
Reliability and Availability Issues
In Distributed Component Object Model (DCOM)

(Position paper)

 Yi-Min Wang Om P. Damani Woei-Jyh Lee1
 AT&T Labs-Research Univ. of Texas at Austin New York University
 ymwang@research.att.com damani@cs.utexas.edu wjlee@research.att.com

1 This work was performed during the summer internship of the
 second and the third authors in AT&T Labs-Research.

Abstract
 Distributed Component Object Model (DCOM) is one
of the emerging standards for distributed objects. Before
DCOM can be used to build mission-critical applications,
the reliability and availability issues must be addressed. In
this position paper, we outline the current research
directions of the InterCOM project, which exploits the
dynamic behavior, the extensible architecture, and the
component software model of DCOM to provide fault-
tolerance capabilities to distributed applications.

1. Introduction
In the component software architecture, applications are
built from packaged binary components with well-defined
interfaces [1]. It allows flexible update of existing
applications, provides a higher-degree of application
customization, encourages large-scale software reuse, and
provides a natural migration path to distributed
applications. The Component Object Model (COM) [2] is
an approach to achieving component software architecture.
COM specifies a way for creating components and for
building applications from components. Specifically, it
provides a binary standard that components and their clients
must follow to ensure dynamic interoperability. This
enables on-line software update and cross-language
software reuse.

Distributed Component Object Model (DCOM) [3] is the
distributed extension of COM. It is an application-level
protocol for object-oriented remote procedure call (ORPC).
The DCOM protocol is layered on top of the OSF DCE
RPC specification [4], with a few extensions. For example,
it specifies how pointers to remote objects are represented
and how they can be resolved to find the actual objects.
Effectively, DCOM transparently extends the capabilities
and benefits of COM to a networked environment.

DCOM is now part of the Windows NT 4.0 operating
system. Due to the increasing popularity of Windows NT,
several companies are porting or plan to port DCOM to
mainframes (such as IBM MVS) and various versions of

Unix (such as Solaris, Digital Unix, and HP-UX) to ensure
interoperability in a heterogeneous environment [5].
DCOM is also part of the ActiveX Core Technologies [6]
that are being standardized by a software consortium called
the Active Group. It can also be expected that DCOM will
be increasingly used in the research community as a
distributed object platform for systems research.

However, DCOM environment itself has several problems
that need to be solved before it can be accepted by the
research community as a viable research platform. Also, as
demonstrated throughout the paper, the dynamic behavior
of DCOM introduces new challenges as well as encourages
novel solutions for building reliable distributed
applications. These aspects motivated our InterCOM
project. Due to its desktop document processing origin,
many DCOM application programming interfaces (APIs)
are not structured and presented in an intuitive way for
building distributed client/server applications. As a result,
although the design of the DCOM architecture is quite
extensible (that is, reasonable defaults are provided for
common cases, but can be overwritten through flexible
programming hooks), it often involves non-intuitive
programming hacks to provide the functionality required in
a client/server environment. Some of these are reflected in
the discussions in Section 3. The InterCOM project aims at
extracting the mechanisms behind the APIs, and providing
a toolkit to restructure them in a way that facilitates
building higher-level object services [26] and implementing
reliable, highly-available, and fault-tolerant distributed
applications.

2. Overview of DCOM

In COM, an executable (EXE) or a dynamic link library
(DLL) can serve as an object server. A server can
implement class factories for multiple classes, each of
which is identified by a 128-bit globally unique identifier
(GUID), called the class identifier (CLSID). Each class
factory can create object instances of a particular CLSID.
An object can support multiple interfaces, each representing
a different view or behavior of the object. Each interface is

identified by a GUID, called the interface identifier (IID).
An interface usually consists of a set of functionally related
methods. A COM client interacts with a COM object by
acquiring a pointer to one of the object's interfaces, and
invoking methods through that pointer.

The overall architecture of DCOM can be divided into three
layers [7]: basic programming layer, remoting layer, and the
wire protocol layer. At the basic programming layer, the
client is provided with the illusion that it is always invoking
methods on objects running in the same address space. The
remoting layer [2] consists of the COM infrastructure that
provides that illusion. The wire protocol [3] describes what
are actually transmitted across the network when objects do
not reside on the client machine.

At the basic programming layer, the client specifies a
CLSID and an IID to obtain an interface pointer. The
server, upon being activated by the COM infrastructure,
creates and registers all supported class factories. A method
on the class factory of the requested CLSID is invoked to
create an object instance and return a pointer to the
interface of the requested IID. The client can then invoke
methods of that interface, or navigate to other interfaces of
the same object instance.

Upon receiving an activation request from the client, the
Service Control Manager (SCM) at the remoting layer
checks to see if the client can attach to a running class
factory. If not, it locates the server implementation through
the registry, and activates the server. In the process of
returning an interface pointer to the client, a server-side
stub and a client-side proxy are created, connected by an
RPC channel [2]. When the client invokes a method, the
proxy marshals the parameters, and sends the request to the
stub. The stub unmarshals the parameters, invokes the
actual method on the object, marshals the return values, and
replies back to the proxy which unmarshals the values and
hands them back to the client.

At the wire protocol layer, the client-side SCM performs
remote activation by invoking an RPC interface method on
the server-side SCM [23]. The wire-level representation of
a returned interface pointer includes a server identifier, the
address of the resolver that can translate the identifier to the
actual server endpoint, and an interface pointer identifier
that uniquely identifies the interface instance within that
server. Upon unmarshaling the interface pointer, the client-
side RPC subsystem requests the resolution of the server
identifier, and caches the returned endpoint information for
future method invocations. The parameters and return
values of method invocations are marshaled in the Network
Data Representation (NDR) format [4].

3. The InterCOM Project

Our long-term goal is to provide a fault-tolerance-
programming wizard that is able to guide programmers to
choose the right fault-tolerance techniques and generate
much of the boilerplate code. The wizard would cover at
least the three main approaches to fault tolerance:
checkpointing and message logging [10,11], virtual
synchrony [15], and transaction [27]. In this section, we
outline the current research directions of the InterCOM
project, which exploits interception-based mechanisms to
provide reliability and high availability to DCOM
applications. It addresses the issue of checkpointing and
call logging in a primary-backup, failover configuration.
Extensions to the active-active configuration with replicated
processes based on group communications will be part of a
joint project with the Ensemble group at Cornell [8]. We
plan to use Microsoft Transaction Server [23] for the
transaction part.

We consider primary-backup systems which may or may
not have an underlying clustering software (such as
Wolfpack [9]) for providing the failover of system
resources such as IP addresses, shared disk, etc. Complete
application failover in such systems generally involves the
primary server checkpointing its critical data for use by the
backup; the client locating the backup server upon a failure,
and issuing a reconnection; the server executing a different
piece of code if software bugs seem to be the cause of the
failure. We next describe the challenges and opportunities
that DCOM presents in these aspects.

3.1. Data Checkpointing

A stateful server application usually needs to checkpoint its
critical data during normal execution so that, upon a failure,
the backup server can recover as much pre-failure state as
possible from the checkpoint. In a cold backup scheme, the
checkpoint is periodically saved on a shared disk, and the
backup is activated to reload that checkpoint only upon a
failover. In a warm backup scheme, the checkpoint is
transferred to the memory of an initialized backup. In both
cases, message logging can be employed as a form of
incremental checkpointing to improve performance.

COM-based server applications introduce several
interesting new twists to the problem of checkpointing. In a
traditional monolithic application, the main program is
totally in charge of declaring and checkpointing all critical
data [10]. This may not be an easy task when unknown
critical data inside imported libraries are present. This
difficulty becomes the normal case in component-based
applications in which reused components may constitute a
large percentage of the total amount of code. Therefore,
COM defines a set of standard interfaces (the IPersist*
family) that components can expose to provide data

persistence. This allows the knowledge about the critical
data of each component to be encapsulated inside the
component itself. The application simply queries each
constituent component for one of the standard interfaces,
and asks the component to checkpoint itself. To allow
critical data from all constituent components to be saved in
the same file, COM supports the concept of "a file system
within a file", called structured storage [12]. It also
supports a transacted mode that can be used to ensure either
the checkpoint operations of all components succeed, or
none of them takes effect. Another challenge in
checkpointing DCOM applications is that COM objects
come and go due to the inherently dynamic nature of the
model. As a result, the issue of tracking and identifying
those objects that are still active also needs to be addressed.

3.2. Object Locator

Object locator is used by COM clients to find the desired
primary server objects, as well as to locate the backup
server objects upon a failure. COM provides several
locator-related services. One of the goals of InterCOM is to
integrate these services into a single naming service for
locating COM objects, and possibly integrate it with other
general-purpose, standard naming services.

The most well-known object locator in COM is the registry.
It maps a CLSID (or a readable name called ProgID) to the
path name of the server executable that supports the
CLSID. However, the registry is consulted only after the
SCM has failed to locate any running object instance. There
are at least two ways for a client to bind to a running
instance. First, if a running class factory for the requested
CLSID has been registered in the class object table, SCM
retrieves the class factory pointer directly from the table
without activating a new server instance. Alternatively, a
specific object instance can be named by using a moniker.
A moniker [12,24] is itself a COM object supporting the
IMoniker interface. Each moniker specifies a CLSID and
identifies the persistent data for an instance of that CLSID.
By registering a moniker with the Running Object Table
(ROT) [2], an object instance allows clients requesting that
moniker to attach to it.

A higher-level object locator service can be implemented
using the referral (or broker) components [13]. A referral
component manages a pool of interface pointers to object
instances possibly running on different machines. It can
support a naming scheme as well as perform failure
detection and load balancing. In such architecture, a client
always contacts the referral component to get access to an
initial interface pointer to a server object. The underlying
distributed object support of DCOM allows the client to
talk to the object directly in subsequent invocations,
without passing through the referral component. (This
architecture bears some similarities to the single-IP-image

approach to supporting Web server clusters [14].)

3.3. Client Reconnection

There are two approaches to enabling automatic client
reconnections upon a server failure: toolkits and wrappers
[15]. In the first approach, client programs link with a
toolkit and invoke special APIs to make connection [10]. In
the second approach, source code-transparent wrappers
intercept normal connection requests sent by the clients,
and issue reconnections when a failure occurs. As explained
next, the dynamic behavior and extensible architecture of
DCOM facilitate the implementation of dynamic wrappers
that allow the server objects to decide when to apply which
wrappers based on run-time information.

As described previously, when a client requests an interface
pointer, which server object it will eventually bind to
depends on several table-lookup operations. It is therefore
possible to manipulate the mapping information in those
tables at run-time to dynamically change the application
behavior. For example, one can provide a wrapper
component by using COM's containment or aggregation
technology [1]. The former allows the wrapper to receive a
client request, perform pre-processing, invoke the actual
server component, perform post-processing and then hand
the results back to the client. The latter allows changing
application behavior by adding additional interfaces that the
client or the COM infrastructure may query. Wrappers can
be injected into the system by either modifying the registry
settings, or placing mappings in the class object table or
ROT to bypass registry lookups.

Server objects themselves can also decide which wrapper to
inject by using a technique called custom marshaling
[16,17]. The marshaling architecture described in the
previous section is called the standard marshaling: data
passing between the server and the client are marshaled into
a standard format in a standard way. Standard marshaling is
actually a special case of the more general custom
marshaling. By supporting the IMarshal interface, a server
object indicates that it wants to establish proprietary
communication with the client-side proxy, and so the COM
infrastructure should not create the standard proxy/stub
pair. That interface allows an object to specify the CLSID
of the custom proxy that should run on the client side and
can interpret the custom marshaling packet. Custom
marshaling is commonly used for caching immutable
objects on the client side to efficiently support read
operations locally. It can also be useful for injecting
dynamic client-side fault-tolerance agents for issuing
reconnections. Custom marshaling is one of many examples
that demonstrate the extensibility of the DCOM
architecture.

When a wrapper issues a reconnection, it needs a locator for

finding the correct backup server object. If the original
binding to the primary server object was based on a
moniker, a similar binding call can be made to the backup
machine for reconnection. If the original connection was
made to a fresh instance of a particular CLSID, then a
separate mechanism must be provided to allow the server
object and the client to agree on a name upon object
creation.

3.4. Software-fault Tolerance

In general, there are three approaches to tolerating software
bugs. The simplest one is the environment diversity
approach [18,19], which reexecutes the same program with
the same set of input but in a different environment.
Usually, this can be achieved by following the same
failover procedure for recovering from hardware failures.
Another one is the data diversity approach [20], which
executes the same program on a transformed but consistent
set of data. This can be implemented by the containment
wrappers described previously, where pre-processing and
post-processing consist of application-specific data
transformations.

The third approach is the design diversity approach [21,22],
which executes a different program implementing the same
functionality. Design diversity has not been widely used
possibly because building multiple versions can be costly
and they may still share similar kinds of bugs. The design
of COM provides several arguments that design diversity
may eventually be practically useful in the component
software architecture. First, interface specifications are
what COM is all about. By strictly separating interfaces
from implementations, COM encourages different
implementations of the same interfaces. In other words, the
existence of multiple versions supporting the same
functionality should actually be the normal case in COM.
Moreover, by asking each component to register which
component categories (i.e., which sets of interfaces) it
supports, it is possible to standardize the procedure of
invoking an alternate upon a failure, and provide a toolkit to
hide all the registry query and update activities. The rules
that COM clients must specify a globally unique identifier
when requesting an interface, and that an interface is
immutable once it is assigned an identifier, ensure that an
alternate must unambiguously support the interfaces that a
client wants. Finally, COM's language neutrality allows the
same interfaces to be implemented in different
programming languages. This has the potential of greatly
improving the effectiveness of design diversity. For
example, a memory corruption error in a component
implemented in a language that supports pointers would not
appear in another component written in a language with no
pointers.

4. Summary

We have described the challenges and opportunities that
DCOM presents in terms of building reliable and highly
available distributed applications. The current research
directions of the InterCOM project were briefly described
in the context of primary-backup, failover recovery. The
techniques can also serve as the basis for extending
InterCOM to the active-active, replicated processes setting
as supported in Ensemble. Such extensions may include
integrating the notion of object replication into the object
naming mechanism; providing a custom IDL compiler for
generating client proxies that access object groups in an
optimal fashion; and providing object replication
management that supports dynamic instantiation of objects
based on a QoS description [25].

Acknowledgments

 The authors would like to express their sincere thanks to
Ken Birman and Werner Vogels for their valuable
discussions and suggestions.

References

[1] D. Rogerson, “Inside COM”, Redmond, Washington:
Microsoft Press, 1996.

[2] Microsoft Corporation and Digital Equipment Corp.,
“The Component Object Model Specification,”
http://www.microsoft.com/oledev/olecom/title.htm, Oct. 1995.

[3] N. Brown and C. Kindel, “Distributed Component
Object Model Protocol -- DCOM/1.0”, Internet Draft,
http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-
spec-01.txt, Nov. 1996.

[4] OSF DCE RPC Specification,
http://www.osf.org/mall/dce/free_dce.htm, 1994.

[5] COM/DCOM Resources,
http://www.research.att.com/~ymwang/resources/resources.htm.

[6] “ActiveX Core Technologies Description”,
http://www.activex.org/announce/ActiveX_Core_Technologies.htm.

[7] Y. M. Wang,
“Introduction to COM/DCOM”, tutorial slides,
http://www.research.att.com/~ymwang/slides/DCOMHTML/ppframe.htm,
1997.

[8] “The Ensemble Distributed Communication System”,
http://simon.cs.cornell.edu/Info/Projects/Ensemble/index.html.

[9] “Clustering Solutions for Windows NT”, Windows NT
Magazine, pp. 54--95, June 1997.

[10] Y. Huang and C. Kintala, “Software implemented fault
tolerance: Technologies and experience,” in Proc. IEEE
Fault-Tolerant Computing Symp., pp. 2-9, June 1993.

[11] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang, “A
survey of rollback-recovery protocols in message-passing
systems.” Tech. Rep. No. CMU-CS-96-181, Dept. of
Computer Science, Carnegie Mellon University, 1996
(also available at http://www.research.att.com/~ymwang/papers/
surveyCR.htm).

[12] D. Chappell, “Understanding ActiveX and OLE”,
Redmond, Washington: Microsoft Press, 1996.

[13] “DCOM Technical Overview”,
http://www.microsoft.com/windows/common/pdcwp.htm.

[14] O. P. Damani, P. E. Chung, Y. Huang, C. Kintala, and
Y. M. Wang, “ONE-IP: Techniques for Hosting a Service
on a Cluster of Machines”, Proc. 6th WWW Conference,
pp. 735-743, April 1997. (Also available at
http://www6.nttlabs.com/HyperNews/get/PAPER196.html.)

[15] K. P. Birman, “Building Secure and Reliable Network
Applications”, Greenwich, CT: Manning Publications Co.,
1996.

[16] K. Brockschmidt, “Inside OLE”, Redmond,
Washington: Microsoft Press, 1993.

[17] D. Box, “Q&A ActiveX/COM”, Microsoft Systems
Journal, pp. 93-105, March 1997.

[18] Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C.
Kintala, “Checkpointing and its applications,” in Proc.
IEEE Fault-Tolerant Computing Symp., pp. 22--31, June
1995.

[19] Y. M. Wang, Y. Huang, and W. K. Fuchs,
“Progressive retry for software error recovery in distributed
systems,” in Proc. IEEE Fault-Tolerant Computing Symp.,
pp. 138-144, June 1993.

[20] P. E. Ammann and J. C. Knight, “Data diversity: An
approach to software fault-tolerance,” IEEE Trans.
Computers, Vol. 37, No. 4, pp. 418-425, Apr. 1988.

[21] A. Avizienis, “The N-version approach to fault-
tolerant software,” IEEE Trans. Software Eng., Vol. SE-11,
No. 12, pp. 1491-1501, Dec. 1985.

[22] B. Randell, “System structure for software fault
tolerance,” IEEE Trans. Software Eng., Vol. SE-1, No. 2,
pp. 220-232, June 1975.

[23] R. Grimes, “Professional DCOM Programming”,
Olton, Birmingham, Canada: Wrox Press, 1997.

[24] D. Box, “Q&A ActiveX/COM”, Microsoft Systems
Journal, pp. 93-108, July 1997.

[25] W. Vogels, “A programming environment for building
cluster-aware DCOM applications”,private communication,
June 1997.

[26] J. Siegel, “CORBA Fundamentals and Programming”,
John Wiley & Sons, 1996.

[27] J. Gray and A. Reuter, “Transaction Processing:
Concepts and Techniques,” San Mateo, CA: Morgan
Kaufmann, 1993.

Biography

Yi-Min Wang received his BS degree in electrical
engineering from National Taiwan University in 1986, and
the MS and PhD degrees in electrical and computer
engineering from the University of Illinois at Urbana-
Champaign in 1990 and 1993, respectively. He joined
AT&T Bell Laboratories in 1993, and is currently with
AT&T Labs-Research. His research interests include
distributed systems, fault tolerance, and networking.

Om P. Damani obtained his B. Tech. Degree in Computer
Science and Engineering from Indian Institute of
Technology, Kanpur, India in 1994. He is currently a PhD
student in the Department of Computer Science, University
of Texas at Austin. His research interests are fault
tolerance, distributed objects, and distributed simulation.

Woei-Jyh Lee received his BS degree from Department of
Computer Science and Information Engineering, National
Taiwan University in 1993. He is working towards the MS
degree in Department of Computer Science, New York
University. His research interests include distributed
objects, open systems, and Internet protocols.

