
Solid Sweeps in CAGD

Milind Sohoni

joint work with Bharat Adsul and Jinesh Machchhar



Solid Sweep

Given a solid M and a one parameter family of rigid motions h,
compute the volume V swept by M.

Figure: A solid swept along a trefoil knot.



Applications

CNC-machining verification

Collision detection

Robot path planning

Machine assembly planning

Packaging and product handling



Application in product handling: Conveyor screws

Rotation of screw

Translation of cylinder

Figure: Conveyor screw.



Application in product handling: Gravity chutes

Figure: Gravity chute. Source: SigmaPackaging.com



Previous work

All previous approaches assume that the input solid is either given
implicitly or as a single parametric surface.

Sweep envelope differential equation (SEDE): Gives an
approximation of the envelope.

Trimming swept volumes: Uses inverse trajectory for trimming
over the SEDE framework. Computationally expensive.

Jacobian rank deficiency condition: Cannot handle free-form
surfaces as input.

Point membership classification: Yields a procedural implicit
definition of the envelope. Computationally expensive.



Solid Sweep

Given a solid M and a one parameter family of rigid motions h,
compute the volume V swept by M.

Figure: A solid swept along a trefoil knot.



Question: What is the meaning of compute the swept volume
V?

Ans: Input solid and output swept volume specified in boundary
representation format.



The boundary representation (brep)

Geometric data: Parametric definitions of faces, edges and
vertices.

Topological data: Orientation of faces and edges. Ajdacency
relations amongst geometric entities.



Issues involved in brep computation

When introducing a new surface type in a CAD kernel

Parametrization: Local aspects
Body check: Local and Global aspects
Topology: Global aspects
G1-discontinuity in input: Local and Global aspects

Parametrization: Funnel

Body check: Self-intersection, Trim curves.

Topology: Local homeomorphism between input solid and
envelope.

G1-discontinuity: Sharp edges and vertices generate faces
and edges respectively.



Parametrization



The envelope condition

Trajectory
h : I → (SO(3),R3), h(t) = (A(t), b(t)).

Trajectory of a point x under h
γx : I → R3, γx(t) = A(t) · x + b(t).

Define g : ∂M × I → R as g(x , t) = 〈A(t) · N(x), γ′x(t)〉.
Curve of contact at t
C (t) = {γx(t) ∈ ∂M(t)|g(x , t) = 0}.
For I = [t0, t1], the necessary condition for γx(t) to belong to
envelope E :

If t = t0 then g(x , t) ≤ 0: Left-cap
If t = t1 then g(x , t) ≥ 0: Right-cap
If t ∈ (t0, t1) then g(x , t) = 0: Contact set



The envelope condition

A point γx(t) belongs to the contact-set only if the velocity γ′x(t)
is tangent to ∂M at γx(t).



Parametrization of envelope

A suitable 2-dimensional sub-manifold of the parameter space
of the sweep problem serves as the domain of parametrization
of the envelope.

The procedural approach leads to an accurate and efficient
parametrization of the envelope.

In this paradigm, the surface/curve definition is stored as
numerical procedures, which, when invoked with the supplied
parameter value, converge to the required point/derivative
within specified tolerance.



Parametrization of envelope

Parametric surface S : R2 → R3, S(D) = F ⊆ ∂M.
Define f : D × I → R as f (u, v , t) = g(S(u, v), t)
Funnel: FF = {(u, v , t) ∈ D × I |f (u, v , t) = 0}.
Parametrization map: σF : FF → CF ,
σ(u, v , t) = A(t) · S(u, v) + b(t).

Figure: In this example, the funnel has two components, shaded in yellow.



Parametrization of envelope

Figure: σ maps funnel (F) in param. space to envelope (E) in object
space



Self-intersections



Simple sweeps

In simple sweeps, no trimming of the contact set is required to
obtain the envelope.



Not all sweeps are simple

Trim set T := {x ∈ C |∃t ∈ I , x ∈ Mo(t)}.
p-trim set pT := σ−1(T ) ∩ F .

Trim curve ∂T : boundary of T .

p-trim curve: ∂pT : boundary of pT .



Self-intersections

A novel classification of sweeps into simple, decomposable and
non-decomposable based on the complexity of trim curves.

Figure: (a)Simple sweep (b)Decomposable sweep (c)Non-decomposable
sweep



A geometric invariant on F

For p ∈ F , {σu(p), σv (p), σt(p)} are linearly dependent.

Let σt(p) = n(p).σu(p) + m(p).σv (p), n and m continuous on
F .

Define θ : F → R,

θ(p) = n(p) · fu(p) + m(p) · fv (p)− ft(p)

If for all p ∈ F , θ(p) > 0, then the sweep is decomposable.
If there exists p ∈ F such that θ(p) < 0, then the sweep is
non-decomposable.

θ invariant of the parametrization of ∂M.

Arises out of relation between two 2-frames on TC .

Is a non-singular function.



A geometric invariant on F

θ partitions the F into (i) F+ := {p ∈ F|θ(p) > 0}, (ii)
F− := {p ∈ F|θ(p) < 0} and (iii) F0 := {p ∈ F|θ(p) = 0}.
Define C+ := σ(F+), C− := σ(F−) and C 0 := σ(F0).

u

t

v

z

x

yFunnel Contact-set

C− ⊂ T .

C 0: The set of points where dim(TC ) < 2.



Trimming non-decomposable sweeps

The trim curve meets the zero locus of the invariant θ (shown in
blue) in a non-decomposable sweep.



Trimming non-decomposable sweeps

A geometric invariant θ leads to efficient classification of sweeps
and aids in locating the trim curves in non-decomposable sweeps.

Figure: A cone being swept along a parabola. The trim curve, shown in
blue, meets the zero locus of an invariant function θ, shown in red.



Topology



The natural correspondence between E and ∂M

Correspondence π : E → ∂M, π(y) = x such that
y = A(t) · x + b(t) for some t ∈ I , i.e., y is a translate of x .

Thanks to π, we lift the topological data of ∂M to that of E .

Figure: The points y and π(y) are shown in same color.



Adjacency relations

The local homeomorphism π : E → ∂M respects adjacency
relations amongst faces, edges and vertices.

While the global brep structures of ∂M and E may be very
different, locally they are very similar.



Orientation

The map π : E → ∂M is orientation preserving if −ft > 0 and
reversing if −ft < 0.

Figure: Here π(yi ) = xi . The map π is orientation preserving at y2 and
reversing at y1. The curve ft = 0 is shown in red.



The Computational Framework

Algorithm 1 Solid sweep

for all faces F in ∂M do
for all co-edges e in ∂F do

for all vertices z in ∂e do
Compute vertices C z generated by z

end for
Compute co-edges C e generated by e
Orient co-edges C e

end for
Compute CF (t0) and CF (t1)
Compute loops bounding faces CF generated by F
Compute faces CF generated by F
Orient faces CF

end for
for all Fi ,Fj adjacent in ∂M do

Compute adjacencies between faces in CFi and CFj

end for



Examples from a pilot implementation over ACIS kernel



Incorporating sharp features



A G1-discontinuous solid

Figure: The points x1, x2 and x3 belong to a smooth face, a sharp edge
and a sharp vertex respectively.



Cone of unit normals

There exists a cone of unit normals at each sharp point on the
input solid.



Calculus of cones

A sharp edge generated a set of faces on the envelope.

Such faces are free of local self-intersections.

A sharp vertex generates a set of edges on the envelope.

Figure: The point x is on the envelope only if the velocity lies in the
region shaded in yellow.



Adjacency relations

The envelope has degenerate vertices but no sharp vertices.

Figure: The edge CZ generated by the sharp vertex Z ⊂ ∂M is shown as
a dotted curve in black on the envelope



Examples from a pilot implementation over ACIS kernel



Further: Non-simple curve of contact

Figure: A round-bottom flask undergoing curvilinear motion along an arc
in xy -plane.



Summary of contribution



Summary of contribution

A complete and robust computational framework for solid
sweep

Accurate and fast parametrization via the funnel and
procedural approach.

A novel classification of sweeps based on complexity of trim
curves.

A geometric invariant which aids efficient classification and
location of trim curves.

Understanding of a brep structure induced on the envelope by
the input solid.

Handling G1 discontinuities in input solid.

A pilot implementation over the ACIS solid modeling kernel.
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