fg,distance,8),
attach(bursi_ext),
new_model(my_model,libsvm_c_svc),
set_klog_flag(my_model,c,0.5),
stratified_kfold(mutagenic,10,my_model,my_fg,muta_stratum).
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Small molecules (regression/classification)

Biodegradability
Setting RMSE SCC MAPE

Functional groups 1.07 ± 0.01 0.54 ± 0.01 14.0 ± 0.1

Atom bonds 1.13 ± 0.01 0.48 ± 0.01 14.5 ± 0.1

Bursi
Setting AUROC F1 Error%

Functional groups 0.91 ± 0.01 86.78 ± 1.05 14.7 ± 1.5

Atom bonds 0.90 ± 0.01 85.21 ± 1.37 16.9 ± 1.5!"##$%
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Is the NPDK kernel general enough?

What about multiple interdependent predictions within the

same interpretation?

Two possible answers:

The graph kernel creates joint features φ(x, y) so go for collective

(structured-output) prediction i.e. argmax w ′φ(x, y) over an

exponential number of assignments to y . This is expecially

challenging because intensional predicates need to be re-evaluated

for different assignments.

Project the collective problem into several i.i.d. views
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Viewpoints and i.i.d. views (non-collective)

Let c ∈ y be a case

The viewpoint of c , Wc , is the set of vertices that touch c

in the graph

Consider the mutilated graph Gc where all vertices in y

except c are removed

Define a kernel κ̂ on mutilated graphs: like NSPDK but with

the restriction that the first endpoint must be in Wc

R̂r,d = {(A,B,Gc) : A ∼= N vr , B ∼= N ur , v ∈ Wc , δu,v = d}

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 29/42



Viewpoints and i.i.d. views (non-collective)

Let c ∈ y be a case

The viewpoint of c , Wc , is the set of vertices that touch c

in the graph

Consider the mutilated graph Gc where all vertices in y

except c are removed

Define a kernel κ̂ on mutilated graphs: like NSPDK but with

the restriction that the first endpoint must be in Wc

R̂r,d = {(A,B,Gc) : A ∼= N vr , B ∼= N ur , v ∈ Wc , δu,v = d}

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 29/42



Viewpoints and i.i.d. views (non-collective)

Let c ∈ y be a case

The viewpoint of c , Wc , is the set of vertices that touch c

in the graph

Consider the mutilated graph Gc where all vertices in y

except c are removed

Define a kernel κ̂ on mutilated graphs: like NSPDK but with

the restriction that the first endpoint must be in Wc

R̂r,d = {(A,B,Gc) : A ∼= N vr , B ∼= N ur , v ∈ Wc , δu,v = d}

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 29/42



Viewpoints and i.i.d. views (non-collective)

Let c ∈ y be a case

The viewpoint of c , Wc , is the set of vertices that touch c

in the graph

Consider the mutilated graph Gc where all vertices in y

except c are removed

Define a kernel κ̂ on mutilated graphs: like NSPDK but with

the restriction that the first endpoint must be in Wc

R̂r,d = {(A,B,Gc) : A ∼= N vr , B ∼= N ur , v ∈ Wc , δu,v = d}

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 29/42



Viewpoints example

*student
person284

>1<

*student
person14
>3<

*professor
person211
>15<

*professor
person407
>24<

*student
person45
>47<

*student
person21
>52<

*on_same_paper
>69<

*on_same_paper
>80<

*on_same_paper
>81<

*on_same_paper
>87<

*on_same_paper
>89<

*on_same_paper
>100<

*on_same_paper
>101<

*on_same_paper
>102<

*on_same_paper
>103<

*on_same_paper
>104<

*on_same_500_course
>108<

*on_same_course
>126<

has_position(faculty)
>132<

has_position(faculty)
>142<

advised_by
>145<

advised_by
>154<

advised_by
>158<

advised_by
>160<

advised_by
>164<

advised_by
>170<

in_phase(post_generals)
>197<

in_phase(post_generals)
>209<

in_phase(post_quals)
>224<

years_in_program(year_10)
>244<

years_in_program(year_5)
>256<

years_in_program(year_3)
>271<

c

Wc
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View points and i.i.d. views (non-collective)

We get in this way a kernel “centered” around case c :

K̂(Gc , G
′
c ′) =

∑
r,d

∑
A,B ∈ R̂−1

r,d (Gc)

A′, B′ ∈ R̂−1
r,d (G′

c ′)

δ(A,A′)δ(B,B′)

Finally let

K(G,G ′) =
∑

c∈y,c ′∈y ′
K̂(Gc , G

′
c ′)

This kernel corresponds to the potential

F (x, y) = w ′
∑
c

φ̂(x, c)

which is clearly maximized by maximizing, independently, all

sub-potentials w ′φ̂(x, c) with respect to c .
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UW-CSE: All information
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Stacking

Alternative setting: we only know about persons without

knowing whether they are professors or students

Without collective inference we also lack the ability of joint

inference on the predicates student, professor, and

advised˙by

In kLog it is easy to define a stacked (pipelined) prediction
method:

First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation mode)

Learn the binary relation taking saved groundings as additional data
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UW-CSE: Partial information
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WebKB

cat

source target

word

word

page

category

has

csNNN_in_url

has_anchor

url

link_to

link

link-id

...
signature csNNN_in_url(

pageid::page
)::intensional.

csNNN_in_url(Url) :-
page(Url),
atom_codes(Url,CUrl),
regexp("cs(e*)[0-9]+",CUrl,[],[_Match]).

signature category(
page_id::page,
cat::property

)::extensional.

...
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WebKB: results

# Cases: 1039
Case error rate: 12.42%
Interpretation error rate: 100.00%
Contingency table: (rows are predictions)

researc faculty course student
researc 59 11 4 15 a,p,r,f1= 0.94 0.66 0.70 0.68
faculty 9 125 2 50 a,p,r,f1= 0.91 0.67 0.82 0.74
course 0 0 233 0 a,p,r,f1= 0.99 1.00 0.95 0.98
student 16 17 5 493 a,p,r,f1= 0.90 0.93 0.88 0.91
Average p,r,f1 = 0.89 0.88 0.88
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Internet Movies Database

film-id individual-id

acted_in

directed

produced

distribution

special_effects

production

company-id

film

blockbuster

individual

bb_cast_len

company

bb_com_len
in_blockbuster

c_blockbuster

length length

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 37/42



IMDb

signature blockbuster(film_id::film)::intensional.
blockbuster(M) :-

opening_weekend(M,Receipts),
Receipts > 2000000.

signature individual(individual_id::self)::intensional.
individual(P) :-

person(P,_Name), active_enough(P).
has_active_role(P,M) :- acted_in(P,M).
has_active_role(P,M) :- directed(P,M).
has_active_role(P,M) :- produced(P,M).
active_enough(P) :-

setof(M,has_active_role(P,M),Ms), length(Ms,N), N>2.

signature in_blockbuster(individual_id::individual)::intensional.
in_blockbuster(P) :-

has_active_role(P,M),
blockbuster(M).

signature bb_cast_len(film_id::film,n::property)::intensional.
bb_cast_len(M,N) :-

setof(Actor, (acted_in(Actor,M), in_blockbuster(Actor)), Set),
length(Set,N).
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Slicing

In a data set like IMDb there is one single interpretation

How to split training and test data?
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Slicing

x x

1991 1992 1993 1994 1995 1996 1997

x x x x x

y y y y y y y

x x x x x x x

y y y y y y y

Train on {1992,1993}

Test on {1995,1996}

= invisible = visible = targets = to be predicted
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IMDb: results

Year movies facts AUROC

1995 74 2483 -

1996 223 6406 -

1997 311 8031 0.85

1998 332 7822 0.92

1999 348 7842 0.88

2000 381 8531 0.95

2001 363 8443 0.94

2002 370 8691 0.93

2003 343 7626 0.94

2004 371 8850 0.94

2005 388 9093 0.92

All 0.92 ± 0.03
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Conclusions

Highlights

Complex feature generation thanks to graph kernels

Easy but powerful declaration of jobs

Most statistical learners pluggable-in (even as external programs)

To be done (or to be tried)

Collective classification (e.g. label propagation, MaxWalkSAT, . . . )

Constraints

Multitask regularization

Applications (work in progress)

Information extraction from text, e.g. spatial role labeling

(Kordjamshidi et al. 2011)

Hedge cue detection, e.g. recognition of weasel sentences (Verbeke

et al. 2011)

Vision, e.g. image segmentation/labeling (Antanas et al. 2011)

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 42/42



Conclusions

Highlights

Complex feature generation thanks to graph kernels

Easy but powerful declaration of jobs

Most statistical learners pluggable-in (even as external programs)

To be done (or to be tried)

Collective classification (e.g. label propagation, MaxWalkSAT, . . . )

Constraints

Multitask regularization

Applications (work in progress)

Information extraction from text, e.g. spatial role labeling

(Kordjamshidi et al. 2011)

Hedge cue detection, e.g. recognition of weasel sentences (Verbeke

et al. 2011)

Vision, e.g. image segmentation/labeling (Antanas et al. 2011)

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 42/42



Conclusions

Highlights

Complex feature generation thanks to graph kernels

Easy but powerful declaration of jobs

Most statistical learners pluggable-in (even as external programs)

To be done (or to be tried)

Collective classification (e.g. label propagation, MaxWalkSAT, . . . )

Constraints

Multitask regularization

Applications (work in progress)

Information extraction from text, e.g. spatial role labeling

(Kordjamshidi et al. 2011)

Hedge cue detection, e.g. recognition of weasel sentences (Verbeke

et al. 2011)

Vision, e.g. image segmentation/labeling (Antanas et al. 2011)

kLog CoLISD.ECML/PKDD — Athens, 09.09.2011 42/42


	Motivations
	Examples

