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Abstract. Document Layout Parsing is an important step in an OCR
pipeline, and several research attempts toward supervised, and semi-
supervised deep learning methods are proposed for accurately identifying
the complex structure of a document. These deep models require a large
amount of data to get promising results. Creating such data requires con-
siderable effort and annotation costs. To minimize both cost and effort,
Active learning (AL) approaches are proposed. We propose a framework
TACTFUL for Targeted Active Learning for Document Layout Analy-
sis. Our contributions include (i) a framework that makes effective use of
the AL paradigm and Submodular Mutual Information (SMI) functions
to tackle object-level class imbalance, given a very small set of labeled
data. (ii) an approach that decouples object detection from feature se-
lection for subset selection that improves the targeted selection by a
considerable margin against the current state-of-the-art and is computa-
tionally effective. (iii) A new dataset for legacy Sanskrit books on which
we demonstrate the effectiveness of our approach, in addition to report-
ing improvements over state-of-the-art approaches on other benchmark
datasets.

Keywords: Active Learning · Submodular Functions · Balancing Dataset
· Document Layout Analysis

1 Introduction

Digitization of scanned documents such as historical books, papers, reports, con-
tracts, etc., is one of the essential tasks required in this information age. A typ-
ical digitization workflow consists of different steps such as pre-processing, page
layout segmentation, object detection, Optical Character Recognition (OCR),
post-processing, and storage. Though OCR is the most important step in this
pipeline, the preceding steps of page layout segmentation and object detection
play a crucial role. This is especially so when there is a requirement to pre-
serve the layout of the document beyond OCR. For over two decades, the scien-
tific community has proposed various techniques [2] for document layout anal-
ysis, yet recent deep-learning methods have attained improved performance by
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leaps and bounds. Several supervised, and semi-supervised deep learning meth-
ods [17, 16, 18] can accurately identify the complex structure of a document.
This performance improvement, though, comes at a cost. Deep models require a
significantly large amount of data to yield promising results. Creating such data
requires considerable annotation effort and cost. To minimize both cost and ef-
fort, active learning (AL) approaches [19] are proposed with a constraint on the
annotation budget. AL can help iteratively select a small amount of data for an-
notation, from a large unlabeled pool of data, on which the model can be trained
at each iteration. Though such approaches work, sometimes page-level AL tech-
niques may be biased and miss out on rare classes while selecting images. It is
especially true in the case of document layout analysis where document objects
(such as titles, images, equations, etc.) are complex, dense, and diverse. It can be
somewhat challenging to select pages that lead to balance across classes in the
training set and specially balanced performance across all. Most state-of-the-art
AL approaches tend to decrease the models’ performance on rare classes in the
pursuit of overall accuracy.Summarily what we wanted is an effective AL tech-
nique that can help address the class imbalance problem while selecting page
images. Towards this, we propose a framework for Targeted ACTive Learn-
ing For DocUment Layout AnaLysis (Tactful). The proposed framework uses
sub-modular mutual information (SMI) functions in its active learning strategies
to select relevant data points from a large pool of unlabeled datasets. The SMI
(Submodular Mutual Information) functions are useful in two complementary
ways: 1) By taking advantage of the natural diminishing returns property of
sub-modular functions, the framework maximizes the utility of subsets selected
during each AL round. 2) By quantifying the mutual dependence between two
random variables (a known rare class and an unknown object of interest in our
case), we can maximize the mutual information function to get relevant objects
and through them the page images for annotation. Our contribution, through
the Tactful framework, is as follows:

1. We propose an end-to-end AL framework that can tackle object-level class
imbalance while acquiring page images for labeling, given a very small set of
labeled data. Within this framework, we make effective use of two complementing
paradigms, viz., i) AL paradigm that aims to select a subset of samples with
the highest value from a large set, to construct the training samples, and ii)
Submodular functions that have higher marginal utility in adding a new element
to a subset than adding the same element to a superset. Within submodular
functions, we use SMI functions [4, 7] that can model the selection of subsets
similar to a smaller query set from rare classes thereby avoiding severe data
imbalance.
2. For subset selection, we decouple the object detection and feature selection
steps thereby overcoming the limitation [3] present in current object detection
models. We show that the pre-trained model, without additional fine-tuning,
works effectively well for representing objects. The decoupling strategy improves
the targeted selection by a considerable margin against the current state-of-the-
art and is computationally effective.
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3. We empirically prove that our model performs well compared to the current
SOTA framework having an increase of about 9.3% over the SOTA models. We
also release a new dataset for document layout analysis for legacy Sanskrit books
and show that our framework works for similar settings for documents in other
languages and helps improve the AP by 8.6 % over the baseline.

2 Motivation

Layout detection is a continuing challenge in the field of Document Analysis.
Many state-of-the-art models and datasets [23, 11, 1] have been created to
address this problem. The recent availability of a large amount of annotated
data has resulted in good-quality ML models for layout detection for English
documents. There is still dearth of good quality ground truth data for other
languages. This dearth is owing to a combination of the following reasons: (i)
Manual labeling is time-consuming and expensive (ii) It is difficult, if not im-
possible, to replicate the alternative ways of creating ground truth data such as
those created for the English documents. Large datasets such as Publaynet [23]
and DocBank [11] are created in a weakly supervised manner by extracting the
ground-truth layout information from an available parallel corpus such as scien-
tific latex documents [5] and then manually post-editing or correcting the output.
Such availability is rare in other languages. Hence the need for large annotated
datasets for other languages remains unaddressed. One case study we consider
is the digitization of ancient Sanskrit documents where there is an immediate
need for high-quality document layout detection methods. In this aforementioned
work, we have tens of thousands of scanned images that are old manuscripts.
Thus, the only way of training a good model for layout detection is to annotate
a subset of the available pages. The question that subsequently arises is ’How
can we identify pages to be annotated such that the model performance improves
across all classes?’

As an attempt to answer the question, we performed a retrospective study
on one of the largest datasets available for document layout analysis, viz., Pub-
LayNet [23]. The dataset was created by automatically matching the XML rep-
resentations and the content of over 1 million PDF articles publicly available
on PubMed Central. It contains over 360 thousand annotated document images
and the deep neural networks trained on PubLayNet achieve an Average Pre-
cision (AP) of over 90%. The dataset consists of five categories of annotations
and those include Title, Title, List, Table, and Figure. The statistics of
the layout categories associated with this dataset are summarized in Table 1:

In Figure 1a, we depict the share of each class amongst the total objects
present in the training dataset of PubLayNet. From the chart, we can notice that
there is a class imbalance for the different objects. Given this imbalanced class
distribution, we initially investigate how an object detection model learns. We
randomly sampled a fraction of about 2000 data points from the dataset (from
the official train, and test sets), while maintaining the same class imbalance as
in the original set. In those 2000 pages, there were a total of 9920 Title objects,
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Training Development Testing

Pages
Plain pages 87,608 1,138 1,121
Titlepages 46,480 2, 059+ 2, 021+

Pages with Lists 53,793 2,984 3,207
Pages with Tables 86,950 3, 772+ 3, 950+

Pages with Figures 96,656 3, 734+ 3, 807+

Total 340,391 11,858 11,983

Instances
Title 2, 376, 702 93,528 95,780
Title 633,359 19,908 20,340
Lists 81,850 4,561 5,156
Tables 103,057 4,905 5,166
Figures 116,692 4,913 5,333
Total 3, 311, 660 127,815 131,775

Table 1: Statistics of layout categories in the training, development, and testing
sets of PubLayNet. PubLayNet is one or two orders of magnitude larger than
any existing document layout dataset obtained from [23]
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Fig. 1: Figures depicting the share of objects in the training dataset.

900 Title objects, 74 List objects, 76 Table objects, and 123 Figure objects.
We subsequently trained a Faster RCNN model from scratch. The model reached
an AP of 33% before plateauing. Figure 2a shows the improvement of average
AP and classwise AP during the training. The AP of Title is the highest with
75% followed by Title with 50%. The worst performing classes are also the rare
classes with the Figure class averaging 20%, Table 15%, and List having the
worst performance with just 0.3%. It’s also interesting to note that Table and
Figure with counts as of List performs better. It could be that it’s easier to
detect Figure and Table objects due to their unique shapes compared to the
rest of the page objects. The average AP is drastically reduced by the last three
tail objects of the distribution. This is expected, given the skewed distribution of
objects in the dataset, as the model might not have seen the rare class objects.
We later selected just 500 data points but maintained the balance among the
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classes. This time there were a total of 2583 Title objects, 231 Title objects,
14 List objects, 17 Table objects, 27 Figure objects. Again we trained a
Faster RCNN model from scratch. Figure 2a shows the improvement of average
AP and classwise AP during the training. The model reached an AP of 48%
before plateauing. The difference in AP between the model trained with 2000
data points with a severely imbalanced set and the model trained on 1/4 of the
former(500 data points) but without class imbalance, is large with a balanced
dataset performing better. There is then the scope for improving the AP
in the same setting if there is a way to select images in such a way
that the rare classes are covered and the class imbalance is avoided.
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Fig. 2: Figure depiciting the AP, classwise AP and confusion matrix for different
classes trained on 2000 data points

We further plotted the confusion matrix for the object detected on the initial
dataset of 2000 points. The model trained on this initial dataset had good object
detection accuracy, as depicted in Figure 2b. but performs poorly in the object
classification task. Empirically it is clear that training a model for both classi-
fication and object detection compromises the model’s ability to learn efficient
features in the embedding space [3], which can be observed in our case as well.
Given these observations, our goal is to mitigate the class imbalance during im-
age acquisition for annotations, thereby improving the performance of the model
for rare classes. We explain our framework in detail in the next section.

3 Our Approach

Our Active Learning (AL) paradigm[14] approach to address the problem of
class imbalance discussed in Section 2 is visually depicted in Figure 3. Similar
to standard AL techniques[17] we train a detection model Θ to detect n layout
objects of an image Xi. An object nj consists of the bounding box bj and its
category cj . Yi = {(bj , cj)}nj=1 are the object annotations for Xi. Θ is initially

trained on a small labelled dataset L0 = {(Xi,Yi}li=1 and contains a large set
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of unlabelled dataset U0 = {(Xi}u+l
i=l }. Given the unlabeled set U , the goal is to

acquire a subset of the images A ⊆ U of budget k = ∥A∥, iteratively, to improve
the model’s performance. At each iteration t, m samples Mt = {Xi}mi=l ⊆ Ut−1

are queried for labelling and the corresponding labeled set Mt = {(Xi Ym
i=l)} ⊆

Ut−1 is added to the existing labeled set Lt = {Lt−1∪Mt}. For the next iteration,
the unlabeled set becomes Ut = {Ut−1 \ M}. Iteration is stopped when the
model reaches the desired performance. As described in Section 2, we wanted to
select a subset of images from the unlabelled page image distribution (eg from
distribution as shown in Figure 1b) such that the model performance improves
for selected rare class[es].

Query
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Feature
Model

Object Detection
Model SMI Functions
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Interest

Query
Embedding
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Embedding

N Selected
Pages

Step 1: Get Query and ROI Embeddings
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Annotate

X
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Human Annotator

One AL
Loop in

TACTFUL

Fig. 3: Three-step approach of one AL loop of Tactful

To achieve this, we will use the core idea of SMI functions [21, 9, 8] as
acquisition functions to acquire data points from U . In the following section,
we discuss some of the notations and preliminaries required for our work as
introduced in [7, 6] and their extensions introduced in [9, 8]

3.1 Submodular Functions:

V denotes the ground-set of n data points V = {1, 2, 3, ..., n} and a set function
f : 2V −→ R. The function f is submodular [4] if it satisfies diminishing returns,
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namely f(j∥X ) ≥ f(j∥Y) for all X ⊆ Y ⊆ V, j /∈ X ,Y. Facility location, graph
cut, log determinants, etc., are some examples [21].

3.2 Submodular Mutual Information (SMI):

Given a set of items A,Q ⊆ V, the submodular mutual information (SMI) [6, 7]
is defined as If (A;Q) = f(A) + f(Q)− f(A∪Q). Intuitively, SMI measures the
similarity between Q and A and we refer to Q as the query set. In our context,
A ⊂ U is our unlabelled set of images, and the query set Q is the small target set
containing the rare class images and page annotations for the target set. To find
an optimal subsetM⊆ U , given a query set Q we can define gQ(A) = If (A;Q),
A ⊆ V and maximize the same.

3.3 Specific SMI functions used in this work

For any two data points i ∈ V and j ∈ Q, let sij denote the similarity between
them.
Graph Cut MI (Gcmi): The Smi instantiation of graph-cut (Gcmi) is de-
fined as: IGC(A;Q) = 2

∑
i∈A

∑
j∈Q sij . Since maximizing Gcmi maximizes the

joint pairwise sum with the query set, it will lead to a summary similar to the
query set Q. Specific instantiations of Gcmi have been used for query-focused
summarization for videos [20] and documents [12, 10].
Facility Location MI (Flmi): We consider two variants of Flmi. The first vari-
ant is defined over V(Flvmi), the Smi instantiation can be defined as: IFLV (A;Q) =∑

i∈V min(maxj∈A sij ,maxj∈Q sij). The first term in the min(.) of Flvmi models
diversity, and the second term models query relevance.

For the second variant, which is defined over Q (Flqmi), the Smi instan-
tiation can be defined as: IFLQ(A;Q) =

∑
i∈Q maxj∈A sij +

∑
i∈A maxj∈Q sij .

Flqmi is very intuitive for query relevance as well. It measures the representation
of data points that are the most relevant to the query set and vice versa.
Log Determinant MI (Logdetmi): The Smi instantiation of Logdetmi can
be defined as: ILogDet(A;Q) = log det(SA)− log det(SA −SA,QS

−1
Q ST

A,Q). SA,Q
denotes the cross-similarity matrix between the items in sets A and Q.

3.4 Object-Level Feature Extraction

In [8], the similarity is calculated using the feature vector of Dimension D for
T Region of Interest(ROIs) in Query images Q and P region proposals obtained
using a Region Proposal Network(RPN) in Unlabelled images U . Then the dot
product along the feature dimension is computed to obtain pairwise similarities
between T and P. One problem we encountered with this approach is that ex-
tracting the feature from the same model as the one being trained for detection,
did not give a good feature representation of objects(see Section 2 and observa-
tions for Figure 2b). Through detailed analysis Chen et al., [3] also show that
though the object detection networks are trained with additional annotations,
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the resulting embeddings are significantly worse than those from classification
models for image retrieval. In line with observation, we propose decoupling the
process by object-level feature selection- detecting objects with object detectors
and then encoding them with pre-trained classification models.

3.5 Targeted Active learning for Document layout Analysis(Tactful)

Stitching together the concepts presented in Sections 3.1 through 3.4, we pro-
pose our approach called Targeted ACTive Learning For DocUment Layout
AnaLysis (Tactful). The algorithm is presented in 3.5. In Tactful a user can
provide a small annotated set that can be used for initial training as well as query
object selection; With a partially trained object detection model and pre-trained
feature selection model, Tactful can be used to do targeted active learning on
a new and unknown set of document pages, and can effectively avoid the curse of
class imbalance and thus improving the performance of document layout analy-
sis compared to other methods. We did extensive experiments on the proposed
framework which is detailed in the following section.

Require: L0: initial Labeled set, U unlabeled set, Q under-performing query
set, k: selection budget, Θ Object-Detection model, Φ feature selection model(eg
a Pre-Trained ResNET50)

1: Train model on labeled set L0 to obtain the model parameters Θ0 { Obtain
model macro AP }

2: Evaluate the model and obtain the under-performing class
3: Crop query and unlabeled set into objects set using ground truth and bound-

ing box detection on model Θ. {Q̂ ← n×Q, Û ← m× U where n and m is
objects in query and unlabeled set respectively }

4: Compute the embeddings
{
∇ΦL (xi, yi) , i ∈ Û

}
and

{
∇θεL (xi, yi) , i ∈ Q̂

}
{

Obtain vectors for computing kernel in Step 5
5: Compute the similarity kernels S and define a MI function If (Û ; Q̂) = f(Û)+

f(Q̂)− f(Û ∪ Q̂) {Instantiate Functions }
6: Â ← maxA⊆U,(A)≤k (If (A; T | P) {Obtain the subset optimally matching

the target }
7: Retrace the subset to original data point {Ā ← Â} and obtain the label of

the element in Ā as  L(Ā)
8: Train a model on the combined labeled set Li ∈  L(Ā) and repeat steps 2 to

8 until the model reaches the desired performance

4 Experiments

We ran experiments for the Tactful framework on two datasets. First, we
recreated the experiment from Section 2, where we randomly took a fraction
of about 2000 data points from the Publaynet while maintaining the class im-
balance among objects as in the original set. In the following experiment, we
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took a budget of 50 objects in each AL round in the Publaynet dataset and
a total budget of 2000 pages. For the experiment, we used detectron2 [22] to
fine-tune Faster RCNN [15] and train the model. The experiment was done on
a system with 120GB RAM and 2 GPUs of 50GB Nvidia RTX A6000. We per-
formed two different types of tests. The first strategy was to dynamically update
the query set i.e in each active learning cycle, we found the underperforming
object and update the query set Q with the underperforming objects. In the
second test (Static Query set), we selected the under-performing objects after
the initial training and performed subset selection. We compare Tactful with
TALISMAN[8] as the baseline. Here we show the effectiveness of Tactful’s
object-level selection against TALISMAN’s object selection which is limited for
each image. We also show the effectiveness of using a different model for feature
selection. To assess the scalability and generalizability of our proposed approach,
we performed a series of experiments by varying the size of the initial training
set and the number of sampled pages per cycle. specifically, we utilized 6300
train data points and 10,000 unlabelled data points and allocated 200 and 2000
budgets for active learning and the total budget, respectively.

Through experiments, we show that the performance of our active learning
approach is not heavily dependent on the choice of pre-trained models used
for image embedding as long as the embeddings accurately capture the image
content. Thus, we selected pre-trained models based on their ease of use and
availability while ensuring they provide high-quality embeddings. We used a
similar setting mentioned above for this experiment.

The paper introduces a new dataset called the Sanskrit dataset. The San-
skrit dataset is a collection of images in the Sanskrit language, which is an
ancient Indian language of Hinduism and a literary and scholarly language in
Buddhism, Jainism, and Sikhism. The dataset contains four types of class ob-
jects, Image, Math Table, and Text. The dataset contains 1388 training images,
88 validation images, and 82 test images. Table 2 provides the distribution of
layout objects. The images in the dataset were collected from various sources,
including Sanskrit textbooks, manuscripts, and art. They cover many topics,
including religious texts, philosophical texts, poetry, and art.

Table 2: Statistics of layout categories in the training, development, and testing
sets of Sanskrit Dataset

Training Validation Testing

Pages 1356 88 82

Image 263 57 65
Math 2725 340 406
Table 63 24 31
Text 24615 1761 1309

Total 37666 2182 1811
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We randomly selected 334 images from the 1388 training images to create the
initial training set. The remaining 1054 training images were used as unlabelled
data points. We employed an active learning strategy with a total budget of 300
images, allocating 30 for each active learning cycle. We fine-tuned a Faster R-
CNN [15] model pre-trained on the COCO dataset [13] for this experiment. We
conducted 10 iterations of the active learning process to evaluate our approach.

5 Results

For Dynamic Query Set strategy i.e new query set in each active learning
cycle experiment, We observed that model performance oscillates for each round.
Figure 4a shows the progression of model performance. The reason could be due
to constant changes in the query set for each active learning cycle. Table 3 shows
the result with respect to different strategies. The GCMI strategy performed
better than other strategies. In COM strategy, the Figure object class got less
AP maybe due to constant updates to the query set.

Table 3: AP with respect to different Active learning strategy with dynamic
underperforming classes

AP AP-Title AP-Title AP-List AP-Table AP-Figure

Random 50.8703 84.5026 67.2462 38.0769 36.2 28.3259
GCMI 54.9445 85.4826 65.5047 50.084 36.3451 37.3062
FL2MI 51.1594 83.9618 65.1775 36.1761 36.6315 33.85
COM 48.2865 85.7209 67.6509 44.5379 23.5566 19.966

In Static Query Set strategy, we selected the worst performing class after
initial training and the query set class is fixed for all AL rounds. Figure 4b shows
that the model oscillates lesser than before, when adding a new data point to the
trained labeled set. Table 4 shows the result with respect to different strategies.
In this experiment, FL2MI performed better than all other strategies. In this
experiment, we selected the List category as a query set. FL2MI gets more
AP-List than random strategy and beats it by 1̃0%.

We compared Tactful with TALISMAN[8] as a baseline. In TALISMAN,
the same feature model is used for selecting the image features. As can be seen
from Table 5, Tactful has outperformed TALISMAN in all three strategies.
This validates our proposal that decoupling detection and feature selection mod-
els have a considerable impact on SMI strategies.

Figure 5 shows the cumulative sum of rare classes augmented to the trained
labeled set (Li) in each active learning round for dynamic query set. It can
be seen that GCMI and FLMI strategies take twice as many objects from rare
classes as random ones. This shows the effectiveness of our approach to tackling
class imbalance during AL data acquisition.
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(b) Tactful: static query set(list) for Publaynet dataset. The plot
show the model AP at interval 5 active learning rounds. The model
oscillates less compare to dynamic query list

Fig. 4: AP with respect to Dynamic Query and Static Query set

Table 4: AP with respect to different Active learning strategy with static rare
classes

AP AP-Title AP-Title AP-List AP-Table AP-Figure

Random 50.8703 84.5026 67.2462 38.0769 36.2 28.3259
GCMI 53.949 83.90303 64.8621 39.76392 45.3594 35.8586
FL2MI 55.2586 84.482 66.0408 48.9131 35.348 43.43945
COM 53.26239 84.68513 63.2735 47.98171 37.80424 31.635

To evaluate our active learning approach, we conducted extensive experi-
ments with varying initial training set sizes and different numbers of sampled
pages per cycle. In the second set of experiments, we evaluated the impact of dif-
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Table 5: AP with respect to TALISMAN[8] and Tactful
FL2MI GCMI COM Random

TADA 56.4369 55.2120 55.3783 51.64246
Talisman 51.6316 52.8814 53.0556 51.64246

ferent pre-trained models on the performance of our active learning framework.
Table 6 gives the outcome of the experiment, and fl2mi gives the most significant
score. A similar result can be observed with multiple pre-trained models.

Table 6: AP with respect to larger train data points and multiple pre-trained
model

FL2MI GCMI COM Random

RESNET101 79.46 78.989 78.71 78.26
RESNET50 79.211 78.357 78.526 78.26
RESNET18 79.196 78.8507 78.5441 78.26

Finally, we experimented on Sanskrit Dataset that contains fewer data
points as compared to large corpora like Docbank [11] and Publaynet [23]. 7
shows the result with respect to the Sanskrit dataset. All SMI strategies [4, 7, 21]
performed better than the random strategy. Among all SMI strategies, GCMI
gave the best result. Figure 6a shows the training plot for the Sanskrit dataset
and we can see that all SMI functions give better results compared to the random
function.
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Fig. 6: AP with respect to Static Query set for the Sanskirt Dataset

Table 7: AP with respect to Sanskrit dataset using TADA
FL2MI GCMI COM Random

Sanskrit Dataset 49.4122 51.7727 49.1080 48.2420

6 Related Work

In our research, we build upon the work presented in PRISM [9], which ad-
dresses two specific subset selection domains: 1) Targeted subset selection and
2) Guided Summarization. PRISM employs a submodular function to determine
the similarity between the query set and the lake setting, using distinct sub-
modular function variations to solve the two types of subset selection problems.
Our contribution enhances the approach proposed in PRISM and its extension
in TALSIMAN [8] by incorporating the object embedding decoupling strategy.

Another related study, by Shekhar et al. [16], focuses on learning an opti-
mal acquisition function through deep Q-learning and models active learning
as a Markov decision process. The primary distinction between our framework
and theirs is that their approach necessitates pre-training with an underlying
dataset. At the same time, our method can be utilized without any pre-training
requirements.

Shen et al.’s OLALA [17] attempt to leverage human annotators solely in ar-
eas with the highest ambiguity in object predictions within an image. Although
they operate at the object level, images are still randomly selected. We pro-
pose that our targeted selection approach can be integrated into the OLALA
framework, potentially enhancing the efficiency of both methodologies. This in-
tegration, however, remains a topic for future research. Furthermore, an addi-
tional related work, ”ActiveAnno: General-Purpose Document-Level Annotation
Tool with Active Learning Integration” [? ], presents a versatile annotation tool
designed for document-level tasks, integrating active learning capabilities. This
tool aims to reduce the human effort required for annotation while maintaining
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high-quality results. It achieves this by identifying and prioritizing the most in-
formative instances for annotation, thus optimizing the use of human expertise
during the annotation process.

Our framework could potentially benefit from incorporating elements of Ac-
tiveAnno’s approach to streamline the targeted selection and annotation process
further. By combining our targeted selection methodology with ActiveAnno’s ac-
tive learning integration, we may improve both systems’ overall efficiency and
effectiveness. This potential integration and its implications warrant further ex-
ploration and experimentation in future research.

7 Conclusion

In this paper, we propose a Targeted ACTive Learning For DocUment Lay-
out AnaLysis (Tactful). That mitigates the class imbalance during image ac-
quisition for annotations, thereby improving the model’s performance for rare
classes. Through different experiments, we show that our framework significantly
improves the model accuracy compared to random, relative to the object level.
We also decoupled the model and showed that it can perform better than TAL-
ISMAN. This approach can be used with language with fewer data points to
improve accuracy.
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