Solid Sweeps in CAGD

Milind Sohoni

joint work with Bharat Adsul and Jinesh Machchhar



Solid Sweep

Given a solid M and a one parameter family of rigid motions h,
compute the volume V swept by M.

solid envelope

Figure: A solid swept along a trefoil knot.



Applications

CNC-machining verification
Collision detection
Robot path planning

Machine assembly planning

Packaging and product handling



Application in product handling: Conveyor screws

Rotation of screw

/ﬂ

Anslation of cylinder

Figure: Conveyor screw.



Application in product handling: Gravity chutes

Figure: Gravity chute. Source: SigmaPackaging.com



Previous work

All previous approaches assume that the input solid is either given
implicitly or as a single parametric surface.

m Sweep envelope differential equation (SEDE): Gives an
approximation of the envelope.

m Trimming swept volumes: Uses inverse trajectory for trimming
over the SEDE framework. Computationally expensive.

m Jacobian rank deficiency condition: Cannot handle free-form
surfaces as input.

m Point membership classification: Yields a procedural implicit
definition of the envelope. Computationally expensive.



Solid Sweep

Given a solid M and a one parameter family of rigid motions h,
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Figure: A solid swept along a trefoil knot.



Question: What is the meaning of compute the swept volume
V?
Ans: Input solid and output swept volume specified in boundary
representation format.



The boundary representation (brep)

vertices

faces

edges

m Geometric data: Parametric definitions of faces, edges and
vertices.

m Topological data: Orientation of faces and edges. Ajdacency
relations amongst geometric entities.



Issues involved in brep computation

m When introducing a new surface type in a CAD kernel

m Parametrization: Local aspects
m Body check: Local and Global aspects
m Topology: Global aspects
m Gl-discontinuity in input: Local and Global aspects

m Parametrization: Funnel
m Body check: Self-intersection, Trim curves.

m Topology: Local homeomorphism between input solid and
envelope.

m Gl-discontinuity: Sharp edges and vertices generate faces
and edges respectively.



Parametrization



The envelope condition

m Trajectory
h: 1 — (SO(3),R3), h(t) = (A(t), b(t)).
m Trajectory of a point x under h
Y i 1= R3, () = A(t) - x + b(t).
m Define g : OM x | = R as g(x, t) = (A(t) - N(x),v%(t)).
m Curve of contact at t
C(t) = {nx(t) € IM(t)|g(x, t) = O}.
m For | = [ty, t1], the necessary condition for 4(t) to belong to
envelope &:
m If t =ty then g(x, t) < 0: Left-cap
m If t = t; then g(x,t) > 0: Right-cap
m If t € (t, t1) then g(x, t) = 0: Contact set



The envelope condition

A point v«(t) belongs to the contact-set only if the velocity 7, (t)
is tangent to OM at v (t).
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Parametrization of envelope

m A suitable 2-dimensional sub-manifold of the parameter space

of the sweep problem serves as the domain of parametrization
of the envelope.

m The procedural approach leads to an accurate and efficient
parametrization of the envelope.

m In this paradigm, the surface/curve definition is stored as
numerical procedures, which, when invoked with the supplied
parameter value, converge to the required point/derivative
within specified tolerance.



Parametrization of envelope

Parametric surface S : R2 — R3, S(D) = F C OM.
Define f : D x | — R as f(u,v,t) = g(5(u, v), t)
Funnel: 77 = {(u,v,t) € D x I|f(u,v,t) = 0}.
Parametrization map: of : 7 — CF,

o(u,v,t) =A(t) - S(u,v) + b(t).

Figure: In this example, the funnel has two components, shaded in yellow.



Parametrization of envelope

A t
O
=
\Y,
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Figure: o maps funnel (F) in param. space to envelope (£) in object
space



Self-intersections



Simple sweeps

In simple sweeps, no trimming of the contact set is required to
obtain the envelope.

envelope




Not all sweeps are simple

Trimset T :={x € C|3t € /,x € M°(t)}.
p-trim set pT := o~ }(T)N F.
Trim curve OT: boundary of T.

p-trim curve: OpT: boundary of pT.




Self-intersections

A novel classification of sweeps into simple, decomposable and
non-decomposable based on the complexity of trim curves.

SEV
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Figure: (a)Simple sweep (b)Decomposable sweep (c)Non-decomposable
sweep



A geometric invariant on F

For p e F, {ou(p),ov(p),o¢(p)} are linearly dependent.

Let o+(p) = n(p).ou(p) + m(p).ov(p), n and m continuous on
F.

Define 6 : F — R,

0(p) = n(p) - fulp) + m(p) - fv(p) — f:(pP)

If for all p € F, 6(p) > 0, then the sweep is decomposable.
If there exists p € F such that 6(p) < 0, then the sweep is
non-decomposable.

f invariant of the parametrization of oM.
Arises out of relation between two 2-frames on 7.

Is a non-singular function.



A geometric invariant on F

m 0 partitions the F into (i) F* := {p € F|0(p) > 0}, (ii)
F~:={p <€ Flo(p) < 0} and (iii) F°:= {p € F|O(p) = 0}.
m Define C* := o(F*), C~ := o(F~) and C? := o(FO).

Funnel y Contact-set

mC CT.
m CO: The set of points where dim(T¢) < 2.



Trimming non-decomposable sweeps

The trim curve meets the zero locus of the invariant 6 (shown in
blue) in a non-decomposable sweep.

Funnel Funnel
(a) Decomposable sweep  (b) Non-decomposable sweep



Trimming non-decomposable sweeps

A geometric invariant 6 leads to efficient classification of sweeps
and aids in locating the trim curves in non-decomposable sweeps.

Figure: A cone being swept along a parabola. The trim curve, shown in
blue, meets the zero locus of an invariant function 6, shown in red.



Topology



The natural correspondence between £ and OM

m Correspondence 7 : £ — IM, 7w(y) = x such that
y = A(t) - x + b(t) for some t € I, i.e., y is a translate of x.

m Thanks to 7, we lift the topological data of OM to that of £.

FA)

k.

envelope

Figure: The points y and 7(y) are shown in same color.



Adjacency relations

The local homeomorphism 7 : &€ — dM respects adjacency
relations amongst faces, edges and vertices.

a solid

envelope

While the global brep structures of 9M and £ may be very
different, locally they are very similar.



The map 7 : £ — OM is orientation preserving if —f; > 0 and
reversing if —f; < 0.

Figure: Here m(y;) = x;. The map 7 is orientation preserving at y» and
reversing at y;. The curve f; = 0 is shown in red.



The Computational Framework

Algorithm 1 Solid sweep

for all faces F in OM do
for all co-edges e in OF do
for all vertices z in Je do
Compute vertices C* generated by z
end for
Compute co-edges C€ generated by e
Orient co-edges C*©
end for
Compute CF(tp) and CF(t1)
Compute loops bounding faces CF generated by F
Compute faces CF generated by F
Orient faces CF
end for
for all F;, F; adjacent in OM do
Compute adjacencies between faces in CFi and CFi
end for




Examples from a pilot implementation over ACIS kernel
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Incorporating sharp features



A G1l-discontinuous solid

Figure: The points x;, xo and x3 belong to a smooth face, a sharp edge
and a sharp vertex respectively.



Cone of unit normals

There exists a cone of unit normals at each sharp point on the
input solid.

(@) OM




Calculus of cones

m A sharp edge generated a set of faces on the envelope.
m Such faces are free of local self-intersections.

m A sharp vertex generates a set of edges on the envelope.

Fr Nx F
Figure: The point x is on the envelope only if the velocity lies in the
region shaded in yellow.



Adjacency relations

The envelope has degenerate vertices but no sharp vertices.
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Figure: The edge C? generated by the sharp vertex Z C OM is shown as
a dotted curve in black on the envelope



Examples from a pilot implementation over ACIS kernel
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Further: Non-simple curve of contact

(a) pcurves of contact (b) curves of contact
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Figure: A round-bottom flask undergoing curvilinear motion along an arc
in xy-plane.



Summary of contribution



Summary of contribution

A complete and robust computational framework for solid
sweep

m Accurate and fast parametrization via the funnel and
procedural approach.

m A novel classification of sweeps based on complexity of trim
curves.

m A geometric invariant which aids efficient classification and
location of trim curves.

m Understanding of a brep structure induced on the envelope by
the input solid.

m Handling G1 discontinuities in input solid.

A pilot implementation over the ACIS solid modeling kernel.
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