
CS717: Warm up problems

I am going to grade this paper. However, marks on this paper will
not count toward the final marks. I would like you to apply yourself
as much as possible in answering. This paper might help you and me
evaluate each other to realize if this course is appropriate for you.
Answer below and behind the page containing each question. Write
your roll number on the top of the first page.

1. You should have come across the support vector machine formulation.
Without getting into specific details, write in words, what is the advantage
of the dual formulation of svm, using the kernel? The question is really
what advantage you have in using the kernel.
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Figure 1: Dataset D

2. Let us say you are provided the data set D as in Figure 1. Propose an
efficient algorithm to find all subsets of Σ that are subsets of more than
m transactions (for some fixed m). (This is the idea behind the classic
apriori algorithm).
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3. The optimization problem in (1) is an Integer Linear Program (ILP).

minimize f(x) = cTx

subject to Ax ≤ b

xi ∈ {0, 1}
(1)

where x ∈ <n, A ∈ <m×n, b ∈ <m and c ∈ <n. In a general method
called relaxation, the constraint that xi be zero or one is replaced with the
linear inequalities 0 ≤ xi ≤ 1. The problem in (2) is called the Relaxation
of the Linear Program (RLP).

minimize f(x) = cTx

subject to Ax ≤ b

0 ≤ xi ≤ 1

(2)

It turns out that the RLP (2) is far easier to solve than the original ILP
(1).

(a) What inequality relationship exists between the solution to the RLP
(2) and the solution to the original ILP (1).

(1 Mark)

(b) What can you say about the original ILP (1) if the RLP (2) is infea-
sible?

(1 Mark)

(c) It sometimes happens that the RLP (2) has a solution with xi ∈
{0, 1}. What can you say in this case?

(1 Mark)
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4. Tough problem. Not expected to solve by default. Convergence of Cut-
ting Plane algorithm: We present a generalized cutting plane algorithm
for the optimization problem

maximize f(x)

subject to x ∈ D
(3)

for some closed and convex set D and concave f . Let g(x) be a sub-
gradient1 at some point x for the function f . A version of the general
cutting plane algorithm consists of solving the following problem in the
kth iteration to get xk.

xk = maximize fk(x)

subject to x ∈ D
(4)

where the function f is replaced by a polyhedral approximation fk con-
structed using the points xi generated so far, along with their subgradients
g(xi) ≡ gi. More specifically,

fk(x) = min
{
f(x0) + (x− x0)Tg0), . . . , f(x(k−1)) + (x− x(k−1))Tg(k−1)

}
Assume that the maximum of fk is attained for all k. Prove that the
cutting plane algorithm, with the updates presented as above, converges
finitely for the dual of a linear program, with atleast one strategy for
choosing the subgradient (in fact, it converges for any choice of the sub-
gradients). Also state the choice of the subgradients.

You can assume that the dual function for a linear progran is of the form

min
i∈I

{
aT
i x + bi

}
where I is a finite index set and ai ∈ <n and bi are given vectors respec-
tively.

(6 Marks)

1g is a subgradient at x for a concave function f if and only if −g is a subgradient at x
for the convex function −f .


