
Gradient Coreset for Federated Learning

Durga Sivasubramanian†

IIT Bombay
durgas@cse.iitb.ac.in

Lokesh Nagalapatti†

IIT Bombay
nlokeshiisc@gmail.com

Rishabh Iyer
University of Texas at Dallas
Rishabh.Iyer@utdallas.edu

Ganesh Ramakrishnan
IIT Bombay

ganesh@cse.iitb.ac.in

Abstract

Federated Learning (FL) is used to learn machine learn-
ing models with data that is partitioned across multiple
clients, including resource-constrained edge devices. It is
therefore important to devise solutions that are efficient in
terms of compute, communication, and energy consump-
tion, while ensuring compliance with the FL framework’s
privacy requirements. Conventional approaches to these
problems select a weighted subset of the training dataset,
known as coreset, and learn by fitting models on it. Such
coreset selection approaches are also known to be robust to
data noise. However, these approaches rely on the overall
statistics of the training data and are not easily extendable
to the FL setup.

In this paper, we propose an algorithm called Gradient
based Coreset for Robust and Efficient Federated Learning
(GCFL) that selects a coreset at each client, only every K
communication rounds and derives updates only from it, as-
suming the availability of a small validation dataset at the
server. We demonstrate that our coreset selection technique
is highly effective in accounting for noise in clients’ data.
We conduct experiments using four real-world datasets and
show that GCFL is (1) more compute and energy efficient
than FL, (2) robust to various kinds of noise in both the
feature space and labels, (3) preserves the privacy of the
validation dataset, and (4) introduces a small communi-
cation overhead but achieves significant gains in perfor-
mance, particularly in cases when the clients’ data is noisy.

1. Introduction
Federated learning (FL) is an approach to machine learn-

ing in which clients collaborate to optimize a common ob-
jective without centralizing data [32]. The training dataset
is distributed across a group of clients, and they contribute
to the training process by sharing privacy-preserving up-
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dates with the central server across communication rounds
until the model converges.

FL proves particularly valuable in situations where a
central server lacks a sufficient amount of data for stan-
dalone model training but can leverage the collective data
from multiple clients, including edge devices, sensors, or
hospitals. For instance, a hospital aiming to develop a can-
cer prediction model can benefit from training their model
using data from other hospitals, while maintaining the pri-
vacy of sensitive patient information. However, in scenar-
ios where clients have limited computational resources or
their data is noisy, it becomes imperative to design robust
algorithms that enable their participation while minimizing
computation and energy requirements. Our proposed so-
lution addresses this challenge by identifying a subset of
each client’s data, referred to as the ”coreset,” which re-
duces noise and facilitates effective training of the central
server’s model.

Conventional coreset selection methods such as Facility
Location, CRUST, CRAIG, Glister, and Gradmatch [19,33,
34, 38] have been developed to enhance the efficiency and
robustness of machine learning model training. However,
adapting these strategies to Federated Learning (FL) set-
tings is challenging due to the non-i.i.d. nature of clients’
datasets. Traditional coreset algorithms aim to select a rep-
resentative subset that ensures a model trained on it per-
forms similarly to the entire dataset. In FL, each client’s
data originates from diverse distributions and is influenced
by noise. For example, in a hospital context, data distribu-
tions differ due to varying demographics across locations
and may be subject to varying amounts of different types of
noise. As a result, biased updates from clients hinder the
learning progress of FL algorithms. We demonstrate this
obstacle through a motivating experiment in Section 2.

We introduce GCFL (as shown in Figure 1), an algo-
rithm specifically designed to address the aforementioned
challenges. Our approach involves selecting a coreset every
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Figure 1. Schematic overview of GCFL. We illustrates a server
with a limited validation dataset and multiple participating clients,
which are edge devices with data that contain noise.

K communication rounds to derive local updates. Similar
to [49], we assume the server has access to a small vali-
dation dataset for guiding coreset selection. However, in
contrast to [49], our validation dataset is not public; we ex-
clusively use (last layer) gradients derived from it. GCFL
uses these gradients to identify a coreset at each client, ef-
fectively training the FL model. In our experiments, we
demonstrate that our approach is robust to different types
of noise, efficient, while preserving privacy and minimizing
communication overhead1.

In summary, our work makes the following contribu-
tions:

1. We introduce GCFL, a framework for efficiently select-
ing coresets for federated learning while preserving privacy.

2. Through experiments, we show that GCFL achieves the
best tradeoff between accuracy and speed in a non-noisy
setting.

3. Furthermore, we demonstrate that GCFL effectively fil-
ters out various types of noise, including closed-set label
noise, open-set label noise, and attribute noise, resulting in
improved performance compared to well-established base-
lines for FL and coreset selection.

2. Motivating experiment
To emphasize the need for a coreset algorithm like GCFL

in federated learning and to showcase its impact on per-
formance, we conducted an experiment using a small toy
dataset. We generated ten isotropic Gaussian blobs in R10

1The code can be found at https : / / github . com /
nlokeshiisc/GCFL_Release/tree/master
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Figure 2. Performance of FedAvg, GCFL, and skyline under 40%
label noise. Skyline is trained just on the clean points. GCFL per-
forms comparably to the skyline.

with varying standard deviations (ranging from 1 to 8) using
scikit-learn’s make blob() utility [39]. A test set was re-
served, containing 15% of the samples, while the remaining
training data was divided among the server and ten clients.
The training subset allocated to the server serves as a vali-
dation dataset, as will be explained in our algorithm, and is
solely employed to guide coreset selection at the clients.

To simulate noise, we randomly flipped 40% of the la-
bels in each client’s samples. We trained logistic regression
models under three settings: (i) FedAvg, (ii) GCFL, and (iii)
Skyline. In the Skyline approach, clients only computed up-
dates from the clean (60%) samples to establish an upper-
bound performance benchmark using clean data. Figure 2
displays the results, revealing that FedAvg’s performance is
adversely affected by the presence of noisy training sam-
ples. In contrast, GCFL outperforms FedAvg and falls be-
tween Skyline, demonstrating its effectiveness in mitigat-
ing the impact of noisy FL data, likely due to its use of
a small, server-guided training subset. GCFL holds signifi-
cant promise for FL, especially in noisy data settings, where
it significantly enhances accuracy and model generalization.

One can consider the idea of mitigating the impact of
noise by fine-tuning the model refined from each communi-
cation round using the server’s validation dataset. However,
such an approach may prove ineffective when the sample
size in the validation dataset is insufficient. To explore this
approach, we conducted experiments using CIFAR-10 and
CIFAR-100 datasets, both affected by 40% closed-set label
noise. We compared the performance of GCFL and FedAvg,
as detailed in Table 1. Our observations indicate that while
fine-tuning does offer some improvements, its effectiveness
is limited by the small size of the validation dataset. In our
upcoming experiments, we will demonstrate how GCFL, in
contrast, efficiently harnesses the validation dataset to guide
coreset selection at the client side, ultimately optimizing its
performance.

https://github.com/nlokeshiisc/GCFL_Release/tree/master
https://github.com/nlokeshiisc/GCFL_Release/tree/master


Dataset FedAvg FedAvg + GCFL GCFL +
Fine Tuned Fine Tuned

Cifar10 34.1% 34.6 % 47.4 % 49.5 %
Cifar100 11.6% 12.1 % 17.5% 17.9 %

Table 1. Impact of model fine-tuning at the server with DS under
40% noise. Fine-tuning yields minor enhancements, while using
DS for coreset selection results in substantial improvements.

3. Related Work

Federated Learning (FL) is distinguished by data hetero-
geneity, where various clients possess data from different
sources with diverse characteristics. As a result, aggregat-
ing updates from such a heterogeneous data source can im-
pact the convergence rate of models. The challenge of ad-
dressing this heterogeneity within client data in the context
of Federated Learning (FL) has garnered significant atten-
tion in the literature [12, 15, 22, 23, 26, 30].

For instance, FedProx, introduced by [26], incorporates
a proximal term into the objective function. This term pe-
nalizes updates that deviate significantly from the server’s
parameters, aiming to accommodate client heterogeneity.
Similarly, Scaffold, proposed by [15], focuses on reducing
the variance in the server’s aggregated updates by managing
the drift in update computation across clients. However, FL
presents a unique challenge when dealing with noisy data
owned by clients, as neither the server nor the clients have
a complete view of the entire training dataset. Traditional
data cleaning approaches [9, 28, 40, 41] may not be directly
applicable to FL.

Coreset selection is a well-established technique in ma-
chine learning that involves selecting a weighted subset of
data to approximate a desired quantity across the entire
dataset. Traditional coreset selection methods typically de-
pend on the model and use submodular proxy functions for
coreset selection [10,16,20,35,47]. Recent developments in
the literature have explored coreset selection in conjunction
with deep learning models [5, 18, 33, 34, 38]. Nevertheless,
most existing coreset selection approaches are tailored for
conventional settings where all data is readily accessible,
requiring thoughtful adaptation for FL.

Coreset selection in Federated Learning (FL) is an un-
derexplored domain, primarily due to the complexities tied
to privacy and non-i.i.d. data distribution among clients
[4, 36, 37, 48]. Notably, [1] picks a coreset of clients to col-
lectively represent the global update across all clients us-
ing the facility location algorithm. In contrast, [37] uses
Shapley values in a game-theoretic framework for again to
perform client selection, while [36] explores reinforcement
learning techniques for data selection. However, Nonethe-
less, training [36] is a challenging task, imposing an addi-

tional workload on local clients by necessitating the training
of an extra private model. In comparison to the prior work,
GCFL is easy to implement and blends well with the FL
framework.

FL has different paradigms: Personalized FL strives to
train specialized models for individual clients, and substan-
tial research has been conducted in this direction [6, 8, 13,
24,31]. In contrast, our work is focused on building models
that exclusively account for the server’s distribution.

We finally note that various techniques have been intro-
duced to ensure privacy in FL, including differential pri-
vacy [7,14], homomorphic encryption [2,25], and more. As
GCFL is model-agnostic, these methods can be seamlessly
integrated with our approach.

4. Problem Setup
In our Federated Learning setup, a group of N clients is

represented by the set C = {c1, c2, · · · , cN}. The training
dataset DT =

⋃N
i=1 Di is divided among the clients, where

each client ci has a data chunk Di consisting of ni samples
{(xij , yij)}ni

j=1. Here, xij ∈ X denotes the input features
of the jth data point at the ith client, and yij ∈ Y repre-
sents its corresponding target. It is important to note that
the data chunks are disjoint, and the set of samples in each
data chunk is not obtained independently and identically
distributed (i.i.d.) from the ground truth target distribution
PrS .

Our objective is to train a machine learning model fθ :
X → Y where θ represents the learnable parameters. The
server S defines the objective for the downstream task and
has access to a small dataset DS consisting of samples ob-
tained independently and identically from the ground truth
target distribution PrS . Our aim is to minimize the expected
value of the loss function ℓ(fθ(x), y), over instances (x, y)
sampled from the distribution PrS .

min
θ

E(x,y)∼PrS(•,•)
[
ℓ(fθ(x), y)

]
(1)

As DS is small, it is insufficient for training fθ and us-
ing it alone can lead to overfitting. To overcome this, the
server seeks assistance from the clients to learn fθ while re-
specting their privacy constraints. Federated Learning is a
promising solution to this problem, where the learning pro-
gresses through T communication rounds. In each round
t, the server selects a subset of clients Ctsel and shares the
current FL model parameters θt with them. The selected
clients initialize their local model with θt and train it for a
few epochs with their respective private data chunks Di to
arrive at the updated model parameters θ′i. The difference
in model parameters, computed as δti = θ′i − θt, is then
transmitted back to the server. The server then averages the
parameter updates received from clients and updates the FL
model as follows:



θt+1 = θt + ηg
1

|Ctsel|
∑

i∈Ct
sel

δti (2)

The global learning rate used by the server is denoted
as ηg , while ηl represents the local learning rate used by
each client to train GCFL. Although updates generated
using equation (2) can minimize the objective (1) when
the clients’ datasets are independently and identically dis-
tributed according to PrS , computing updates from the en-
tire dataset is not recommended when the data contains
noise. Moreover, for resource-constrained clients such as
edge devices, it is crucial to compute updates in an energy-
efficient manner. To address these challenges, we propose
using adaptive coreset selection, which involves selecting a
weighted subset that approximates the characteristics of the
entire dataset. The selected coreset should reduce compu-
tation costs without compromising the performance of the
FL model, and also prevent the updates from only mini-
mizing the client’s local loss, especially when the client’s
data distribution significantly differs from the ground truth
distribution PrS . In this regard, we aim to answer the fol-
lowing question: How can clients in C select an effective
coreset that facilitates the computation of δti and also helps
minimize the objective (1)?

5. The GCFL Solution Approach
Let us denote the coreset selected by a client ci in com-

munication round t as X t
i and its associated weight as wt

i .
We begin the exposition by listing certain desiderata for
coreset selection in FL and then proceed to explain how
GCFLmeets them.

1. The algorithm should align with the current data distri-
bution of clients while also approximating the ground truth
distribution PrS , guaranteeing a coreset that mirrors the de-
sired target.

2. The coreset algorithm should adapt and update X t
i as FL

model fθ evolves, maintaining relevance.

3. Assumptions in the coreset approach should uphold FL
privacy constraints, safeguarding client data and confiden-
tiality.

To meet the first requirement, relying solely on signals
from a client’s local dataset, denoted as Di, is insufficient,
as these datasets are not identically and independently dis-
tributed with respect to the global distribution PrS . How-
ever, DS contains samples drawn from the target distribu-
tion and can potentially aid in the selection of a coreset. Pre-
vious research [49] has demonstrated that making DS pub-
licly accessible enables clients to choose an effective core-
set. Nevertheless, in privacy-sensitive domains like health-

care, even the inclusion of DS may raise privacy concerns,
making it unsuitable for sharing.

Hence, the task of coreset selection within the input fea-
ture space becomes challenging. As an alternative, we shift
our focus towards coreset selection in the gradient space, as
Federated Learning (FL) allows the server to disseminate
gradients computed from DS . It is important to note that
any cryptographic techniques applied to secure clients’ gra-
dients, such as differential privacy, can also be employed
to safeguard the server’s gradients. Additionally, to mini-
mize communication overhead, we opt to transmit an ag-
gregated gradient (average) derived from DS . This choice is
grounded in the Information Bottleneck theory [43], which
suggests that parameters in the final layers contain crucial
discriminatory class information Y , while those in the ini-
tial layers primarily encapsulate feature-specific informa-
tion X .

We begin GCFL by defining the server’s objective and
then illustrate how we incorporate it within the Federated
Learning framework. We use ℓS to signify the loss incurred
by the server concerning the validation data DS , and denote
the loss of client ci w.r.t. its local dataset Di as ℓi.

ℓS =
1

|DS |
∑

(x,y)∈DS

ℓ(fθ(x), y) (3)

ℓi =
1

ni

∑
(x,y)∈Di

ℓ(fθ(x), y) (4)

where ℓ : Y × Y → R+ is a loss function that is pertinent
to the problem.

We define ∇θℓS(θ) as the average gradient of ℓS at θ
on the validation dataset DS , and {∇θℓ

j
i}ni

j=1 as individual
data gradients of client ci for all j ∈ [ni], i ∈ [N ]. The
objective for each client ci is to select a coreset X t

i ,w
t
i of

size b such that the gradients derived from it closely match
∇θℓS(θ). Our coreset selection objective is:

argmin
X t

i ⊆Di s.t. |X t
i |≤b

min
wt

i

Eλ(w
t
i ,X t

i ) where, (5)

Eλ(w
t
i ,X t

i ) = λ∥wt
i∥2 +

∥∥ ∑
j∈X t

i

wt
ij∇θℓ

j
i (θ

t)−∇θℓS(θ
t)
∥∥

Here, λ is a hyper-parameter that regulates the weights of
selected items in the coreset. Due to the combinatorial na-
ture of the optimization objective, it is known to be NP-
Hard [19]. Therefore, we employ a greedy approximation
method, which we will explain in more detail later.

Assuming that the client has solved Eq. 5, we now de-
scribe how it computes an update to share with the server.
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Figure 3. This demonstrates the workflow of GCFL for binary clas-
sification with blue and green classes. The server transmits the
final layer gradients from the validation dataset DS . The client
employs the OMP algorithm to select a coreset X t

i , w
t
i , which is

used to compute updates shared with the server.

Let ℓgmi denote the loss on the selected coreset, defined as

ℓgmi =
∑
j∈X t

i

ℓji (θ) (6)

To minimize the above loss, the client runs several epochs of
stochastic gradient descent on the coreset. From the updated
model, the client derives its update δti as follows:

δti = θt − ηl
b

E∑
k=1

∑
j∈X t

i

∇θℓ
j
i (θ

t
k−1) (7)

Where E is the number of local gradient update steps per-
formed by the client on the coreset, and θtk−1 denotes the
model parameters at the kth intermediate step, with θt0 =
θt. In our experiments, we observed that the coreset weight
wi had a minimal impact on computing the update, so we
omitted it in Eq (7).

5.1. Greedy solution to select Coreset (5)

Objective (5) presents a challenging combinatorial opti-
mization problem due to the discrete variable X t

i . However,
if X t

i is fixed, the inner optimization problem over weights
wt

i can be addressed using the Orthogonal Matching Pursuit
(OMP) algorithm, as also used in [18]. Here’s a detailed al-
gorithm description:

The coreset selection algorithm operates iteratively, se-
lecting points sequentially until the budget is exhausted. To
illustrate, let’s consider adding the (k+ 1)th point while as-
suming that k points have already been selected. We denote

the coreset with k points as Gki and its associated weights as
wk

i .
At this stage, the choice of the data point, denoted as

j ∈ {[ni] − Gki }, for inclusion in Gk+1
i is made based on

minimizing the error residue. The residue, denoted as rk,
is computed as follows: rk =

∑
j∈Gk

i
wk

ij∇θℓ
j
i (θ

t)− rk−1

Here, r0 is initialized using the server’s broadcasted valida-
tion gradient θt. The purpose of rk is to quantify the re-
maining error that needs reduction through the addition of
more points to the coreset.

We choose j as argmin
j∈[ni] s.t. j ̸∈Gk

i

∥∥∇θℓ
j
i (θ

t)− rk
∥∥, i.e., the

data point that minimizes the distance between its gradi-
ent and the residue. The residue’s norm monotonically de-
creases with the coreset’s size increase. The pseudocode for
the greedy selection is avaiable in Alg. 1 and for the overall
algorithm in Alg. 2 in the Appendix.

Next, we discuss techniques to help clients implement
the greedy algorithm effectively. In practice, clients can
employ heuristics to avoid solving b iterations to select a
coreset of size b by selecting multiple data points at each
greedy iteration. Such an approach, backed by strong ap-
proximation guarantees, reduces the frequency of running
the greedy algorithm.

To reduce computational overhead, we use the Informa-
tion Bottleneck theory from [43]. This theory shows that the
initial layers of deep neural networks capture input distribu-
tion, while later layers hold task-specific data. In GCFL, the
server only transmits the gradient from the softmax layer,
which guides the greedy algorithm in selecting data sub-
sets that minimize the softmax layer’s error. This strategic
selection significantly trims computational costs, maintains
accuracy, and reduces communication expenses by trans-
mitting only a fraction of gradients. Moreover, the compu-
tational burden of the greedy algorithm is lessened due to
the reduced dimensionality of the OMP problem.

5.2. Label-wise Coreset Selection

Here, we introduce an improved version of GCFL for bet-
ter alignment with Federated Learning. Given the data’s
non-i.i.d. nature, clients often hold imbalanced class label
distributions among their samples [42, 45]. Hence, a per-
class coreset selection by clients is desirable. The server
broadcasts |Y| gradients, each corresponding to a distinct
class y′ ∈ Y and derived from loss on samples {(x, y) ∈
DS |y = y′}. Subsequently, we execute |Y| instances of
the greedy algorithm, each selecting a coreset of approxi-
mately size b

|Y| . Importantly, this strategy does not increase
the computational overhead as the number of greedy iter-
ations remains fixed. Furthermore, the number of gradi-
ents per Linear Regression instance within the greedy algo-
rithm diminishes to about b

|Y| , which leads to a reduction in
the computational requirements. However, broadcasting the



server’s gradient increases communication costs by a factor
of |Y|. In the following section, we delve into a simple fix
to alleviate this issue.

5.3. Broadcasting Label-wise gradients

To minimize communication costs, we leverage the idea
that when conducting coreset selection for a particular class
y ∈ Y , the server only needs to transmit gradients related
to the penultimate layer’s connection with the output neu-
ron for class y. This approach retains the original gradient
broadcast size. The label-wise coreset variant significantly
trims computational expenses while maintaining communi-
cation efficiency. We present a pictorial overview of the
label-wise coreset selection variant in Figure 3.

6. Experiments
We present experiments on various real world datasets

with a range of noise settings to demonstrate the efficacy of
GCFL over state of the art approaches.

6.1. Datasets

We use four datasets: CIFAR-10, CIFAR-100 [21],
Flowers 2, and FEMNIST [3], detailed in the appendix. To
replicate real-world federated learning scenarios and intro-
duce dataset heterogeneity, we follow prior non-i.i.d. setups
[30, 44]. Using a Dirichlet distribution (α = 0.4), we sam-
ple class proportions for clients, distributing data accord-
ingly. We introduce attribute and label noise to showcase
GCFL’s robustness. non-i.i.d. split’s impact on dataset het-
erogeneity is illustrated in Figure 10(in the appendix), re-
vealing uneven class and noise distributions across clients.

6.2. Baselines

We experiment with two kinds of baselines: coreset
baselines that strive to train models with a subset of the
training dataset and standard FL algorithms.
Coreset selection baselines:

1. Random baseline that selects the subset randomly.

2. Facility location [17] that selects a representative subset
by maximising the similarity with the ground set.

3. CRUST [34] a recent coreset based approach to perform
robust learning in noisy settings. This could be thought of
as an application of [1] in our setting.

FL Algorithms with Full Dataset Updates:

4. Fed-Avg [32] The popular FL algorithm that simply av-
erages the updates and applies to the model.

5. FedProx [27] Controls client drift by introducing L2 reg-
ularization to encourage proximity to server parameters.

2flowers: https://www.tensorflow.org/datasets/
catalog/tf_flowers

6. Scaffold [15] Reduces variance among client updates to
control drift.

7. MOON [22] Uses contrastive learning to align client and
server representations.

6.3. Model Architecture and Experimental Setup

We use the SGD optimizer with initial learning rates of
ηl = ηg = 0.01, a momentum of 0.9, and weight decay
of 5e − 4. We employ cosine annealing [29] to change the
learning rate. The server’s model architecture consists of
a two-layer CNN followed by two fully connected layers.
We train models for T = 250 communication rounds. Dur-
ing each round, coreset-based approaches process only the
selected subset. We use a batch size of 32.

Our experiments demonstrate results that evaluate
GCFL’s robustness and efficiency. The robustness anal-
ysis compares GCFL with baselines under different noise
settings, while the efficiency evaluation considers aspects
like computational and communication overhead. Ablation
studies further explore GCFL’s sensitivity to different hy-
perparameters.

6.4. Robustness

Standard Federated Learning methods generally struggle
with noisy client data, as evident in our synthetic experi-
ment (Figure 2). In this section, we empirically compare
the robustness of GCFL with various FL/coreset algorithms
by experimenting with different noise types that exist both
in attributes (X ) and labels (Y) and assesses their impact.
Closed Set Label noise [46]: Closed-set label noise oc-
curs when labels in the training data are incorrect, yet they
belong to the true label set Y . To simulate this noise with a
ratio of n%, we randomly choose n% of samples from each
Di and flip their labels. Results for closed-set noise are
shown in Figure 4. Notably, GCFL performs the best, par-
ticularly with higher noise ratios across different datasets.
On the Flowers dataset, GCFL is slightly behind Fed-Avg
at lower percentages due to the dataset’s small size (only
3670 images), this dip aligns with other coreset algorithms
as well.
Open Set Label Noise: [46]: Open-set label noise in-
volves incorrect labels not belonging to the task’s label set.
To simulate this with a noise ratio n, we randomly mark n%
of labels from Y as irrelevant. This transforms the classifi-
cation task to focus on the remaining (1 − n)% labels. We
retain noisy-labeled features, but adjust their labels by flip-
ping them to other (1−n)% classes, altering the task to this
reduced set. Figure 5 illustrates the impact of open-set label
noise on GCFL and coreset baselines. We observe that, ex-
cept for GCFL, other coreset baselines perform worse than
FedAvg baselines, primarily because identifying noisy sam-
ples is challenging without guidance from the server. For
CIFAR-10, the performance improves as the percentage of

https://www.tensorflow.org/datasets/catalog/tf_flowers
https://www.tensorflow.org/datasets/catalog/tf_flowers
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Figure 4. Performance comparison of GCFL and baselines with varying closed-set noise percentages. The X-axis indicates the introduced
noise level, and the Y-axis shows test set accuracy. Notably, at x=0, no noise is present. Overall, GCFL outperforms the baselines, except
for the flowers dataset, where subset selection hurts.
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Figure 5. Performance of GCFL in presence of open set noise with
10% data subset. The legend is borrowed from the Fig 4.
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Figure 6. Performance of GCFL in presence of attribute noise with
budget b = 10%. The legend is borrowed from the Fig 4.

open-set noise increases, when n > 40%. This is due to the
reduced class count, simplifying the classification task.
Attribute noise [11]: In contrast to label noise, attribute
noise involves corruption of instance features. We use nine
types of noise from a library3 to corrupt features. Figure 6
shows the effects of attribute noise. We find the Federated
Learning models are relatively resilient to attribute noise.
This is perhaps due to the data augmentation behavior ex-
hibited with this kind of noise. However coreset selection

3https://github.com/bethgelab/imagecorruptions
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Figure 7. Here, we examine the number of clean points chosen for
the coreset by different subset selection algorithms when trained
with 40% closed-set noise. Notably, GCFL stands out by including
a substantial amount of clean points in the coreset.

methods (except GCFL) struggle because detecting noise in
attribute space without server guidance is challenging, par-
alleling the observation with open-set label noise.

It is evident that GCFL outperforms other algorithms in
all noise settings, as it can effectively leverage the global in-
formation provided by the server’s guidance to select an ap-
propriate coreset. To further understand the reasons behind
GCFL’s superior performance, we conduct a small probing
study that is outlined next.

6.5. Does GCFL select clean data points?

In this experiment, we analyze the composition of sub-
sets selected by various coreset selection algorithms to as-
sess the quality of data points chosen by GCFL. Figure 7
illustrates the noise composition in the coresets selected for
CIFAR-10 and CIFAR-100 datasets under 40% closed-set
label noise. The findings demonstrate that among the sub-
set selection algorithms, GCFL chooses the subset with the
highest count of clean points. This observation aligns with
the improved performance demonstrated in Figure 4. Next,
we will discuss the efficiency aspect of GCFL and then pro-
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Figure 8. Trade-off between the training time and test accuracy on
the raw datasets without any noise. We set a budget of b = 10%.

ceed to a series of ablation studies.

6.6. Efficiency

Reducing the computational cost often involves train-
ing the models only on a subset of the dataset. The more
informative the subset is, better the performance of the
model. We evaluate this in Figure 8, where we compare
models trained on 10% coresets selected using different al-
gorithms: Random, Facility Location, CRUST, and GCFL.
Due to the non-i.i.d. nature of clients datasets in FL, algo-
rithms like CRUST and Facility Location struggle to opti-
mize the global server objective. Moreover, adapting them
to FL setup is challenging due to data privacy. GCFL, how-
ever, aligns with the server’s last-layer loss gradient, result-
ing in superior performance, except for the small Flowers
dataset. Figure 8 demonstrates GCFL achieves a compelling
accuracy-efficiency trade-off by just selecting 10% coresets
every 10 rounds.

6.7. Computational overhead of GCFL

We conducted a timing analysis on the CIFAR-10 dataset
to assess GCFL’s computational overhead. FedAvg consis-
tently takes 1.5 seconds per round. However, GCFL requires
5.6 seconds every K th round, where coreset selection is per-
formed. In every other round, it incurs only 0.2 seconds.
Therefore, for any K ≥ 5, we would achieve significant
computational benefits compared to FedAvg. For instance,
with K = 10, an GCFL epoch averages only 0.76 seconds,
using just 50% of the compute compared to FedAvg.

6.8. Communication overhead of GCFL

GCFL introduces minimal communication overhead in
practice, even though it requires transmission of validation
set gradients from the server. In our experiments, the server
already broadcasts the entire model with around 3.5 million
parameters, while the last layer comprises only about 200
thousand parameters. As GCFL operates every K epochs
(e.g., K = 10 in our experiment), the long-term effect re-
sults in an additional communication overhead of merely
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Figure 9. Impact of server’s dataset size on GCFL performance
under 20%, 40% close-set noise.

20 thousand parameters. This amounts to a modest 0.25%
increase in communication cost, keeping GCFL’s communi-
cation cost practically equivalent to FedAvg.

6.9. Is GCFL privacy compliant?

GCFL introduces only one additional component com-
pared to the FedAvg, where the server broadcasts updates
on DS to assist clients with corset selection. However,
our approach requires just the softmax layer gradients. Al-
though previous research has shown that training features
can be inferred from individual data gradients, reconstruct-
ing samples with just the softmax layer gradients, particu-
larly when averaged across instances, is exceedingly diffi-
cult. Therefore, GCFL satisfies the privacy constraints of
federated learning.

6.10. Ablation on the size of |DS |
Here, we investigate how the size of the server’s valida-

tion dataset DS influences the coreset selection by clients.
We examine the impact by setting DS to represent 2%, 5%,
and 10% of the samples from DT . This analysis is con-
ducted under conditions with both 20% and 40% closed-set
label noise, using CIFAR10 and CIFAR100 datasets. The
results, presented in Figure 9, demonstrate GCFL’s consis-
tent performance across varying DS sizes.

7. Conclusion

In this work, we introduced a new approach called GCFL
to address the challenge of learning in a federated setting
where the distribution of data across the client nodes is non-
i.i.d. , and ingested with noise. Our proposed approach se-
lects a coreset from each client that best approximates the
server’s last layer gradient. Our experimental results illus-
trate that GCFL outperforms state-of-the-art methods, and
achieves the best accuracy vs. efficiency trade-off when the
datasets are not noisy. In case of noise, GCFL was able to
achieve significant gains compared to other FL and coreset
selection baselines.
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