
Introducing Formal Methods via Program Derivation

Dipak L. Chaudhari
Department of Computer Science and Engg.

Indian Institute of Technology, Bombay
Mumbai, India, 400076

dipakc@cse.iitb.ac.in

Om Damani
Department of Computer Science and Engg.

Indian Institute of Technology, Bombay
Mumbai, India, 400076

damani@cse.iitb.ac.in

ABSTRACT
Existing attempts towards including formal methods in in-
troductory programming courses focus on introducing pro-
gram verification tools. When using the verification tools,
there is no structured help available to the students in the
actual task of implementing the program, except for the
hints provided by the failed proof obligations. In contrast, in
the correct-by-construction programming methodology, pro-
grams are incrementally derived from their specifications.

By restricting our attention to program derivation, we
have identifed a small core of the formal method concepts
that can easily be taught in the first two years of a comput-
ing curricula. Based on our learning from multiple years of
paper and pencil based teaching, we have developed a pro-
gramming assistant tool that addresses several of the issues
faced by the students in the manual program derivation.
The tool ensures that the most common students’ error of
performing incorrect proofs does not happen.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science EducationComputer science education; D.2.4
[Software Engineering]: Software/Program Verification-
Correctness Proofs, Formal Methods, Programming by Con-
tract

General Terms
Algorithms, Verification, Human Factors

Keywords
Correct by Construction; Calculational Style; Teaching For-
mal Methods

1. INTRODUCTION
In its final report [1], the ITiCSE 2000 Working Group

on Formal Methods Education aspired to see the concepts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’15, July 6–8, 2015, Vilnius, Lithuania.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3440-2/15/07 ...$15.00.
http://dx.doi.org/10.1145/2729094.2742628.

of formal methods integrated seamlessly into the computing
curriculum. Fifteen years later that aspiration still remains
an aspiration. In our opinion, the major reason for this is the
fact that the points of integration identified in the report, in
Appendices C and E, come much later in the curriculum. By
that time, the students are already used to the informal ways
of developing programs and software and the old habits die
hard. Ideally formal methods should be introduced as early
as possible, particularly when students are just learning how
to design programs [5].

Existing attempts in this direction focus on employing
formal verification for teaching program correctness [13, 3,
7, 12]. The Implement-and-Verify program development
methodology involves an implementation phase followed by
a separate verification phase. Although the failed proof obli-
gations provide some hint, there is no structured help avail-
able to the students in the actual task of implementing the
programs. Students often rely on ad-hoc use cases and in-
formal reasoning to guess the program constructs.

In contrast with this, in the Calculational Style of Pro-
gramming (CSoP) [6, 10], programs are incrementally de-
rived from their specifications. At every step in the deriva-
tion process, a partial program is transformed into a more
refined form, by following certain transformation rules. The
resulting programs are correct-by-construction since the cor-
rectness is implicit in the program transformations employed
during the derivation. Since the students see the program
transformation strategy that led to the introduction of a
particular programming construct, they understand why a
particular programming construct was introduced at a par-
ticular point in a program.

Based on the four offerings of the program derivation elec-
tive course to sophomores, we have identified a small core of
the formal method concepts which is sufficient for teaching
derivations of a large number of programs. We have also
identified several difficulties faced by the students in using
the method effectively (discussed in Section 4).

To address these difficulties, we have developed a tool
called CAPS [4], for deriving sequential programs from their
formal specifications. To the best of our knowledge, no com-
parable tool exists. As discussed before, existing tools [13,
3, 7] only ensure the correctness of the already implemented
programs. Besides providing counter-examples, these tools
provide limited help to the students in learning the program
design techniques.

In CAPS, we have kept the derivation style and notation
as close to the pen-and-paper style of derivation as possi-
ble. Our main emphasis has been on the usability in the

class; in particular on being able to model and replay the
ad-hoc interactions and iterations that usually occur during
the manual program derivation by the students.

The organization of the rest of the paper is as follows.
In Section 2, we discuss the core formal method concepts
employed by us for teaching CSoP. In Section 3, we illustrate
the methodology with a detailed example. In Section 4, we
discuss our experiences from the years of teaching CSoP to
sophomore students. In Section 5, the CAPS tool and the
students experience with it is presented. Section 6 concludes
the paper.

2. CORE IDEAS
The advantage of teaching formal methods via CSoP is

that the students can quickly write programs to solve non-
trivial problems after being exposed to a small set of con-
cepts. After starting with the sum of an array and the max-
imum element of an array, we quickly move to the binary
search, fast exponentiation, and the maximum segment sum.
After that we cover various other optimal array segment and
search problems, and other similar problems like decompos-
ing a number in a sum of two squares. Then we move on
to array rearrangement problems such as array partitioning
and sorting. In one offering, we were able to cover even more
advanced problems such as the area of the largest square un-
der a histogram. We wish to emphasize that all of it can be
done using a small set of formal method concepts. Besides
propositional logic, and the concepts of assertions and loop
invariants, we only need a formal concept of quantified ex-
pressions and the rules for manipulating them.

We employ the Eindhoven notation (OP i : R.i : T.i) [10]
for representing quantified expressions. Outside the formal
methods community, this notation is typically used only for
quantified terms in arithmetic (

∑
,
∏

). Here OP (say,
∑

or MAX) is the quantified version of a symmetric, asso-
ciative binary operator op (say, + or max), i is a list of
dummy/quantified variables, R.i is the Range - a boolean
expression restricting the possible values that the dummies
can take, and T.i is the Term - over which the underlying
binary operator is repeatedly applied. For example, just the
way (

∑
i : 0 ≤ i < N ∧ A[i]%2 = 0 : A[i] ∗ A[i]) represents

the sum of the square of the even elements of the array A,
(MAXi : 0 ≤ i < N ∧ A[i]%2 = 1 : A[i] ∗ A[i]) represents
the maximum of the square of the odd elements of the array
A. Since all the quantified operators (including the logical
operators ∀ and ∃) are represented using the same notation,
we can use generalized calculational rules [10].

While a large number of quantified expression manipula-
tion rules are known [11, 2, 10], we find that for our purpose
only three rules suffice: Range Split, Empty Range and, One
Point Rule. The Range Split rule is most commonly used to
form an inductive hypothesis: to show that the loop body
maintains the loop invariant. The Empty Range and the
One Point rules are used to evaluate an expression when ei-
ther zero or exactly one dummy satisfies the range condition.
The entire expression is evaluated in an inductive fashion by
applying the Range Split, and the Empty Range or the One
Point rule. Due to the lack of space, we do not present a
detailed discussion of these rules but only illustrate them
with the help of an example.

Beside these rules, the only non-trivial concept from propo-
sitional logic that we use is that of Distributivity and its
adaptation for the Quantifier Calculus. Just the way ∗ dis-

tributes over +: x ∗ (y + z) = x ∗ y + x ∗ z, similarly ∧
(logical and) and ∨ (logical or) distribute over each other:
(P ∧ (Q ∨R) = (P ∧Q) ∨ (Q ∧R)), and + distributes over
max: x + (ymax z) = (x + y)max(x + z). With this small
set of core manipulation rules, we can teach derivation of a
large number of problems.

Just the way ITiCSE Working Group on Formal Meth-
ods [1] viewed formal methods as the “calculus” of software
engineering, we view rules for manipulation of Quantified
Operators as the “calculus” of program derivation.

3. AN EXAMPLE DERIVATION
We now present a calculational derivation of the well-

known Maximum Segment Sum problem. This derivation
highlights the typical steps that are involved in a program
derivation session. The natural language specification for
this problem is:

Let A[0..N) be an array of integers. Compute the maxi-
mum sum of the elements of all segments of A.

This problem is formally specified in a natural fashion as
shown in Figure 1(a), where S is the required program with
the desired postcondition R. To do inductive computation,
we introduce a fresh variable n and rewrite postcondition R
as P0∧P1∧n = N where P0 and P1 are given in Figure 1(b).

We can take P0∧P1 as the loop invariant and ¬ (n = N) as
the loop condition. We observe that the assignment r, n :=
0, 0 establishes the invariants P0 and P1 initially. Now, we
arrive at the program shown in Figure 1(c).

We explore the inductive step n := n+1. Now, if we want
the loop invariant P0 to be true after the assignment, then
we need the assertion P0(n := n+ 1) before the assignment,
where P0(n := n + 1) represents the formula obtained by
replacing n with n+1 in the body of P0. That is, if we want
{r = (MAXp, q : 0 ≤ p ≤ q ≤ n : Sum.p.q)} to be true after
n := n + 1 is executed then {r = (MAXp, q : 0 ≤ p ≤ q ≤
n + 1 :Sum.p.q)} must be true before the assignment is
executed. This is called necessary (or weakest) precondition
np.(n := n + 1).P0 w.r.t. the assignment.

Now we expect to modify r to some r′ before incrementing
n, where r′ is a metavariable. A metavariable is not a pro-
gram variable - it just represents an unknown expression.
Then, np.(r := r′).(np.(n := n + 1).P0) is the necessary
precondition for the assignment r := r′. To calculate r′,
we assume P0, P1, and n 6= N and simplify the necessary
precondition as shown in Figure 1(d). In calculational style,
every step in a calculation is associated with a hint justifying
the step.

In step 15 in Figure 1(d), the quantified expression is not
easily computable or expressible in terms of the existing pro-
gram variables. This motivates the introduction of a new
variable s and the loop invariant P2 : s = (MAXp : 0 ≤
p ≤ n : Sum.p.n). P2 can be established initially by s := 0,
since the summation over an empty range equals 0. We now
arrive at the program shown in Figure 1(e).

To establish P2(n := n+1) as a precondition of the assign-
ment to r, we introduce an unknown program fragment S1.
To develop S1, we introduce the assignment s := s′. Similar
to the calculation of r′, we calculate the value of s′ to be
(s + A[n])max 0. In computing s′, once again we use the
Empty Range rule that the summation over an empty range
returns 0. The final program is presented in Figure 1(f).
This completes our derivation. Note the small number of
concepts that were needed to derive an elegant solution to a

con N : int {N ≥ 0}; var A: array [0..N) of int;
var r: int;

S
R : {r = (MAXp, q : 0 ≤ p ≤ q ≤ N : Sum.p.q)}
Sum.p.q : (

∑
i : p ≤ i < q : A[i])

(a)

P0 : {r = (MAXp, q : 0 ≤ p ≤ q ≤ n : Sum.p.q)}
P1 : 0 ≤ n ≤ N
P2 : s = (MAXp : 0 ≤ p ≤ n : Sum.p.n)

(b)

1 np.(r := r′).np. (n := n + 1) . (P0)
2 ≡ { definition of P0 }
3 np.(r := r′).np. (n := n + 1) .(r = (MAXp, q : 0 ≤ p ≤ q ≤ n : Sum.p.q))
4 ≡ { definition of np }
5 np.(r := r′).(r = (MAXp, q : 0 ≤ p ≤ q ≤ n + 1 : Sum.p.q))
6 ≡ { definition of np }
7 r′ = (MAXp, q : 0 ≤ p ≤ q ≤ n + 1 : Sum.p.q)
8 ≡ { q ≤ n + 1 ≡ q ≤ n ∨ q = n + 1 }
9 r′ = (MAXp, q : (0 ≤ p ≤ q ≤ n) ∨ (0 ≤ p ≤ q = n + 1) : Sum.p.q)
10 ≡ { Range Split }

11 r′ =

(
(MAXp, q : 0 ≤ p ≤ q ≤ n : Sum.p.q)
max (MAXp, q : 0 ≤ p ≤ q = n + 1 : Sum.p.q)

)
12 ≡ {definition of P0 }
13 r′ = rmax (MAXp, q : 0 ≤ p ≤ q = n + 1 : Sum.p.q)
14 ≡ {q = n + 1 }
15 r′ = rmax (MAXp : 0 ≤ p ≤ n + 1 : Sum.p.(n + 1))
16 ≡ {let us introduce P2; assume P2(n := n + 1)}
17 r′ = rmax s

(d)

r, n := 0, 0;{
loop inv : P0 ∧ P1

}
do n 6= N →

S0

od

(c)

r, n, s := 0, 0, 0;{
loop inv : P0 ∧ P1 ∧ P2

}
do n 6= N →
{P2 }S1 {P2(n := n + 1) };
r := rmax s;
{P0(n := n + 1) }
n := n + 1;

od

(e)

r, n, s := 0, 0, 0;{
loop inv : P0 ∧ P1 ∧ P2

}
do n 6= N →

s := (s + A[n])max 0;
{P2(n := n + 1) }
r := rmax s;
{P0(n := n + 1) }
n := n + 1;

od

(f)

Figure 1: Selected stages in the derivation of the Maximum Segment Sum problem.

non-trivial problem. We next discuss our experience teach-
ing this methodology.

4. COURSE FEEDBACK AND TOOL SUP-
PORT FOR CSOP

The students’ interest in the methodology is reflected in
the course feedback where we received 87% score in the last
offering of the course. Following two comments exemplify
the students’ excitement: “A quite different approach to pro-
gramming, very innovating and interesting too. Some really
great insights.” and “We learned many good things. I never
thought that program could be derived. The experience was
enriching.” Despite the mostly positive feedback, we also
realized that students were facing a number of difficulties
in manually (without using any tool support) deriving the
programs:

Common Difficulties:

(CD0) Difficulty in understanding formal logic: Used
to informal reasoning, students make several mistakes in un-
derstanding and applying inference rules.
(CD1) Not checking transformation applicability con-
ditions: Many of the program transformation rules have
prerequisites that need to be checked. For example, + dis-

tributes over quantified MAX only if the range is non-
empty. Students often forget to check such conditions.
(CD2) Long derivations: Compared to the guess and test
approach, the calculational derivations are longer even for
simple programs. Students get restless if the derivation runs
too long, leading to more errors.
(CD3) Mistakes made during guessing: Manual deriva-
tions often involve small jumps where the unknown program
expressions are simple enough to be guessed easily. Students
often inadvertently take big steps during guessing, resulting
in incorrect program expressions. For example, for program
S1 in Figure 1(e), many students make a jump and guess
the value of s′ to be s + A[n].
(CD4) Forgetting to add bounds to the introduced
variables: It is a general guideline to add bounds for a
newly introduce variable, such as the bounds for n in the
maximum segment sum problem. Students often forget to
add such bounds, and later in the derivation, when the
bound constraints are needed, they have to backtrack and
take the corrective actions.
(CD5) Forgetting to prove proof obligations: With
their focus on unraveling the unknown program fragments,
students many times forget to prove some of the proof obli-
gations.

X

Y

Figure 2: Graphical User Interface of the CAPS tool. The left panel is the Tactics Panel, the center panel is
the Content Panel and the bottom panel is the Input Panel. Magnified area X shows an annotated unknown
program along with its pre- and post- conditions whereas the magnified area Y highlights the form for entering
the inputs of the “Replace term by variable”(RTVInPost) tactic.

(CD6) Problem with organizing derivation: The deriva-
tion process is not always linear; it involves multiple itera-
tions involving failed derivation attempts. Students often
fail organize the derivation in cases where they need to
go back and make some corrective changes. Unorganized
derivation often leads to some missing proofs of correctness.

Based on the errors experienced during the multiple course
offerings, we decided to develop tool support for teaching
this methodology. We next outline the required functional-
ity for the desired tool support. First and foremost, we must
ensure correctness of all the steps involved in the deriva-
tion. The manual derivation occasionally employs informal
reasoning. For example, the Step 8 in the Figure 1(d) im-
plicitly uses the rule that ∧ distributes over ∨. To ensure
correctness, we need to have a unified framework to man-
age both the program and the formula transformations. We
must have a mechanism for dealing with the long deriva-
tions. In addition to automating the tasks involved, having
the ability to organize the long proofs is vital. We also need
to maintain history to provide backtracking and branching
functionality. Finally, the user interface should allow seam-
less navigation across the derivation history.

5. CAPS TOOL
We now discuss the CAPS tool for the CSoP method-

ology. Its core components are implemented in the Scala
language. The graphical user interface is implemented as a
web application. The CAPS tool uses the Why3 [9] verifi-
cation platform as an interface to various backend theorem
provers. But the students need not concern themselves at
all with how the theorem prover works. The implementa-
tion details of the tool have been published in [4] and here we
concern ourselves only with the use of the tool in classroom
teaching.

1

2

3

4

5

6

7

8

9 10

11

12

Partial program corresponding
to the specification

Final Derived Program

Stepping into
subprogram

Figure 3: Schematic Derivation Tree.

5.1 Program Derivation Methodology
Students incrementally transform a formal specification

into a fully derived program by applying predefined trans-
formation rules called Derivation Tactics. For example, two
of the tactics that we employed in derivation in Figure 1 are
Replace constant by a variable, and Range Split. To apply
a tactic, one needs to select a tactic from a list and provide
the required input parameters, and the tool automatically
performs the corresponding formula manipulations. By forc-
ing students to enter the required parameters, errors such as

Figure 4: Calculation of initial assignment (q, r :=
0, x) to establish invariant 0 ≤ r ∧ q ∗ y + r = x while
deriving Integer Division program(Set q, r to the
quotient & remainder of the division of x by y).

CD4 are prevented. The tool ensures correctness after ap-
plication of every tactic. The GUI of the tool is shown in
Figure 2.

5.2 Derivation History and Backtracking
The CAPS tool maintains the entire derivation history in

the form a derivation tree. The user can also branch off from
any point in the derivation to explore different derivation
strategies. This helps take care of the errors resulting from
CD4 and CD6.

Figure 3 shows a schematic representation of a derivation
tree. Node 1 is the starting node representing the speci-
fication and node 12 represents the final derived program.
Node 6 and node 9 are the nodes where the user faces some
difficulties with the derivation and decides not to carry out
the derivation further and prefers to backtrack and branch
out. The backtracking mechanism makes it easier for the
user to try out different alternatives with least amount of
rework. The user interface also makes it easy to navigate
across different solutions.

5.3 Focusing on Subcomponents
At every stage in the derivation process, there exists a

correct-by-construction program containing multiple unknown
subprograms. The user may want to focus her attention on
the development of one of these subprograms. Hence it is
desirable that all the context information relevant for the
derivation of the subprogram is extracted and presented.

Similarly, while transforming formulas, the user may want
to focus on a subformula while ignoring the rest of the for-
mula.

To focus on a subcomponent, the StepIn tactic is applied.
Application of the tactic brings the context of the subcom-
ponent under consideration in focus and hides the rest of the
program. (The details of the context extraction process are
described in [4].) After transforming the subcomponent to
a desired form, users can apply the StepOut tactic to bring
the focus back to the whole program. The StepIn tactic
application can be nested any level deep. In Figure 3, the
entry to and exit from the rectangles correspond to appli-
cation of StepIn and StepOut tactics. Whenever user steps
into a subcomponent, a new Frame is created to store the
appropriate contextual information. The contextual infor-
mation is then available for use during the transformations
of the subcomponent.

Example: Figure 4 shows a calculation that uses the “Fo-
cusing on subformula”functionality. Contextual information
(assumptions) for the inner frame are displayed at the top
of the frame.

5.3.1 Automating Formula Transformations
In the manual calculations, all the steps are kept small

enough to be manually verified by the user. This is the
main reason why the program derivations are long even for
simple problems, and formal methods are hated by several
students. With a tool support, however, we can afford to
take large steps, as long as the readability is maintained.
In general, small steps are good for readability. However,
there are situations where certain calculation is not impor-
tant from the derivation point of view. We would like to
automate such calculations. We employ a backend theorem
prover to perform required proofs. This makes the program
calculations flexible and reduces the derivation length. This
helps with the observed errors CD2 and CD5.

Calculations not involving any metavariables should be
automated to the extent possible. For example, in Fig. 1,
we skipped the proof of preservation of the invariant P1 : 0 ≤
n ≤ N . As no metavariable is involved this proof obligation,
it is uninteresting from the derivation viewpoint. Students
resent doing such proofs. We, however, still need to dis-
charge them to ensure correctness. The proof obligation for
P1 can be directly transformed to true by applying a Ver-
ifiedTransformation tactic that uses the backend theorem
prover. The introduction of this tactic takes care of the
errors CD1 and CD3.

In case a proof obligation is not automatically discharged
by the theorem provers, we have to carry out the detailed
step-by-step proof. A failed calculational proof often pro-
vides clues about how to proceed further with the deriva-
tion.

Another example is the calculations involved in verifying
the applicability conditions for some tactics. Consider the
“Empty Range” tactic for the summation that transforms
the formula (

∑
i : false : T.i) to 0. If a student wants to

apply this tactic directly to (
∑

i : R.i : T.i), she first needs
to show that R.i ≡ false (which may take several steps)
and then apply the tactic. Other way is to directly apply
the Empty Range Tactic to (

∑
i : R.i : T.i) and the tool

ensures that the R.i is unsatisfiable.
Automated formula transformations take care of the most

of the common logic related errors (CD0).

5.4 Evaluation
The tool became ready to be used by the students only to-

wards the end of the last offering of our program derivation
course. It received very enthusiastic response from the stu-
dents. We did an anonymous survey to get specific feedback
about the tool. There were a total of fourteen responses.
Ten students felt that the use of the tool increased their con-
fidence in the correctness of the derived program, while three
did not feel so, and one student was unsure. Same pattern
was observed for the question whether the tool simplifies or
complicates the task of the derivation. To the question of
how would they like to derive the programs in future, five
said using the tool alone, six said that they would like to
use the tool along with paper and pencil, and three students
commented that they would not use the tool. Eight out
of the fourteen students also felt that the tool should have
been introduced right from the beginning of the semester,
while three suggested introduction around the middle of the
semester, and three students felt that the tool should not be
introduced at all but they did not write any comments. Due
to the anonymity of the survey, we are unable to determine
why three students did not like the tool at all.

Overall, we are quite happy with the use of tool in the
course. The biggest advantage was that the students could
not submit incorrect derivation. They could only submit
either correct or partially correct answers; since programs
were correct-by-construction at all stages (although they
may have been incomplete). We could look at the deriva-
tion history of partial submissions and identify the problems
because of which they were stuck at a particular point. Stu-
dents were happy about the fact that they knew that their
solution was correct before making the submission. Note
that this adds a completely new dimension to the concept
of automatic grading of assignments [8]. We plan to use the
tool right from the beginning of the next offering to under-
stand its shortcomings in detail.

One unexpected downside of the introduction of the tool
was the increase in ad-hocism in some of the derivations. In
the class, we teach various derivation heuristics and the asso-
ciated proof obligations, and students are supposed to follow
them in the manual derivation. However, with the tool try-
ing to automatically discharge proof obligations, some stu-
dents make wild guesses about the required program con-
structs, resulting in very inelegant programs. For example,
rather than deriving the value of s′ in Figure 1(f), many stu-
dents introduce several if statements enumerating different
cases involving positive and negative values of s and A[n].
In comparison, max operator in our derivation can be im-
plemented using a single if. Note that these programs were
inelegant compared to what is possible with the derivation
methodology, and not compared to what is achieved in the
standard guess and test methodology. Essentially, these stu-
dents use the tool as a program verification system and not
as a program derivation system. This in some sense but-
tress the argument we made in the introduction section as
to why the program derivation and not the program verifi-
cation should be used to introduce formal methods.

6. CONCLUSION
Instead of program verification, we have been using pro-

gram derivation as the vehicle for introducing formal meth-
ods in the introductory programming classes. This has been

done employing only a small core of formal method con-
cepts. Based on our experience in teaching this method to
several batches, we have identified a list of common errors
made by the students while deriving the programs manually,
and have developed a programming assistant to take care of
these problems. The preliminary student response to the
tool has been very positive. Based on the learnings from the
first offering of the tool, we plan to further enhance the tool
and deploy it right from the beginning of the next offering
of the course.

Acknowledgements.
The work of the first author was supported by the Tata Con-
sultancy Services (TCS) Research Fellowship and a grant
from the Ministry of Human Resource Development, Gov-
ernment of India.

7. REFERENCES
[1] V. L. Almstrum, C. N. Dean, D. Goelman, T. B.

Hilburn, and J. Smith. Support for teaching formal
methods. SIGCSE Bull., 33(2):71–88, June 2001.

[2] R. Backhouse. Program construction: calculating
implementations from specifications. Wiley, 2003.

[3] G. Caso, D. Garbervetsky, and D. Goŕın. Integrated
program verification tools in education. Software:
Practice and Experience, 2012.

[4] D. Chaudhari and O. Damani. Automated theorem
prover assisted program calculations. In Proc. of the
11th International Conference on Integrated Formal
Methods, iFM, 2014.

[5] A. J. Cowling. Stages in teaching formal methods. In
23rd IEEE Conference on Software Engineering
Education and Training, 2010.

[6] E. W. Dijkstra and W. H. Feijen. A Method of
Programming. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1988.

[7] I. Dony and B. Le Charlier. A tool for helping teach a
programming method. In Proc. of the 11th Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education, ITiCSE, 2006.

[8] J. English and T. Rosenthal. Evaluating students’
programs using automated assessment - a case study.
In Proc. of the Conference on Integrating Technology
into Computer Science Education, ITiCSE, 2009.

[9] J.-C. Filliâtre and A. Paskevich. Why3 – Where
Programs Meet Provers. In ESOP’13 22nd European
Symposium on Programming, volume 7792 of LNCS,
Rome, Italie, Mar. 2013. Springer.

[10] A. Kaldewaij. Programming: the derivation of
algorithms. Prentice-Hall, Inc., NJ, USA, 1990.

[11] D. G. Kourie and B. W. Watson.
Correctness-by-Construction Approach to
Programming. Springer, 2012.

[12] K.-K. Lau. A beginner’s course on reasoning about
imperative programs. In C. Dean and R. Boute,
editors, Teaching Formal Methods, volume 3294 of
LNCS. Springer Berlin Heidelberg, 2004.

[13] M. Sitaraman and B. Weide. Special session:
“hands-on” tutorial: Teaching software correctness
with resolve. In SIGCSE 2014 - Proc. of the 45th
ACM Technical Symposium on Computer Science
Education, 2014.

