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Compiler optimizations pose many problems to source-level debugging of an optimized program
due to reordering, insertion, and deletion of code. One such problem is to determine whether the
value of a variable is current at a breakpoint—that is, whether its actual value is the same as its
expected value. We use the notion of dynamic currency of a variable in source-level debugging and
propose the use of a minimal unrolled graph to reduce the run-time overhead of dynamic currency
determination. We prove that the minimal unrolled graph is an adequate basis for performing
bit-vector data flow analyses at a breakpoint. This property is used to perform dynamic currency
determination. It is also shown to help in recovery of a dynamically noncurrent variable.
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1. INTRODUCTION

A source-level debugger is used to examine (and possibly control) the state of a
program during its execution. A user specifies a set of breakpoints for the pur-
pose of debugging. Each breakpoint is a source statement; the debugger opens a
debugging conversation with the user when execution reaches a breakpoint. Com-
piler optimizations hinder many functionalities of a source-level debugger, due to
reordering, insertion, and deletion of code. This leads to two kinds of problems:
code location problems and data value problems.

The code location problem is to find a mapping between statements in a source
program and instructions in an object program. Such a mapping is needed to set
breakpoints, while a converse mapping is needed to report the location of run-
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Fig. 1. Insertion and deletion of computations during optimization.

time exceptions in terms of source program statements. These mappings constitute
the breakpoint model. Reordering, insertion, and deletion of code lead to obvious
difficulties in developing the breakpoint model.

An expected value of a variable is a value the user expects the variable to have at
a breakpoint. The actual value of a variable is the value in the location allocated
to the variable at a breakpoint. A variable is said to be current at a breakpoint
if the expected and actual values at the breakpoint are the same in every execu-
tion of the program. A variable is said to be noncurrent at a breakpoint if its
expected and actual values at the breakpoint are different in every execution of the
program and suspect if the values are the same in some executions and different in
other executions. The data value problem consists of determining, at a breakpoint,
whether the value of a variable exists in a memory location or a register (the data
location problem) and whether the variable is current, noncurrent, or suspect (the
currency determination problem). Currency determination is vitally important in
dynamic debugging of a program because it would be incorrect for a debugger to
report the actual value of a noncurrent or suspect variable to the user. Recovery is
the procedure for obtaining the expected value of a suspect or noncurrent variable
at a breakpoint.

Figure 1 shows the program flow graph [Aho et al. 1986] of a program before and
after optimization. The program has been optimized by moving the assignment
x := 10 from node 4 to node 3 to suppress its redundancy along path 1-2-4 in the
program. Consider a breakpoint set at the start of node 4. The actual value of x
at the breakpoint is the value found in its memory location. This value is 10. The
expected value would depend on the path followed during execution; it would be
10 if execution followed the path 1-2-4, and 0 if execution followed the path 1-3-4.
Thus, the value of x is suspect at the start of node 4. Note that x is current at the
start of node 5. This is essential, since node 5 contains a use of x in the optimized
program (else the optimized program would be incorrect!).

Currency determination involves analysis of all possible paths in the original
and optimized programs to determine whether the expected and actual values of
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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a variable would be identical at a breakpoint. This analysis can be performed
using standard methods of data flow analysis [Hecht 1977; Aho et al. 1986]. Hence
this approach is called static currency determination. In Figure 1 static currency
determination would deduce that x is suspect due to the reasons mentioned earlier.
Static currency determination is safe in that it considers all possible paths in a
program and declares a variable to be current only if its expected and actual values
are the same along all paths. However, the information provided by static currency
determination is not precise enough for the purpose of dynamic debugging. For
example, in Figure 1 the value of x can be reported at the breakpoint if execution
had followed path 1-2-4. However, static currency determination forbids this by
declaring x to be suspect.

We use the notion of dynamic currency of a variable [Copperman 1993; 1994]
to indicate whether the actual and expected values of a variable are the same at a
breakpoint in a specific execution of a program. This provides a precise answer to
the currency determination problem. As is obvious, run-time information is used to
determine the dynamic currency of a variable. We use the term dynamic currency
determination for such an approach.

This article describes a method for dynamic currency determination in a frame-
work analogous to the static currency determination framework reported in Adl-
Tabatabai [1996]. Our method uses a representation of an execution of a program
for the purpose of data flow analysis. This representation is based on run-time in-
formation collected through instrumentation of the object code of an optimized pro-
gram. We use the theory of bit-vector data flow frameworks presented in Dhamd-
here et al. [1992] and Khedker and Dhamdhere [1994] to reduce run-time overheads
and to obtain an optimized representation called a minimal unrolled graph. Dy-
namic currency determination is performed by data flow analysis over a minimal
unrolled graph. We also discuss other interesting applications of a minimal unrolled
graph and its limitations resulting from the use of bit-vector data flow frameworks.

Terminology used in currency determination is discussed in Section 2. Section 3
briefly describes related work, mainly Adl-Tabatabai’s approach for currency de-
termination using static analysis techniques. In Section 4, we introduce the notion
of an unrolled graph to represent the path traversed during an execution of a pro-
gram and define a minimal unrolled graph as an optimized form of an unrolled
graph. Section 5 uses the theory of bit-vector data flow frameworks presented in
Dhamdhere et al. [1992] and Khedker and Dhamdhere [1994] to prove an important
property of a minimal unrolled graph: at a breakpoint, a bit-vector data flow anal-
ysis performed on a minimal unrolled graph yields the same data flow information
as a data flow analysis performed on the corresponding unrolled graph. This prop-
erty is used to perform dynamic currency determination. Section 6 describes how
code instrumentation can be used to build a minimal unrolled graph and shows how
minimal unrolled graphs can be used for other interesting applications. Recovery
of dynamically noncurrent variables using minimal unrolled graphs is described in
detail.

2. TERMINOLOGY

A program flow graph (PFG) is a directed graph G = (N , E, start), where N is
the set of nodes, each node being a basic block in the program, E is the set of
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control flow edges, and start ∈ N is the entry node of the graph. A point exists
either between two adjacent operations opj and opj+1 in a node, before the first
operation in a node or after the last operation in a node. An operation opj (if
any) immediately preceding a point pi in a node is said to occur at point pi. An
operation may be a statement in the case of a source flow graph, an IR operation
in the case of an intermediate representation, or an instruction in the case of an
object flow graph. A path is a sequence of points (p1, . . . , pn) such that for each
pair (pi, pi+1)1≤i<n, control can immediately reach pi+1 from pi. Alternatively, a
path can be specified as a sequence of operations or a sequence of nodes in PFG.

A breakpoint is a pair (bs, bo) where bs is a point in the source flow graph at
which the user expects the program to break and bo is the point in the object flow
graph where the program actually breaks. The mapping between breakpoints in
the source and object programs is termed the breakpoint model. An execution path
is a path (start, . . . , O) followed during an execution of a program. An execution
path pair (or simply a path pair) is a pair (ps, po) where ps and po are the execution
paths in the source and object flow graphs to a breakpoint (bs, bo), respectively.

Source variables are mapped to registers and memory locations in an object
program. (We use the term location to refer to a memory location or a regis-
ter.) Variables mapped to registers may or may not be assigned home locations in
memory. Also locations may be shared between different source variables, and a
variable may exist in different locations at different points in a program. Due to
this, a many-to-many mapping arises between source variables and locations. In a
path pair (ps, po), an instruction I in po is said to be a definition of a variable V
to L if I corresponds to an assignment of V in ps and assigns to a location L. V
is resident in L via a path po = (start, . . . , O) if there exists a definition of V to
L reaching O along po. V is resident at a point O if there exists a location L such
that V is resident in L via all paths (start, . . . , O). V is nonresident at O if it is
not resident at O—that is, no location is allocated to V—or if different locations
are allocated to V along different paths reaching O. A variable is said to possess
an actual value only if it is resident.

Consider a path pair (ps, po) ≡ ((starts, . . . , bs), (starto, . . . , bo)) leading to a
breakpoint (bs, bo). Currency of a variable V via (ps, po) is defined only if V has
an expected value via ps (i.e., V is not uninitialized along ps) and V has an actual
value via po (i.e., V is resident in some location L via po). Variable V is current
in a location L via path pair (ps, po) if and only if there exists a source assignment
ds on ps which assigns to V and reaches the end of ps, and there exists an object
assignment do on po which corresponds to ds, assigns to L, and reaches the end of
po. Variable V is noncurrent in L via path pair (ps, po) if and only if there exists a
source assignment ds on ps which assigns to V and reaches the end of ps, and there
exists an object assignment d′o of V on po which does not correspond to ds, assigns
to L, and reaches the end of po.

A variable V is current in L at a breakpoint (bs, bo) if and only if it is current in L
via every path pair leading to (bs, bo) and noncurrent if it is noncurrent along every
path pair reaching (bs, bo). A variable which is neither current nor noncurrent is
suspect. Variable V is said to be dynamically current in L at the breakpoint (bs, bo)
via path pair (ps, po) if and only if breakpoint (bs, bo) is reached by traversing the
path pair (ps, po) and V is current in L via path pair (ps, po). A suspect variable
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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may be dynamically current or dynamically noncurrent in a particular execution.

3. RELATED WORK

Hennessy [1992] introduces the notion of currency of a variable. Zellweger [1993]
inserts path determiners to collect selective execution history information for de-
bugging programs subjected to control flow optimization. However, she uses this in-
formation only to perform many-to-one and one-to-many mappings between source
locations and object locations. Copperman [1993; 1994], Wismüller [1994], Adl-
Tabatabai [1996] and Adl-Tabatabai and Gross [1993a; 1993b; 1996] provide solu-
tions to the currency determination problem using static analysis. Their schemes
differ in the breakpoint model and in the range and modeling of optimizing trans-
formations. None of them, however, deals with dynamic currency determination.
Wismüller’s scheme can use run-time information, but details are not reported in
literature. His algorithms are complex due to the choice of the breakpoint and
optimization models.

Adl-Tabatabai [1996] terms a noncurrent or suspect variable as endangered and
uses data flow analysis techniques to detect endangered variables. His breakpoint
model requires the points bs and bo to exist in corresponding source and object
nodes. Under this breakpoint model, data value problems caused by global op-
timizations can be tackled by modeling the optimizations in terms of two core
transformations—code hoisting and dead-code elimination—and performing static
analyses on an intermediate representation (IR).

The data value problem is divided into two components: local and global. The
local component is solved by algorithms which handle local optimizations and local
instruction scheduling [Adl-Tabatabai and Gross 1993a], and the global component
is solved by static analyses. Preconditions for the currency of a variable are tested
in two steps: first, reaching definitions analysis is performed on the source flow
graph to determine whether the variable has an expected value at the breakpoint.
Second, available residences analysis [Adl-tabatabai and Gross 1993b] is performed
on an instruction-level IR containing debugging information to determine whether
the variable has an actual value at the breakpoint. If these conditions are satisfied,
static analyses are performed to determine whether a variable is current. All static
analyses performed are bit-vector analyses [Khedker and Dhamdhere 1994].

Code movement is performed in two ways: hoisting and sinking. All through
this article, we discuss code hoisting as a representative transformation for code
movement. It is implicit that code sinking can be handled analogously. Hoisting of
an expression is modeled as copying an expression E from a node Ni to one or more
nodes postdominated by Ni. Code sinking is modeled as movement of an expression
E from a node Ni to one or more nodes dominated by Ni. These assumptions
limit the region of code where a variable is endangered and simplify the currency
determination algorithms [Adl-Tabatabai 1996]. If an assignment expression E is
hoisted, copies of E are inserted at a set of program points. We denote these
expressions by Eh. The original expression, which is now redundant and can be
removed, is called the redundant copy and denoted by Er. An eliminated dead
assignment expression E is denoted by Ed. It is assumed that a compiler introduces
annotations in a program flow graph (or in an IR containing sufficient information
to build a program flow graph) to indicate these insertions and deletions of code.
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Fig. 2. Representing hoisted and redundant expressions.

Figure 2 shows the representation of a program using this model. Optimization
has hoisted the assignment expression EV which assigns to V , from node N5 to
node N4. The inserted expression is denoted by EVh , and the redundant expression,
which is eliminated from the program, is denoted by EVr . Note that the flow graph
of Figure 2 represents the source program if we assume EWd and EVr to exist in the
program and ignore the presence of EVh , and represents the target program if we
ignore the presence of EWd and EVr . Thus, this program representation can be used
to determine the currency of E and V using the definitions of Section 2.

In this model, a simpler definition of the currency of a variable is as follows: a
redundant assignment expressionEV hoist-reaches via a path P = (start, . . . , O),
if EVh reaches O along P , and EVr does not occur after the last occurrence of EVh
along P . V is noncurrent at O if EV hoist-reaches along all paths (start, . . . , O)
and current if it does not hoist-reach along any path. V is suspect at O if it
hoist-reaches via at least one path, but not along all paths, leading to O.

4. THE MINIMAL UNROLLED GRAPH

Following Section 3, dynamic currency of a variable can be defined as follows: V is
dynamically current at a breakpoint B via path P = (start, . . . , B) if EV does not
hoist-reachB via P . To perform dynamic currency determination at a breakpoint, a
debugger must collect execution history information to deduce the path followed to
the breakpoint. For example, in Figure 2 dynamic currency determination of V at
Bkpt requires knowledge of which branch was taken at N2 in the current iteration.
An execution path is the locus of control during an execution of a program. Thus,
an execution path is a (possibly cyclic) path in the PFG of a program; it contains
the complete history of control flow during an execution. When we consider the
computations occurring at various points in an execution path, we see that an
execution path is a representation of an execution of a program. In this section we
develop an efficient representation of an execution path.

We associate a timestamp with a node every time the node (i.e. the code corre-
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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Fig. 3. An unrolled graph.

sponding to it) is executed. A timestamp can be an integer value obtained from a
logical clock: a counter which is incremented every time a node is executed.1 Note
that a node may be executed several times during an execution of a program; a
new timestamp is associated with it at every execution. Thus a pair (Ni, tj) where
Ni is a node and tj is a timestamp represents an execution of node Ni. We call
each such pair a block. We represent an execution path by an unrolled graph.

Definition 4.1. An unrolled graph with respect to a program flow graph G =
(N,E, start) is a graph Gu = (Nu, Eu, su) where

(1) Nu is a set of blocks {(Ni, tj)} such that Ni ∈ N and tj > 0.

(2) ((Ni, tj), (Nk, tl)) ∈ Eu iff (Ni, Nk) ∈ E and tl = tj + 1.

(3) su = (start, 1).

As an example, consider an execution of the program of Figure 2 in which the
branches (N2, N4), (N2, N3), and (N2, N4) are taken in the first three iterations
of an execution. Figure 3 shows the unrolled graph when execution reaches the
breakpoint at the start of node N5 in the third iteration. We define a function
t-stamp(Ni) to return the latest timestamp of node Ni in an unrolled graph. Here
t-stamp(N2) = 8, t-stamp(N4) = 9, and t-stamp(N5) = 7. Figure 4 shows the
timestamps of the nodes at the breakpoint. Integers in parentheses indicate time-
stamps associated with nodes. It can be seen that the timestamp of a node Ni is
t-stamp(Ni).

We can represent the unrolled graph by a list of blocks arranged in ascending
order by their timestamps. We call such a list of blocks an execution path repre-
sentation (EPR). EPR can be constructed during an execution of a program by
appending a block (Ni, tj) to the end of the list when timestamp tj is associated
with node Ni during the execution of the program. However, this approach suffers
from two problems. First, it incurs the run-time overhead of constructing EPR
in addition to the overhead of timestamping. Second, the storage requirements of
EPR are unbounded. In the following, we propose an alternative which overcomes
these problems.

1The initial timestamp of each node is assumed to be 0
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Fig. 4. Timestamps at a breakpoint.

Definition 4.2. The minimal unrolled graph with respect to an unrolled graph
Gu is Gmu = (Nm

u , E
m
u , s

m
u ), where Nm

u = Nu − RN , Emu = (Eu − RE) ∪ AE, and
smu = su where

(1) (Ni, tj) ∈ RN if (Ni, tj) ∈ Nu and ∃ (Ni, tk) ∈ Nu such that tk > tj .
(2) ((Ni, tj), (Nk, tl)) ∈ RE if ((Ni, tj), (Nk, tl)) ∈ Eu and either (Ni, tj) ∈ RN or

(Nk, tl) ∈ RN .
(3) ((Ni, tj), (Nk, tl)) ∈ AE if (Ni, tj), (Nk, tl) ∈ Nm

u , tl ≥ tj + 1 and ∃/ (Ng, th) ∈
Nm
u such that tj < th < tl.

Thus each (Ni, tj) in Gmu represents the last (or only) instance of execution of
Ni, i.e., tj = t-stamp(Ni). It is also clear that Gmu contains a single acyclic path in
which the blocks (Ni, tj) appear in ascending order by timestamp. Figure 5 shows
the minimal unrolled graph for the unrolled graph of Figure 3.

The minimal execution path representation(MEPR) is now a list of blocks in Gmu
arranged in ascending order by their timestamps. Note two important differences
between EPR and MEPR. First, a node in G appears at most once in the blocks of
MEPR. Second, since tj = t-stamp(Ni) for each block (Ni, tj) in Gmu , MEPR can
be constructed at a breakpoint. Thus, run-time overhead is restricted to the time
overhead of timestamping and the space overhead of an array of timestamps whose
size is bounded by the number of nodes in G.

We make two observations concerning timestamps associated with nodes in Gmu .

Observation 4.1. Each node Ni ∈ N , such that Ni has been executed at least
once and t-stamp(Ni) is not the largest timestamp in Gmu , has a successor Nk such
that t-stamp(Nk) ≥ t-stamp(Ni) + 1.

We define a function g such that g(Ni) is the node of G with the smallest time-
stamp larger than the timestamp of Ni. It follows that for each edge ((Ni, tj),
(Nk, tl)) ∈ Emu , Nk = g(Ni).

Observation 4.2. Let Nk = g(Ni). If t-stamp(Nk) > t-stamp(Ni) + 1, then any
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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Fig. 5. A minimal unrolled graph.

node executed between the last execution of Ni and the last execution of Nk is
either Nk or has been executed at least once after the last execution of Nk.

Proof. Let Nm be a node executed between the last execution of Ni and the
last execution of Nk. If Nm 6= Nk and Nm has not been executed after the last
execution of Nk then we would have t-stamp(Ni) < t-stamp(Nm) < t-stamp(Nk).
Hence, g(Ni) = Nm which is a contradiction.

In the next section we prove an important property of Gmu : that data flow anal-
yses on Gmu and Gu yield identical data flow information at a breakpoint for bit-
vector data flow problems. This property enables us to perform dynamic currency
determination by solving the data flow problem of hoist-reach (see Section 3) on
Gmu .

5. ADEQUACY OF THE MINIMAL UNROLLED GRAPH

The following data flow problem can be used over Gmu to determine the dynamic
currency of a variable V :

H oist reach inVi = Σp H oist reach outVp (1)

H oist reach outVi = H oist reach inVi · ¬H oist killVi +Hoist genVi (2)

where

H oist genVi = true if node Ni contains an occurrence of EVh not followed by
an occurrence of EVr ,

H oist killVi = true if node Ni contains an occurrence of EVr ,
·, +, and ¬ are boolean operators, and Σp is ‘+’ over all predecessor nodes.

It is assumed that occurrences of EVh and EVr in the IR are identified from annota-
tions introduced by the compiler. Variable V is dynamically current at a breakpoint
situated at the beginning of node Nk if H oist reach ink = f alse and dynamically
noncurrent if H oist reach ink = true. Solving this data flow problem for the min-
imal unrolled graph of Figure 5, augmented with block (Bkpt, . . .) at the end yields
H oist reach inVBkpt = true, which indicates that variable V is noncurrent at entry
to the node containing the breakpoint.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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function behavior comment

START 0 7→ 1 constant at 1
1 7→ 1

STOP 0 7→ 0 constant at 0
1 7→ 0

PASS 0 7→ 0 passes argument along
1 7→ 1

Fig. 6. Functions in a bit-vector framework.

function
node for V

N1 PASS

N2 PASS

N3 PASS

N4 START

N5 STOP

N6 PASS

Fig. 7. Data flow functions for the program of Figure 2.

Bit-Vector Data Flow Analysis. A monotone data flow analysis framework (or
monotone framework) [Hecht 1977; Khedker and Dhamdhere 1994] is a triple D =
(L,u, F ), where

(1) (L,u) is a semilattice of finite height with a bottom element ⊥ and
(2) F is a monotone operation space associated with L.

A bit-vector framework is characterized by three properties: single-bit repre-
sentation of each data flow property, separability of solution, and monotonic bit
functions [Dhamdhere et al. 1992; Khedker and Dhamdhere 1994]. The second
property implies that data flow properties can be evaluated independently, i.e.,
they do not influence each other. Hence F consists of single-bit functions, and the
merge operation u is a bitwise AND or OR operation. The third property requires
that a bit function cannot negate any bit. These properties together imply that F
= {START, STOP, PASS} as defined in Figure 6.
I = (G,M) is an instance of a bit-vector framework [Hecht 1977; Khedker and

Dhamdhere 1994], where

(1) G = (N,E, s) is a flow graph and
(2) M : N → F is a function that maps each node in N to an operation in F =
{START, STOP, PASS}.

It can be seen that the H oist reach in/H oist reach out problem of Eqs. (1)–(2)
is a bit-vector problem. The operation associated with a node Ni for a variable V is
obtained from Eq. (2) by substituting the values of H oist killVi and H oist genVi .
Figure 7 shows functions associated with the nodes of Figure 2 for determining the
currency of variable V .

Note that the separability of solution required by bit-vector frameworks is vio-
lated by assignments through pointers. Hence the data flow analysis described here
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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function function function function
node for a for b node for a for b
N1 PASS PASS N1 PASS PASS

N2 PASS PASS N2 PASS PASS

N3 PASS PASS N3 PASS PASS

N4 START PASS N4 PASS START

N5 STOP PASS N5 PASS STOP

N6 PASS PASS N6 PASS PASS

(a) (b)

Fig. 8. Data flow functions for Figure 2 for assignments through pointers.

cannot be applied to assignments through pointers. For example, if EV of Fig-
ure 2 is an assignment ∗x := . . . where x is a pointer, the functions associated with
nodes N4 and N5 which contain EVh and EVr , respectively, would depend on as-
signments to x in the program. If node N1 contained as assignment x := addr(a),
then H oist gena4 = H oist killa5 = true and H oist genb4 = H oist killb5 = f alse
leading to the functions shown in Figure 8(a), whereas if node N1 contained as as-
signment x := addr(b), then H oist genb4 = H oist killb5 = true and H oist gena4 =
H oist killa5 = f alse leading to the functions shown in Figure 8(b).

Data Flow Analysis on Gmu . Solving a data flow problem on Gmu instead of
Gu implies eliminating some data flow functions from the purview of data flow
analysis. To prove adequacy of Gmu for bit-vector data flow analysis, we show
that the eliminated data flow functions are redundant for the purpose of bit-vector
data flow analysis. To begin with, we define functions which help us to eliminate
redundancies from a list of elements. We use these functions to reason about the
elimination of data flow functions when we use Gmu .

Function last takes a nonempty list as its argument and returns its last element.
Function lpp takes a list as its argument and returns the largest proper prefix of the
list (i.e., the list without its last element) if the list is nonempty and the empty list
otherwise. Function remove takes a list and an item as its arguments and returns
the list after removing all occurrences of the item from it. We use the operator ||
to append an element to the end of a list. Function reduce on a list l returns a list
that only contains the last occurrence of every element in l. The function is defined
as follows:

reduce(l) =
{
ε if l = ε
remove(reduce(lpp(l)), last(l)) || last(l) otherwise

We say that reduce returns a list which does not contain redundant elements.
Function compose is defined as

compose(f1, . . . , fn) = fn ◦ . . . ◦ f1.

Lemma 5.1. If f and g are operations in a bit-vector framework, then

compose(f, g, f) = compose(g, f).
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Proof. The operations f , g can only be START, STOP, or PASS. The following
equalities prove the lemma:

∀x∈L : (START ◦ g ◦ START)(x) = 1 = (START ◦ g)(x)

∀x∈L : (STOP ◦ g ◦ STOP)(x) = 0 = (STOP ◦ g)(x)

∀x∈L : (PASS ◦ g ◦ PASS)(x) = (PASS ◦ g)(x)

Lemma 5.2. If l is a list of operations in a bit-vector framework,

compose(l) = compose(reduce(l)).

Proof. We prove the lemma by induction on length of l. The basis is a list of
a single element f :

compose(f) = f = compose(reduce(f))

Consider an arbitrary operation a. The induction step has two cases:
(1) a 6∈ l:

compose(l || a) = a ◦ compose(l)
= a ◦ compose(reduce(l)) by inductive hypothesis
= compose(reduce(l) || a)
= compose(reduce(l || a)) because a 6∈ l

(2) a ∈ l:
compose(l || a) = a ◦ compose(l)

= a ◦ compose(reduce(l)) by inductive hypothesis
≡ a ◦ f1 ◦ . . . ◦ fi−1 ◦ fi ◦ fi+1 ◦ . . . ◦ fn

where a = fi

= a ◦ f1 ◦ . . . ◦ fi−1 ◦ fi+1 ◦ . . . ◦ fn
by Lemma 5.1

= a ◦ compose(remove(reduce(l), a))
= compose(remove(reduce(l), a) || a)
= compose(reduce(l || a))

Consider a path of nodes p = (i1, . . . , im). Let M(ij) = fj ∀j. Let x be the value
of a data flow attribute at the beginning of i1. For a forward data flow problem,
the value of the data flow attribute at the end of p would be

(fm ◦ . . . ◦ f1)(x) = compose(f1, . . . , fm)(x)
= compose(reduce(f1, . . . , fm))(x).
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Let e-path be a projection function on an unrolled graph or minimal unrolled
graph, such that e-path(Gu) is a list of nodes in which an occurrence of Ni precedes
an occurrence of Nk (represented as Ni <· Nk) if and only if (Ni, tj) ∈ Gu, (Nk, tl) ∈
Gu and tj < tl.

Lemma 5.3. Given a list of nodes p

reduce(e-path(Gu)) = e-path(Gmu ).

Proof. From part (1) of Definition 4.2, it is clear that reduce(e-path(Gu)) and
e-path(Gmu ) contain the same set of nodes. Consider two elements Ni and Nj of
e-path(Gu). If Ni <· Nj in reduce(e-path(Gu)), then the last occurrence of Ni in
Gu precedes last occurrence of Nj. This implies that t-stamp(Ni) < t-stamp(Nj).
Hence Ni <· Nj in e-path(Gmu ) also.

Theorem 5.1. Data flow analysis on an unrolled graph and its corresponding
minimal unrolled graph yield the same results.

Proof. Let e-path(Gu) = (i1, . . . , im), and let l = (M(i1), . . . ,M(im)) be the
list of corresponding operations. We define a function M ′ to take a list of nodes
and return the corresponding list of operations. Hence l = M ′(e-path(Gu)). Now,

compose(l) = compose(reduce(l)) by Lemma 5.2.

Substituting l = M ′(e-path(Gu)), we get

compose(M ′(e-path(Gu)))
= compose(reduce(M ′(e-path(Gu))))
= compose(M ′(reduce(e-path(Gu))))
= compose(M ′(e-path(Gmu ))) by Lemma 5.3.

which proves the theorem.

6. USING THE MINIMAL UNROLLED GRAPH

The minimal unrolled graph Gmu for an execution of program P can be constructed
as follows: Code instrumentation (e.g., see Copperman and Thomas [1995]) can
be used by the debugger to insert patch code at the start of each node of P. The
patch code would save the timestamp of that node.2 At a breakpoint, the minimal
unrolled graph is constructed by forming blocks of the form (Ni, tj), where tj > 0 is
the timestamp of Ni. The blocks are listed in ascending order by timestamps, and
adjacent blocks are joined with edges. Alternatively, MEPR can be constructed
by listing the pairs (nodeid, timestamp) in ascending order by timestamps. At the
end of the minimal unrolled graph we add a block (Bkpt, lt + 1), where lt is the
largest timestamp associated with a node of G, to represent the node containing
the breakpoint (note that the breakpoint is assumed to precede the first instruction
in the node). Data flow analysis to determine the dynamic currency of a variable is

2A goal of research in debugging of optimized code is to avoid code instrumentation as it de-
optimizes a program by adding to its execution time. Hence a program may be run without
instrumentation normally; it may be instrumented and re-run following an exception. However,
such a debugger cannot deal with ‘core’ files.
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now performed on the minimal unrolled graph. The time complexity of this analysis
isO(n), where n is the number of nodes in the flow graph, since the minimal unrolled
graph consists of a single path in which each node occurs at most once.

As mentioned in Section 5, assignments through pointers cannot be handled by
bit-vector data flow analyses. However, this does not prohibit dynamic currency
determination in optimized programs which use pointers. The H oist reach in/out
data flow problem used for dynamic currency determination has a bit-vector data
flow analysis framework. It determines the dynamic currency of a variable V based
on annotations marking the presence of EVh and EVr in the IR. Hence ability to
perform dynamic currency determination using the minimal unrolled graph merely
depends on the ability of the compiler to insert annotations concerning EVh and EVr .
The only limitations on dynamic currency determination would arise in situations
involving the movement of pointer-based assignments: for example, the assignment
∗x := . . . where x is a pointer in Figure 8 of Section 5. However, such situations
are very rare in practice.

The debugger needs to perform more work to determine the currency of a specific
array element, e.g., a[5], at a breakpoint. Apart from solving the H oist reach in/out

data flow problem using the annotations Ea[5]
h and E

a[5]
r in the IR, the debugger

would have to determine the currency of all data entities of the form a[k]. a[5] is
noncurrent if some data entity a[k] is noncurrent and k = 5. If k itself is noncurrent
at the breakpoint, the debugger would have to recover the current value of k using
the techniques described in Section 6.1.

Run-Time Overheads. Code instrumentation necessary to collect timestamps of
nodes leads to moderate overheads. These were found to be in the range of 10–
25 % on a Sun Microsparc workstation with 32MB memory for routines from the
Linpack library when each node of the program flow graph represented one source
statement. The overheads can be reduced by using basic blocks as nodes of the
program flow graph. Now, a breakpoint can occur inside a node rather than at
its start; hence additional data flow analysis would be required within a node to
determine whether occurrences of inserted or redundant expressions precede the
breakpoint. Details of this analysis are obvious.

Run-time overheads can be further reduced by using superblocks (also called
extended basic blocks [Muchnick 1997]) as nodes of the program flow graph. A
superblock is a sequence of instructions which has a single entry point, but may
have multiple exit points. Thus a superblock may contain many basic blocks. Since
the data flow function to be associated with a superblock depends on which exit
is taken out of it, functions associated with different executions of a superblock
are likely to be different. To overcome this difficulty, we define a function for each
path in a superblock. (For simplicity, we associate these functions with different
exits of a superblock.) Thus, a set of functions is associated with each superblock;
the function to be used to represent a specific execution of a superblock would
depend on the exit taken during that execution. The theory of Section 5 now
applies to this function space. To facilitate building of the minimal unrolled graph,
we now associate a timestamp with each exit of a superblock. Use of superblocks
reduces run-time overheads because timestamping is performed when execution
leaves a superblock rather than when execution enters or leaves each basic block
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.



Dynamic Currency Determination · 1125

N1

HHHj
����

N2

?
N3

HHHj

N4

?
N5

����
⇒

N6

?
N7

N1

? z
N2

?
SB1

N3

?
N6

HHHj

N4

?
SB2

N5

?
N ′6
����

N7

Fig. 9. Superblock formation by code duplication.

in a superblock. Storage requirements are now O(nexit) where nexit is the total
number of superblock exits in a program.

To identify larger superblocks, code duplication is used to eliminate entries into
a sequence of instructions. Figure 9 shows superblock formation using code dupli-
cation. Basic block N6 has been duplicated to form two superblocks SB1 and SB2

consisting of basic blocks N1, N2, N3, N6 and N4, N5, N ′6, respectively. A one-to-
many function is now needed to map a source breakpoint into object breakpoints
located in N6 and N ′6. However, code duplication does not pose any problems in
the use of minimal unrolled graphs; we simply associate identical functions with
code copies. (For the same reason, loop unrolling [Muchnick 1997] does not pose
any problems in dynamic currency determination of optimized programs.) Thus,
if fi is the function associated with basic block Ni, the functions associated with
the two exits of SB1 are f1 and f6 ◦ f3 ◦ f2 ◦ f1, respectively, while the function
associated with the exit of SB2 is f6 ◦ f5 ◦ f4.

Apart from the fact that run-time overheads can be reduced using basic blocks
or superblocks, there is another reason why the overheads of code instrumentation
need not be a deterrent to the practical use of minimal unrolled graphs: code
instrumentation needs to be performed by the debugger only when a program is to
be debugged; normal executions of a program do not incur these overheads.

6.1 Other Applications of the Minimal Unrolled Graph

The equivalence of bit-vector data flow analyses on Gmu and Gu is a general result
which can be used for other purposes as well. Consider two data flow properties F1

and F2 which can be determined using forward bit-vector problems involving the
merge operators Σ (as in Eq. (1)), and Π, respectively. Let F

′

1 and F
′

2, respectively,
be the values of these properties at a breakpoint as determined by performing data
flow analyses on the minimal unrolled graph. Then F

′

1 = true implies F1 = true,
and F

′

2 = f alse implies F2 = f alse. This property leads to obvious applications in
determining whether a specific assignment of a variable V can influence its value
at a breakpoint, and in detecting the use of uninitialized variables. We describe a
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not-so-obvious application of Gmu in the following.

Minimal Unrolled Graph and Dynamic Slicing. The minimal unrolled graph can
be used to aid in the use of a dynamic slice of a program P while debugging P. It
can also be used instead of a dynamic slice in certain situations. We discuss these
aspects in the following.

Definition 6.1. A slice (also called a static slice) of a program P with respect
to a criterion < p, V >, where p is a program point and V is a variable, is an
executable program P ′ which contains a subset of statements in program P and
which, on execution with any set of input values, yields the same value of V at p
as program P.

Use of a slice reduces debugging effort; a bug in P which leads to an incorrect value
of V at p must be present in the slice of P with respect to the criterion < p, V >.
Note that a static slice may contain some redundancies from the viewpoint of a
specific execution of P, since some statements in the static slice may not be visited
during execution.

Definition 6.2. A dynamic slice of a program P with respect to a criterion
< inp, p, V >, where inp is the set of values input to P, p is a program point,
and V is a variable, is an executable program P′′ which contains a subset of state-
ments in program P and which, on execution with input values inp, yields the same
value of V at p as program P.

Note that a dynamic slice may contain fewer redundancies with respect to the
execution of P for the set of input values inp. While debugging program P, the
dynamic slice P′′ is used to obtain the value of V at program point p. This is
achieved by executing P′′ until execution reaches point p. It can also be used to
obtain a previous value of p by reexecuting it until some point q which dynamically
precedes point p. The dynamic slice is obtained by maintaining run-time infor-
mation concerning the sequence of all program nodes visited during its execution
before reaching point p [Korel and Laski 1988; Agrawal et al. 1993]. As such, Gu
and EPR contain sufficient information for constructing a dynamic slice.

Use of a minimal unrolled graph can be combined with that of a dynamic slice
as follows: a program P can be instrumented to obtain information concerning the
program nodes visited until execution reaches point p. The minimal unrolled graph
can now be used to determine the dynamic currency of variable V . If V is dynam-
ically current, the minimal unrolled graph can yield the value of V without having
to incur the overhead of building the dynamic slice. If variable V is noncurrent, a
dynamic slice can be constructed using run-time information. (Note that this will
require more run-time information than contained in Gmu and MEPR.) This slice
can be executed up to (but excluding) the node containing the occurrence of EVh
which made V noncurrent at point p. The value of V at the end of this execution
is the expected value of V at point p. Thus, we can recover the expected value of
a dynamically noncurrent variable. In the following, we describe a more efficient
approach to recovery using Gmu .

Recovery of Dynamically Noncurrent Scalar Variables. In certain situations, a
minimal unrolled graph can be used to recover the value of a dynamically noncurrent
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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procedure Recover value(V, r,Bkpt)
Let q := Previous defn(V, r);
Let q contain an assignment V := fV (. . .) such that RHSV is
the set of variables occurring in the RHS of the assignment.
∀x ∈ RHSV

if Same value(x,Bkpt, q) = f alse then
Recover value(x, q,Bkpt);

Execute the assignment V := fV (. . .);
end

Fig. 10. Procedure Recover value.

scalar variable in an optimized program. This is far more efficient than the use of
a dynamic slice. We assume all assignments to scalar variables to be of the form
x := fx(. . .), where fx is a function of scalar variables. We define the following
for the purpose of recovery: function Previous defn(V, p) returns the identity of
the program point at which the last assignment to V preceding point p in Gmu
occurs. Predicate Same value(V, p, p′), where point p′ precedes p in Gmu , indicates
whether the actual value of variable V at p is the same as its value at p′. Note that
Same value(V, p, p′) would be f alse if an assignment to V was performed between
p′ and p.

At a breakpoint Bkpt, procedure Recover value(V, r,Bkpt) recovers the value of
V according to the last assignment to V preceding point r in Gmu . If EVh occurring at
point ph makes V dynamically noncurrent at Bkpt, we recover the expected value of
V by making the procedure call Recover value(V, ph,Bkpt). Note that recovering
the value of V according to an assignment may require us to recover the values of
variables occurring on the right-hand side of the assignment. Figure 10 shows the
recovery algorithm used by procedure Recover value. We use the notion of shadow
variables to enable resumption of a program’s execution following recovery. Thus,
to recover the value of V at Bkpt, a shadow variable x′ is created for every variable
x in the program. All recovery actions are performed on shadow variables. After
executing Recover value(V, ph,Bkpt), the value of V ′ is reported to the user.

Restrictions on the correctness of the recovery procedure arise from two sources:
loop structure and the nature of assignments in a program. Consider two statements
S1 and S2 located in nodes N1 and N2, respectively, of P. Let blocks (N1, tj) and
(N2, tl) be consecutive blocks in Gmu , and let tl > tj + 1. From Observation 2 of
Section 4, it is clear that any nodes executed between these instances of execution of
N1 and N2 must have been executed again. This implies existence of loop(s) in the
program. In the absence of information concerning loop structure of the program
(that is, identities of nodes in each loop) and the order in which program nodes
were visited during execution, we have to assume that any node with a timestamp
> tj in Gmu could have been executed between the last executions of nodes N1 and
N2. This fact leads to some restrictions as described in the following.

Consider nodes Ni and Nj containing points qi and qj , respectively, such that
blocks (Ni, ti) and (Nj , tj) occur in Gmu . Let procedure call Recover value(V, ph,
Bkpt) make a recursive call Recover value(x, qj ,Bkpt) because Previous defn(V, ph)
= qj , an assignment V := . . . x . . . occurs at point qj , and Same value(x,Bkpt, qj) =
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f alse. Let an assignment x := . . . z . . . occur at qi. Let (Nl, tl) and (Nm, tm) be
consecutive blocks along the path segment (Ni, ti) . . . (Nj , tj) in Gmu such that tm >
tl+1. In this situation we cannot guarantee that procedure Recover value recovers
the correct value of V because of the following reason: Same value(x,Bkpt, qj) =
f alse implies the existence of an assignment x := . . . in some node Ng such that a
block (Ng, tg) exists in Gmu and tg > tj . From Observation 2, this node could have
been executed between the blocks (Nl, tl) and (Nm, tm). Hence it may be incorrect
to recover x according to the assignment x := . . . z . . . occurring at qi. Procedure
Recover value must abandon recovery in such situations. As an example, consider
the program of Figure 2 and the minimal unrolled graph of Figure 5. Let assignment
V := . . . x . . . occur at point qj in node N3, and let node N1 contain an assignment
to x. If Same value(x,Bkpt, qj) = f alse, then one of the nodes N3, N5, N2, and
N4 must contain an assignment to x. Recovery must be adandoned since this node
may have been executed between (N1, 1) and (N3, 6).

Another restriction on the functioning and correctness of procedure Recover value
arises from the presence of pointers. While defining predicate Same value(V, p, p′),
we have assumed that the debugger will be able to recognize all definitions of V
located between p′ and p. This will require the debugger to possess information
about aliases (possibly induced by assignments through pointers) [Aho et al. 1986].
In the absence of such information, it is conservative to assume Same value to be
f alse if the debugger encounters any assignment through a pointer while looking
for an assignment to V . However, such conservative behavior is not possible in
function Previous defn(V, r). In the absence of aliasing information, this function
will have to abort recovery if it encounters any assignment through a pointer before
finding an assignment of the form V := . . . in a backward scan of Gmu starting at
point r.

Programs containing function and procedure calls can be handled as follows: if
superblocks are being used, the debugger ensures that timestamping is performed
before invoking a function or procedure. A program containing parameterless func-
tions and procedures is handled analogous to a program without function or pro-
cedure calls. The restrictions described earlier apply directly to such programs.
For functions and procedures with parameters, extra annotations would have to
be inserted by a compiler. For a call P (x) where P has a formal parameter g, an
annotation g ‘assign’ x may be inserted preceding the code for the call P (x). If
this annotation is encountered while recovering the value of g, the debugger would
treat it as an assignment g := x. If g is a value parameter, this reflects the exact
behavior of the program at the call P (x). For a reference parameter, this has the
effect of a “name translation”: instead of locating a previous definition of g, the
debugger would now locate a previous definition of x. If a function or procedure is
invoked more than once during the execution of a program, it leads to a situation
analogous to the presence of loops. Hence recovery in programs containing multi-
ple invocations of a procedure attracts the restriction arising from Observation 2
mentioned earlier.

Recovery of Dynamically Noncurrent Subscripted Variables. Consider an assign-
ment a[i] := . . . x . . . b[j] . . . occurring at point q in procedure Recover value(a[i], ph,
Bkpt). To recover the value of a[i] according to this assignment, in procedure
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Recover value we proceed as if the assignment is of the form a := fa[i](i, . . . x, . . . j,
b[j]). This approach will ensure that i, j, and b[j] will have appropriate values when
we compute the previous value of a[i]. Compared to the recovery of scalar variables,
two new issues arise in such recovery. First, predicate Same value(b[j],Bkpt, p′)
will need to decide whether the value of b[j] has changed between points p′ and
Bkpt. This will require examination of all assignments of the form b[k] := . . . for
some k to determine whether b[k] and b[j] refer to the same element of b. As in the
recovery of scalar variables, Same value should be f alse if the debugger is unable
to determine whether the value of b[j] has changed between points p′ and Bkpt. Sec-
ond, while recovering the value of b[j] preparatory to execution of the assignment
a[i] := . . . x . . . b[j] . . ., procedure Recover value should abandon the recovery of
a[i] if it encounters an assignment to b[k] for some k and cannot determine whether
b[k] and b[j] refer to the same element of b.

7. CONCLUSIONS

The minimal unrolled graph is an efficient representation of an execution of a pro-
gram. Its space requirements are O(n), where n is the number of nodes in a program
flow graph. Code instrumentation necessary to collect timestamps of nodes leads
to moderate overheads. These overheads can be reduced using basic blocks or
superblocks as nodes of the program flow graph.

The overheads of code instrumentation need not be a deterrent to the practical
use of minimal unrolled graphs, since code instrumentation needs to be performed
by the debugger only when a program is to be debugged; normal executions of
a program do not incur these overheads. Thus, the minimal unrolled graph is a
practical basis for providing a new set of features in the debugging of optimized pro-
grams, viz., dynamic currency determination and recovery of noncurrent variables
subject to the limitations mentioned in Section 6.
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