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Chapter 1

Searching on Graphs

Consider the following problem:

Cab Driver Problem A cab driver needs to find his way in a city from one
point (A) to another (B). Some routes are blocked in gray (probably be-
cause they are under construction). The task is to find the path(s) from
(A) to (B). Figure 1.1 shows an instance of the problem..

Figure 1.2 shows the map of the united states. Suppose you are set to the
following task

Map coloring problem Color the map such that states that share a boundary
are colored differently..

A simple minded approach to solve this problem is to keep trying color
combinations, facing dead ends, back tracking, etc. The program could run for
a very very long time (estimated to be a lower bound of 1010 years) before it
finds a suitable coloring. On the other hand, we could try another approach
which will perform the task much faster and which we will discuss subsequently.

The second problem is actually isomorphic to the first problem and to prob-
lems of resource allocation in general. So if you want to allocate aeroplanes to
routes, people to assignments, scarce resouces to lots of tasks, the approaches
we will show in this chapter will find use. We will first address search, then
constraints and finally will bring them together.

1.1 Search

Consider the map of routes as in Figure 1.3. The numbers on the edges are
distances. Consider the problem of organizing search for finding paths from S
(start) to G (goal).

We humans can see the map geometrically and perhaps guess the answer.
But the program sees the map only as a bunch of points and their distances.
We will use the map as a template for the computer at every instance of time.
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4 CHAPTER 1. SEARCHING ON GRAPHS

Figure 1.1: Routes in a city. The problem is to find the shortest path from
point (A) to point (B).

Figure 1.2: The map of the united states of America. The task is to color the
map such that adjacent states have different colors.
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Figure 1.3: Map of routes. The numbers on the edges are distances.

At the beginning, the computer knows only about S. The search algorithm
explores the possibilities for the next step originating from s. The possible next
steps are A and B (thus excluding G). Further, from A, we could go to B or E.
From B, we could go to A or C. From A, we could also go back to S. But we
will never bother biting our own tail in this fasion; that is, we will never make
a loop. Going ahead, from B, we could only go to C. From C, we can progress
only to D and thereafter we are stuck on that path. From A, we could make
a move to E and them from E to G. Figure 1.4 shows the exhaustive tree of
possible paths (that do not bite their own tail) through this map. The process
of finding all the paths is called the British Museum Algorithm1.

But the British Museum algorithm can be very expensive. In fact, some of
these searches can be exponential. If you had to look through a tree of chess
moves for example, in the beginning it is essentially exponential, which is a bad
news since it will imply 1010 years or so. We need a more organized approach
for searching through these graphs. There exist many such organized methods.
Some are better than others, depending on the graph. For example, a depth first
search may be good for one problem but horrible for another problem. Words
like depth first search, breadth first search, beam search, A∗ search, etc., form
the vocabulary of the search problem in Artificial Intelligence.

The representation we use will define the constraints (for example, the rep-
resentation of the routes in Figure 1.3 defines the notion of proximity between
nodes and also defines constraints on what sequences of vertices correspond to
valid paths.

1.1.1 Depth First Search

This algorithm2 boils down to the following method: Starting at the source,
every time you get a choice for the next step, choose a next step and go ahead.
We will have the convention that when we forge ahead, we will take the first

1The British Museums are considered some of the largest in the world.
2Fortunately, the names given to these algorithms are representative of the algorithms

actually do.
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Figure 1.4: The tree of all possible paths from S to G through the map in
Figure 1.3.

choice. Thus, a depth first search on the map in Figure 1.3 will tread along
the path in Figure 1.5. In practice, what is used is a combination of depth
first search and backup. What this means is that when a dead end is hit, the
method goes back to the last state. In practice, this method could yield very
complicated solutions.

1.1.2 Breadth First Search (BFS)

The way BFS organizes its examination of the tree is layer by layer; the algo-
rithm first explores one layer of solutions (A or B), then forges ahead to another
layer (B or E or A or C) and so on. Figure 1.6 illustrates the BFS traversal for
the map in Figure 1.3. In practice, this search could expend a lot of time in
useless parts of the graph. But it yields the shortest path in terms of number
of number of streets covered.

1.1.3 Hill Climbing

Both BFS and DFS are completely uninformed about geography; neither infor-
mation about distance nor direction is exploited. But often it helps if you have
outside information about how good a place is to be in. For instance, in the
map in Figure 1.3, between E and D, it is much better to be in E because that
gets you closer to the goal. It makes less sense in general to head off to the right
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Figure 1.5: The DFS tree from S to G through the map in Figure 1.3.

Figure 1.6: The BFS tree from S to G through the map in Figure 1.3.
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Figure 1.7: The choices based on hill climbing for the route from S to G through
the map in Figure 1.3.

if you know that the goal is on the left. It is heuristically good to be closer to
the goal, though sometimes it may turn out not to be a good idea. So we could
make use of heuristic information of this kind. And this forms the idea behind
hill climbing. It is an idea drafted on top of depth first search. When initially at
S, you could move to A or B. When you look at A and B, you that one of them
is closer to the goal G and you choose that for the next move. And B happens
to be closer to G, which you pick for the next move; but this turns out to be
a bad idea as we will see. Nevertheless, it looks good from the point of view of
the short-sighted hill climbing algorithm. From B, the possible choices are A
and C. And A is a natural choice for hill-climbing, owing to its proximity to G.
From A onwards, the choices are straightforward - you move to E and then to
G. Figure 1.7 shows the route from S to G as chalked out by hill climbing.

Hill climbing always is greedy because it plans only for one step at a time.
The method requires a metric such as distance from the goal.

1.1.4 Beam Search

We drafted hill climbing on top of depth first search. Is there a similar thing we
could do with breadth first search? And the answer is ‘yes’. And this approach



1.2. OPTIMAL SEARCH 9

Figure 1.8: The choices based on beam search for the route from S to G through
the map in Figure 1.3.

is called beam search The problem with breadth first search is that it tends to
be exponential. But what we could do to work around is to throw away at
every level of BFS, all but the ‘most promising’ of the paths so far. The most
promising step is defined as that step which will get us ‘closest’ to the goal. The
only difference from the hill climbing approach is that beam search does not
pick up just one path, it picks up some fixed number of paths to carry down.
Let us try beam search on the map in Figure 1.3. For this simple example,
let us keep track of two paths at every level. We will refer to the BFS plan
in Figure 1.6. From S, we could move to A or B and we keep track of both
possibilities. Further, from A, there are two possibilities, viz., B and E, while
from B there are two possibilities in the form of A and C. Of the four paths,
which two should we retain? The two best (in terms of the heuristic measure
of how far we are from the goal) are B and E. Carrying forward from these
points, we arrive at G in a straight-forward manner as shown in Figure 1.8.

While the vanila breadth first search is exponential in the number of levels,
beam search has a fixed width and is therefore a constant in terms of number
of levels. Beam search is however not guranteed to find a solution (though the
original BFS is guaranteed to find one). This is a price we pay for saving on
time. However, the idea of backing up can be employed here; we could back up
to the last unexplored path and try from there.

1.2 Optimal Search

For optimal search, we will start with the brute force method which is exponen-
tial and then slap heuristics on top to reduce the amount of work, while still
assuring success.
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Figure 1.9: The tree of all possible paths from S to G through the map in
Figure 1.3, with cumulative path lengths marked at each node.

1.2.1 Branch and Bound

Suppose the problem is to find the best possible path (in terms of distances)
between S and G in the map as in Figure 1.3. An oracle suggests that the path
SAEG is the shortest one (its length is 13). Can we determine if SAEG is
indeed the shortest path? One method to answer this question is to verify if
every other path is at least that long.

From S, we could go to A or B. The cumulative path length to B is 5. From
B, you could either go to A or C. The cumulative path length upto A or C is
8. At this point, from A, you could go to E while from C you could move to D,
with cumulative path lengths of 13 each and so on. Figure 1.9 shows the tree
of possible paths from S to G, with cumulative path length (from S) marked at
each node. It is evident from the figure that all paths to G have length greater
than or equal to 13. We can therefore conclude that the shortest path to G from
S is SAEG and has length 13.

Most often we do not have any oracle suggesting the best path. So we have
to think how to work without any oracle telling us what the best path is. One
way is to find a path to the goal by some search technique (DFS or beam search)
and use that as a reference (bound) to check if every other path is longer than
that. Of course, our first search may not yield the best path, and hence we
might have to change our mind about what the best path (bound) is as we
keep trying to verify that the best one we got so far is in fact the best one
by extending every other path to be longer than that. The intuition we work
with is to always push paths that do not reach the goal until their length is
greater than a path that does reach the goal. We might as well work only with
shortest paths so far. Eventually, one of those will lead to the goal, with which
we will almost be done, because all the other paths will be about that length
too, following which we just have to keep pushing all other paths beyond the
goal. This method is called branch and bound.
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Figure 1.10: The pruned search tree for branch and bound search.

In the example in Figure 1.9, the shortest path upto B from S was of length
5 initially, which used as a bound, could eliminate the path SAB and therefore
save the computation of the path SABCD. Similarly, the initial path to A,
SA of length 4, sets a bound of 4 for the shortest path to A and can thus
eliminate the consideration of the path SBA beyond A. Figure 1.10 illustrates
the application of branch and bound to prune the BFS search tree of Figure 1.9.
Crossed out nodes indicate search paths that are excluded because they yield
paths that are longer than bounds (for the corresponding nodes). This crossing
out using bounds is a variation on the theme of the dynamic programming
principle.

1.2.2 A∗ Search

The branch and bound algorithm can also be slapped on top of the hill climbing
heuristic or the beam search heuristic. In each of these cases, the bound can be
computed as the sum of the accumulated distance and the eucledian distance.

When the branch and bound technique is clubbed with shortest distance
heuristic and dynamic programming principle, you get what is traditionally
known as A∗ search. Understanding A∗ search is considered the culmination of
optimal search. It is guaranteed to find the best possible path and is generally
very fast.

1.3 Constraint Satisfaction

What we have discussed so far is mechanisms for finding the path to the goal
(which may not be optimal). Rest of the discussion in this chapter will focus
on resource allocation. Research allocation problems involve search. Too often
people associate search only with maps. But maps are merely a convenient way3

to introduce the concept of search and the search problem is not restricted to
maps. Very often, search does not involve maps at all. Let us again consider the

3Maps involve making a sequence of choices and therefore could involve search amongst
the choices.
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Figure 1.11: The sketch of a simple region for which we try to solve the map
coloring problem.

“Map coloring problem” (refer to Figure 1.2). It involves searching for sequence
of choices. Instead of the large city of USA, let us consider the simpler country
of Simplea as in Figure 1.11. Let us say we need to pick a color from the set
{R,G, B, Y }.

Let us say we number the regions arbitrarily. One approach is to try coloring
them in the order of increasing numbers, which is a horrible way! This is
particularly because the order chosen could be horrible. To color the region,
let us start by considering the possible colors that could be assigned to each
region. State number 1 could be assigned any of R, B, G or Y . Suppose we
take a depth first search approach for this coloring job. Now we need to color
the region number 2. Since we adopt depth first search, let us say we pick the
color of R for region 1. And as we go from region to region, we keep rotating
the set of colors.

The prescription for DFS is that you keep plunging head until you hit a dead
end where you cannot do anything. But the problem is that we cannot infer
we have hit a dead end till we assign colors to all 15 regions, to realise that the
following constraint has been violated: no two adjacent regions should have the
same color. And even if we backup a step or two, we will have to explore all 15
regions to infer if we have reached a dead end. At this rate, the projected time
for successful coloring of the states in a US map is 1010 years4! That is no way
to perform search. The culprit is the particular order in which we chose to color
the regions. Figure 1.12 shows an example instance of random assignment of
colors that leads to a dead-end (with no suitable color left for region number 15).
We introduce the idea of constraint checking precisely to address this problem.
It is essentially a (DFS) tree trimming method.

First of all, we will need some terminology.

1. Variables (V): V is a set of variables. Variables names will be referred
to in upper case, whereas their specific instatiations will be referred to in
lower case.

2. Domain (D): The domain D is the bag of values that the variables can
take on. Di is the domain of the Vi ∈ V . A good example of a domain

4The United states has 48 contiguous states. If the number of colors is 4, the branching
factor of DFS will be 4 and the height will be 48. Thus, the number of computations will be
448 or 296 which is of the order of 1027 and since the length of a year is the order of 107,
it will take in the order of 1011 years assuming that a computation is performed in a nano
second.
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Figure 1.12: A sequence of bad choices for the map coloring problem.

would be {R,B,G, Y }. In the map coloring problem, all variables have
the same domain.

3. Constraints (C): A constraint is a boolean function of two variables. Cij

represents the constraint between variables Xi and Xj . Cij(xi, xj) = true
iff, the constraint is satisfied for the configuration Xi = xi, xi ∈ Di and
Xj = xj , xj ∈ Dj . Else, Cij(xi, xj) = false. The form of the constraint
function could vary from problem to problem. An example of a constraint
is: no two adjacent regions should not have the same color. Note that
there need not be a Cij for all i and j. For instance, in the map coloring
problem, the only constraints are those involving adjacent regions, such
as region 15 with the regions 1, 2, 3 and 4.

Suppose we are trying to explore if region number i = 15 is going to object
to any coloring scheme. First we define the constraint Cj , i = 15, j ∈ {1, 2, 3, 4}
as follows:

Cij(x, y), i = 15, j ∈ {1, 2, 3, 4} is true iff x 6= y.
We can state the check as in Figure 1.13.

for x ∈ Di (i = 15) do
for All constraints Cij do

Set Xi = x iff ∃y ∈ Dj such that Cij(x, y) = true
end for

end for

Figure 1.13: The algorithm for constraint checking

1.3.1 Algorithms for map coloring

When assigning a color to each region, we could do different types of checks.

1. Check all: At one end of the spectrum, while assigning a color to a region,
we check constraint satisfaction with respect to all regions (no matter how
far they are from the region under consideration). This is an extreme case
and potentially, we could consider all variants of what to check and what
not to check. The check is only a speedup mechanism. It neither ensures
nor prevents a solution. We could get a solution (if there is one) using
depth first search and no search, thought it might take 1010 years. If we
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want to have minimum number of checks such that they are really helpful,
our method for deciding what to check will be checks on regions that are
in the immediate vicinity of the last region that had a color assigned.

2. Check Neighbors: Check for constraint satisfaction, only all regions in the
immediate neigborhood of the last region that had a color assigned. This
is at another end of the spectrum.

3. Check Neighbors of Neighbors: Check for constraint satisfaction, only all
regions in the immediate neigborhood of the last region that had a color
assigned as well as well as regions in the immediate neighborhood of the
neighbors.

4. Check Neighbors of ‘unique’ neighbors: Check for constraint satisfaction,
only all regions in the immediate neigborhood of the last region that had
a color assigned as well as well as regions in the immediate neighborhood
of the ‘unique’ neighbors. A neighbor is ‘unique’, if the constraint set for
the region has been reduced to a single element (which means that it has
a very tight constraint).

We will evaluate the above approaches on two fronts, viz.,

1. Number of assignments performed: An assignment corresponds to putting
a color on a region. If we are very lucky, we might be able to color the
map of the United states with just 48 assignments (that is we never had to
backup). Constraint checking will enable the algorithm realise that it will
soon hit a dead end and will have to back up. In practical situations, we
could expect a bit of backup and also expect the constraints to show you
some dead ends. So it could happen that the constraint checking reduces
the number of assignments to some number slightly above the ideal (say
52).

2. Number of checks performed: A check corresponds to determining which
color could be assigned to a region based on the color assigned so far to
another regions.

A simple experiment for coloring the Unites States reveals the statistics in
Table 1.1.

The message we can extract from Table 1.1 is that some of the constraint
checking is essential, else it takes 1010 years. We can conclude that full pro-
pogation is probably not a worthy effort. Because full propogation, relative
to propogation through unique values yielded the same number of assignments
but relatively fewer checks. When we compare heuristic 2 against heuristic 4,
we find that there is a tradeoff between number of assignments and number of
checks. Checking all is simply a waste of time. The net result is that people tend
to invoke either of heuristics 2 and 4. From the point of view of programming
simplicity, one might just use heuristic number 2.
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SrNo Constraint Sat Heuristic Assignments Checks

1 Check all 54 7324

2 Check neighbors 78 417

3 Check neighbors 54 2806
of neighbors

4 Check neighbors 54 894
of ‘unique’ neighbors

Table 1.1: Number of assignments and checks for each of the constraint sat-
isfaction heuristics for the problem of coloring the map of the USA using 4
colors.

The computational complexity of the discussed methods is still exponential5.
But usually, the constraints try to suppress the exponential nature.

1.3.2 Resource Scheduling Problem

Let us forget about maps for a while and talk about airplanes. An upstart
airline is trying to figure out how many airplanes they need. They have a
schedule outlining when and where they need to fly planes. And the task is to
figure out the minimum number of airplanes that need to be purchased. For
every airplane saved, let us say the reward is saving on half the cost of the
airplane.

F1, F2, . . . , Fn are the flights. Table 1.2 shows the schedule for the flights.

Flight No. From To Dept. Time Arr. Time

F1 Boston LGA 10:30 11:30

F2 Boston LGA 11:30 12:30

F3 Boston LGA 12:30 13:30

F4 Boston LGA 13:30 14:30

F4 Boston LAX 14:30 15:30

F6 . . . . . . . . .

. . . . . . . . . . . .

F15 Boston LAX 11:00 15:30

Table 1.2: Number of assignments and checks for each of the constraint sat-
isfaction heuristics for the problem of coloring the map of the USA using 4
colors.

To fly this schedule, we have some number m = 4 of airplanes: P1, P2, P3, P4.
5Note that these are NP complete problems. Any polynomial time algorithm will fetch

field medals.
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Of course, we do not want to fly any plane empty (dead head).
The assignment P1 → F1, P2 → F2, P3 → F3 and P4 → F4 will leave no

airplane for flight F5. But if we could fly P1 back from New York (LGA), the
same plane could be used for flight F4, thus sparing P4 for F5. We can draw
the correspondence between this problem and the map coloring problem; the 4
airplanes correspond to 4 colors while the flights correspond to regions. The task
is to assign planes (colors) to flights (regions), at all times honoring constraints
between the flights. The constraints are slightly different from the ones we had
in the US map. The constraint is that no airplane can be on two routes at
the same time. This implies that there is a constraint between flights F1 and
F2. Similarly, there is a constraint between the pairs < F2, F3 >, < F3, F5 >,
< F4, F5 >, < F1, F5 >, < F2, F5 > and < F3, F5 >. We assume that the
turn around duration for F1 (which is of a one hour duration) will end by 14:30
hours, which sounds reasonable. Thus, there is no constraint < F1, F4 >.

You schedule planes the same way you do map coloring. An assignment
is tried and constraints for all unassigned flights are checked to ensure that
there is at least one airplane that can fly each flight. There is one important
difference between the flight scheduling problem and the map coloring problem:
we know that we can color maps with 4 colors6, but we do not know how many
airplanes it is going to take to fly a schedule. Hence, we will need to try the
flight scheduling problem with different number of airplanes.

Let us say we over-resource the map coloring problem with 7 colors instead
of 4. A sample run yields 48 assignments (that is no backup was required) and
274 checks. With 6 colors, you get 48 assignments and 259 checks. If on the
extreme end, you used only 3 colors, you could never color Texas.

Frequently the problem is over-constrained and there is no solution with
available resources (like say coloring the United States with 2 or 3 colors). In
those circumstances, constraints can be turned into preferences so that some
regions will not be allowed to be adjacent to regions of the same color. Or
we might have to allow some ‘dead-hit’ flights. And on top of preferences, we
could layer beam-search or some other search that tries to minimize the penalty
cumulated or maximize the number of constraints that are satisfied.

6The 4 color theorem.
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