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Abstract. In this work, we propose a structured computational framework
for modelling the envelope of the swept volume, that is the boundary of the

volume obtained by sweeping an input solid along a trajectory of rigid motions.
Our framework is adapted to the well-established industry-standard brep for-

mat to enable its implementation in modern CAD systems. This is achieved

via a “local analysis”, which covers parametrizations and singularities, as well
as a “global theory” which tackles face-boundaries, self-intersections and trim

curves. Central to the local analysis is the “funnel” which serves as a natural

parameter space for the basic surfaces constituting the sweep. The trimming
problem is reduced to the problem of surface-surface intersections of these basic

surfaces. Based on the complexity of these intersections, we introduce a novel

classification of sweeps as decomposable and non-decomposable. Further, we
construct an invariant function θ on the funnel which efficiently separates de-

composable and non-decomposable sweeps. Through a geometric theorem we

also show intimate connections between θ, local curvatures and the inverse
trajectory used in earlier works as an approach towards trimming. In contrast

to the inverse trajectory approach of testing points, θ is a computationally

robust global function. It is the key to a complete structural understanding,
and an efficient computation of both, the singular locus and the trim curves,

which are central to a stable implementation. Several illustrative outputs of a
pilot implementation are included.

Keywords: Solid sweep; boundary representation; parametric curves and sur-
faces; solid modeling

1. Introduction

This paper is motivated by the need for a robust implementation of solid sweeps
in solid modeling kernels. The solid sweep is of course, the envelope surface of a solid
which is swept in space by a family of rotations and translations. The uses of sweeps
are many, e.g., in the design of scrolls [10], in CNC machining verification [14, 15],
to detect collisions, and so on. Constant radius blends can be considered as the
partial envelope of a sphere moving along a specified path. As with blends [6], it is
expected that a deeper mathematical understanding of solid sweep will lead to its
rapid deployment and use.

A robust implementation of solid sweep poses the following requirements: (i)
allow for input models specified in the industry-standard brep format, (ii) output
the sweep envelope in the brep format, with effective evaluators, and finally, (iii)
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perform body-check, i.e., a check on the orientability, non-self-intersection, detec-
tion of singularities and so on. Thus there are some “local” parts and some “global”
parts to a robust implementation of sweeps.

It is generally recognized that the harder parts of the local theory is in the
smooth case, i.e., when faces of the swept solid meet each other smoothly. For
in the non-smooth case, the added complexity in the local geometry of the sweep
is exactly that of a curve moving in 3-space. This is of course well understood,
and offered by many kernels as a basic surface type. As far as we know, the global
situation in the non-smooth case, i.e., the topological structure of edges and vertices
(i.e., the 1-cage) of the sweep has not been elucidated, but is also generally assumed
to be simpler than the smooth case. In fact, much of existing literature has focused
on a smooth single-face solid, as the key problem [1, 3, 4].

In this paper, we focus on the smooth multi-face solid. In Section 2, we start
with the mathematical structure of the simple sweep (i.e., one without singularities
and self-intersections). By the calculus of curves of contact, we set up a correspon-
dence between the faces, edges and vertices of the envelope with those of the swept
solid. This sets up the brep structure of the envelope. Next, we define the funnel
as the parametrization space of a face of the envelope and construct a parametriza-
tion. We further elucidate the structure of the bounding edges/vertices of a face
and provide several examples of simple sweeps from a pilot implementation.

In Section 3, we examine the trim structures. The funnel of Section 2 will
remain the ambient parametrization of the faces. The correspondence will help us
define the trim areas and trim curves which must be excised to form the correct
envelope. We then define the function ` and use it to define elementary and singular
trim curves.

In Section 4, we start with the decomposable sweep, i.e., one which may be
partitioned into a suitable small collection of simple sweeps. In principle, the final
envelope may be obtained by stable (transversal) boolean operations on this collec-
tion. We show that the trim curves so obtained are elementary. We next define a
global invariant θ on the funnel, which is robustly and efficiently computable on the
funnel and we show that θ > 0 on (all) the funnels characterizes decomposability.
This is an important step in the robust implementation of sweeps.

In Section 5, we prove some of the geometric properties of θ such as its in-
variance and show that it is the determinant of the transformation connecting two
2-frames on the envelope, and is thus an easily computable function on the sur-
face. We show that the θ = 0 curve on the funnel is also the singular locus for the
envelope surface. We also show the relation of θ with the inverse trajectory [4].

In Section 6, we analyse the singular trim curve, i.e., where ` may hit zero. We
show that there is a correspondence between singular trim curves and the curves in
the zero-locus of θ. We also show that (i) singular trim curves make contact with
the θ = 0 curves, and (ii) excision at the singular trim curves excises all singularities
of the envelope except at these points of contact. These points themselves are easily
and robustly computed.

In Section 7 we summarize what has been achieved, viz., that the decompos-
ability and the zero-locus of θ complement to give a complete understanding of all
trim curves. We illustrate this through some examples. Finally, we outline future
work.
Previous work
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We now review existing related work. Perhaps the most elaborate proposal for
the sweep surface E is the sweep envelope differential equations [3] approach, where
the authors (i) assume that surface S being swept is implicitly given by a function
f , and (ii) derive a differential equation whose solution is the envelope. For any
point p on the initial curve of contact, a Runge-Kutta marching yields a trajectory
p(t) such that (i) p(0) = p, and (ii) p(t) ∈ C(t), the curve of contact at time t.
These trajectories presumably serve as the iso-parametric lines p(t) = E(t, u(p)).
Determining whether p(t) is in the trimming set T is solved by using the inverse
trajectory condition. This is implemented by using the second derivative of the
function φ(x, t) = f(η(x, t)), where η is the inverse trajectory of point x.

On the global front, the building of the envelope E is done by selecting a col-
lection of points on the initial curve of contact, developing trajectories, testing for
membership in T and then using the points which pass to construct an approxima-
tion to the envelope. The drawbacks are clear. Typically, when S is presented as
a brep, constructing an f which defines S is difficult. Furthermore, the choice of f
seems to determine many computational and parametric issues, which is undesir-
able. The inverse-trajectory check remains poorly conditioned, especially when the
second derivative of the function φ(x, t) w.r.t. t is zero, a situation which arises re-
peatedly. The structure of the envelope is unknown at a point where this derivative
is zero. A global understanding of T and the nature of the trim curves is missing.
A surface is fit through the points which pass the inverse trajectory test. Hence, an
important feature, namely, G1-discontinuity along the trim curve on the envelope
is missed out by this method. Further, since only sampled points are subjected to
inverse trajectory test, some portion of the trimming set T may be left undetected.

In [7], the authors give a membership test for a point in the object space to
belong inside, outside or on the boundary of the swept volume. This is done by
studying the interaction of inverse trajectory of the point in question with the
solid at initial position. A curve-solid intersection is required to be computed
for each point membership query which is computationally expensive, especially
when the intersection is non-transversal, as noted by the authors. Further, this
approach yields a procedural implicit representation of the envelope. In practice, a
parametric representation is often desirable so that it is efficient to produce points
on the envelope.

In [8] the authors work with 2D shapes and 2D motions and quantify singulari-
ties using inverse trajectories. This work is based on the computational framework
described in [7] and involves computing intersections between 2D curves and 2D
shapes. The authors remark that this work can be extended to the 3-dimensional
case involving intersections between 3D curves and 3D solids. This approach has the
same drawback as [7], namely a high computational cost and the obvious limitation
of dimensionality.

In trimming self-intersections in swept volumes [17], the authors detect self-
intersections by computing approximate curves of contact at a few discrete time
instances which are then checked for intersections. Approximations are introduced
at multiple levels, hence such an approach is not likely to meet the accuracy stan-
dards of most CAD kernels.
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In [9], the authors approximate the given trajectory by a continuous, piecewise
screw motion and generate candidate faces of the swept surface. In order to per-
forming trimming, inverse trajectory is used. Limitation of this method is clear,
namely, restricted class of motions along which the sweep occurs.

In [16], the authors present an error-bounded approximation of the envelope
of the volume swept by a polyhedron along a parametric trajectory. Authors use
volumetric approach using adaptive grid to provide guarantee about the correctness
of the topology of the swept volume. This approach, however, cannot be readily
extended to sweep smooth solids.

2. Mathematical structure of sweeps

In this section we formulate the boundary of the volume obtained by sweeping
a solid M along a given trajectory h.

2.1. Correspondence and brep structure of envelope. We will use the
boundary representation, also known as brep, which is a popular standard for rep-
resenting a compact and oriented solid M by its boundary ∂M . The boundary ∂M
separates the interior of M from the exterior of M and is represented using a set
of faces, edges and vertices. See Figure 1 for the brep of a solid where different
faces are colored differently. Faces meet in edges and edges meet in vertices. The
brep consists of two interconnected pieces of information, viz., the geometric and
the topological. The geometric information consists of the parametric description
of the faces and edges while the topological information consists of orientation of
the geometric entities and adjacency relations between them.

In this paper we consider solids whose boundary is formed by faces meeting
smoothly. In the case when the faces do not meet smoothly, the added complexity
in the local geometry of the sweep is exactly that of a curve moving in 3-space.
This is of course well understood, and offered by many kernels as a basic surface
type. The global geometry and topology for this case will be described in a later
paper.

Definition 1. A trajectory in R3 is specified by a map

h : I → (SO(3),R3), h(t) = (A(t), b(t))

where I is a closed interval of R, A(t) ∈ SO(3)1, b(t) ∈ R3. The parameter t
represents time.

We assume that h is of class Ck for some k ≥ 2, i.e., partial derivatives of order
up to k exist and are continuous.

We make the following key assumption about (M,h).

Assumption 2. The tuple (M,h) is in a general position.

Definition 3. The action of h (at time t in I) on M is given by M(t) =

{A(t) · x + b(t)|x ∈ M}. The swept volume V is the union
⋃
t∈I

M(t) and the

envelope E is defined as the boundary of the swept volume V.

Clearly, for each point y of E there must be an x ∈ M and a t ∈ I such that
y = A(t) · x+ b(t). This sets up the following correspondence relation.

1SO(3) = {X is a 3 ×3 real matrix|Xt ·X = I, det(X) = 1} is the special orthogonal group,
i.e. the group of rotational transforms.
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Figure 1. The envelope of a cone with blended edges being swept
along a helical trajectory with compounded rotation.

Definition 4. The correspondence R is the set of tuples

R = {(y, x, t) ∈ E ×M × I|y = A(t) · x+ b(t)}
For t0 ∈ I, we set Rt0 := {(y, x, t) ∈ R|t = t0}. Similarly, for y0 ∈ E , we define

y0R := {(y, x, t) ∈ R|y = y0}.
We will denote the interior of a set W by W o. It is clear that Vo = ∪t∈IM(t)o.

Therefore, we have

Lemma 5. If x ∈Mo, then for all t ∈ I, A(t) · x+ b(t) /∈ E.

Thus, the points in the interior of M do not contribute to E at all and R ⊂
E × ∂M × I.

Lemma 6. Assuming general position of (M,h), for any y ∈ E, there are at
most three distinct tuples (y, xi, ti) for i = 1, 2, 3 which belong to yR.

Proof. For distinct tuples (y, x1, t1), (y, x2, t2) ∈ yR, it is clear that t1 6= t2, for
otherwise x1 = x2. Therefore ∂M(t1) and ∂M(t2) intersect at point y. By As-
sumption 2 this intersection is transversal. Further, by the same assumption, at
most 3 surfaces may intersect in a point. �

It will be shown in the coming sections that for almost all points y ∈ E there is
exactly one tuple (y, x, t) in yR. This sets up the brep structure for E . In the sweep
example shown in Figure 1, the correspondence R is illustrated via color coding,
i.e., for (y, x, t) ∈ R, the points y and x are shown in the same color. The general
position assumption on (M,h) can be formulated as the condition that the induced
brep topology of E remains invariant under a small perturbation of (M,h).

Definition 7. For a point x ∈ M , define the trajectory of xxx as the map
γx : I → R3 given by γx(t) = A(t) · x + b(t) and the velocity vx(t) as vx(t) =
γ′x(t) = A′(t) · x+ b′(t).

For a point x ∈ ∂M , let N(x) be the unit outward normal to M at x. Define
the function g : ∂M × I → R as

g(x, t) = 〈A(t) ·N(x), vx(t)〉(1)
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Thus, g(x, t) is the dot product of the velocity vector with the unit normal at the
point γx(t) ∈ ∂M(t).

Proposition 8 gives a necessary condition for a point x ∈ ∂M to contribute
a point on E at time t, namely, γx(t), and is a rewording in our notation of the
statement in [3] that the candidate set is the union of the ingress, the egress and
the grazing set of points.

Proposition 8. For (y, x, t) ∈ R and I = [t0, t1], either (i) g(x, t) = 0 or (ii)
t = t0 and g(x, t) ≤ 0, or (iii) t = t1 and g(x, t) ≥ 0.

For the proof, refer Appendix A.

Definition 9. For a fixed time instant t0 ∈ I, the set {γx(t0)|x ∈ ∂M, g(x, t0) =
0} is referred to as the curve of contact at t0 and denoted by CI(t0). Observe
that CI(t0) ⊂ ∂M(t0). The union of the curves of contact is referred to as the

contact set and denoted by CI , i.e., CI =
⋃
t∈I

CI(t).

In the sweep example in Figure 4, the curve of contact at t = 0 is shown im-
printed on the solid in red. The curves of contact are referred to as the characteristic
curves in [13].

Definition 10. Define projections τ : R → I and Y : R → E as: τ(y, x, t) =
t and Y (y, x, t) = y.

Definition 11. A sweep (M,h, I) is said to be simple if for all t ∈ Io, CI(t) =
Y (Rt).

Note that, by Proposition 8, for any sweep, we have Y (Rt) ⊆ CI(t) for all
t ∈ Io. In a simple sweep, we require that CI(t) = Y (Rt). In other words, every
point on the contact-set appears on the envelope, and thus, no trimming of the
contact-set is needed in order to obtain the envelope.

Lemma 12. For a simple sweep, for all y ∈ E, yR is a singleton set.

Proof. We first show that for a simple sweep, for t 6= t′, CI(t)∩CI(t′) = ∅. Suppose
that y ∈ CI(t) ∩ CI(t′). Clearly, CI(t) ⊂ ∂M(t) and CI(t

′) ⊂ ∂M(t′). Hence
y ∈ ∂M(t)∩∂M(t′). By Assumption 2 about the general position of (M,h), ∂M(t)
and ∂M(t′) intersect transversally. Hence CI(t)∩Mo(t′) 6= ∅ and CI(t

′)∩Mo(t) 6= ∅.
It follows by Lemma 5 that CI(t) 6⊂ Y (Rt) and CI(t

′) 6⊂ Y (Rt′) which contradicts
the fact that (M,h, I) is simple.

Now suppose that there are 2 tuples (y, xi, ti) ∈ yR for i = 1, 2. Since ∂M is
free from self-intersections it follows that t1 6= t2 and y ∈ CI(t1) ∩ CI(t2) which is
a contradiction to the fact that (M,h, I) is simple. �

2.2. Parametrizations. Now we describe parametrizations of the various en-
tities of the induced brep structure of E . Here we restrict to the case of the simple
sweep. The more general case is derived from this.

2.2.1. Geometry of faces of E. Let F be a face of ∂M . In general, F gives rise
to a set of faces of E . Below we describe a natural parametrization of these faces
using the parametrization of the surface underlying the face F .

Definition 13. A smooth/regular parametric surface in R3 is a smooth
map S : R2 → R3 such that at all (u0, v0) ∈ R2 ∂S

∂u |(u0,v0) ∈ R3 and ∂S
∂v |(u0,v0) ∈ R3

are linearly independent. Here u and v are called the parameters of the surface.
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Figure 2. The funnel and the contact-set.

Let S be the regular surface underlying the face F of ∂M .

Definition 14. Define the function f : R2×I → R as f(u, v, t) = g(S(u, v), t).

The domain of function f will be referred to as the parameter space. Note that
f is easily and robustly computed.

Definition 15. For an interval I = [t0, t1], we define the following subsets of
the parameter space

L = {(u, v, t) ∈ R2 × {t0} such that f(u, v, t) ≤ 0}
F = {(u, v, t) ∈ R2 × I such that f(u, v, t) = 0}
R = {(u, v, t) ∈ R2 × {t1} such that f(u, v, t) ≥ 0}

The set F will be referred to as the funnel.
By Assumption 2 about the general position of (M,h) it follows that for all

p ∈ F , the gradient ∇f(p) = [fu(p), fv(p), ft(p)]
T 6= 0̄. As a consequence, F is a

smooth, orientable surface in the parameter space.

Definition 16. The set {(u, v, t) ∈ F|t = t0} will be referred to as the p-curve
of contact at t0 and denoted by F(t0).

We now define the sweep map from the parameter space to the object space.

Definition 17. The sweep map is defined as follows.

σ : R2 × I → R3, σ(u, v, t) = A(t) · S(u, v) + b(t)

Note that, σ is a smooth map, CI = σ(F) and CI(t) = σ(F(t)). Here and
later, by a slight abuse of notation, E , CI and CI(t) denote the appropriate parts
of complete E , CI and CI(t) respectively resulting from the face F ⊂ ∂M whose
underlying surface is S. The surface patches σ(L) and σ(R) will be referred to as
the left and right end-caps respectively.

The funnel, the contact-set, F(t0) and CI(t0) are shown schematically in Fig-
ure 2.

The condition f = 0 can also be looked upon as the rank deficiency condition [1]
of the Jacobian Jσ of the sweep map σ. To make this precise, let

Jσ =
[
σu σv σt

]
3×3

(2)
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Figure 3. The edges of envelope for the sweep example shown in Figure 1.

where σu = A(t) · ∂S∂u (u, v), σv = A(t) · ∂S∂v (u, v) and σt = A′(t) · S(u, v) + b′(t).
Note that if S(u, v) = x then σt = γ′x(t) is the velocity, also denoted by V (u, v, t).
Observe that regularity of S ensures that Jσ has rank at least 2. Further, it is
easy to show that f(u, v, t) is a non-zero scalar multiple of the determinant of Jσ.
Therefore, the condition f = 0 is precisely the rank deficiency condition of Jσ.

For a simple sweep, by Proposition 8, Definition 11 and Definition 15 it follows
that E = σ(L ∪ F ∪R). The surface patches σ(L) and σ(R) can be obtained from
∂M using Proposition 8 and Definition 15. The trim curve in parameter space for
σ(L) is given by f(u, v, t0) = 0 and that for σ(R) is given by f(u, v, t1) = 0.

We now come to the parametrization of σ(F) = CI . The non-singularity of f
makes F an effective parametrization space for CI . Since time t is a central param-
eter of the sweep problem and is important in numerous applications, it is useful
to have t as one of the parameters of CI . Since in a simple sweep, σ|F : F → CI
is a diffeomorphism onto its image, we may address the problem of parameterizing
CI by parameterizing the funnel F . For most non-trivial sweeps there is no closed
form solution for the parametrization of the envelope and we address this problem
using the procedural paradigm which is now standard in many kernels and is de-
scribed in Appendix C. In this approach, a set of evaluators are constructed for
the curve/surface via numerical procedures which converge to the solution up to
the required tolerance. This has the advantage of being computationally efficient
as well as accurate.

We now look at the bounding edges of the faces resulting from the face F of
∂M , which are generated by the bounding edges of F .

2.2.2. Geometry of edges of E. We now briefly describe the computation of
edges of E via the correspondence R. If ∂M is composed of faces meeting smoothly,
an edge e of ∂M will, in general, give rise to a set of edges in E . We define the
restriction of R to the edge e as follows.

Definition 18. For an edge e ∈ ∂M , define R(e) = {(y, x, t) ∈ R|x ∈ e}.
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Figure 4. The envelope(without end-caps) of a dumbbell under-
going translation along y-axis and undergoing rotation about y-
axis.

Let e be the intersection of faces F1 and F2 in ∂M and let s denote the param-
eter of e. Since F1 and F2 meet smoothly at e, at every point e(s) of e there is a
well-defined normal. Hence we may define the following function on the parameter
space R× I.

Definition 19. Define the function fe : R× I → R as fe(s, t) = g(e(s), t).

Note that the function fe is the restriction of the function f defined in Defi-
nition 14 to the parameter space curve (u(s), v(s)) corresponding to the edge e so
that e(s) = S(u(s), v(s)) where S is the surface underlying face F1. The following
Lemma gives a necessary condition for a point e(s) to be on E at time t.

Lemma 20. For (y, e(s), t) ∈ R(e) and I = [t0, t1], either (i) t = t0 and
fe(s, t) ≤ 0, or (ii) t = t1 and fe(s, t) ≥ 0 or (iii) fe(s, t) = 0.

Proof. This follows from Prop. 8 and Definition 19. �
Figure 3 shows the edges of the envelope for the sweep example shown in

Figure 1. The correspondence for one of the edges of the envelope is also marked.
Let F1 denote the funnel corresponding to the contact set generated by face

F1. The edge in parameter space which bounds F1 is given by {(u(s), v(s), t) ∈
R2 × I|fe(s, t) = 0} which we will denote by Fe. Note that Fe is smooth if
(fes , f

e
t ) = (fu · us + fv · vs, ft) 6= (0, 0) at all points in Fe.

2.2.3. Geometry of vertices of E. A vertex z on ∂M will, in general, give rise
to a set of vertices on E . We further restrict the correspondence R to z as R(z) =
{(y, x, t) ∈ R|x = z}. As ∂M is smooth, there is a well-defined normal at z. Hence
we may define the function fz : I → R as fz(t) = g(z, t). If z is on the boundary
of a face F1, z will have a set of coordinates in the parameter space of the surface
S underlying the face F1, say (u0, v0), so that z = S(u0, v0). It is easy to see that
if (y, z, t) ∈ R(z) and I = [t0, t1] then either (i) t = t0 and fz(t) ≤ 0, or (ii) t = t1
and fz(t) ≥ 0 or (iii) fz(t) = 0.

2.3. Examples of simple sweeps. Three examples of simple sweeps are
shown in Figures 4, 5 and 6 which were generated using a pilot implementation
of our algorithm in the ACIS 3D Modeler [2]. A curve of contact at the initial time
is shown imprinted on the solid in Figure 4.
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Figure 5. The envelope(without end-caps) of an elliptical cylin-
der undergoing a screw motion while rotating about its own axis.

Figure 6. The envelope(without end-caps) of a sphere sweeping
along an ’S’ shaped trajectory while rotating about y-axis

3. The trim structures

Unlike in a simple sweep, all points of CI may not belong to the envelope.
Figure 7 shows an example of such a sweep. In Figure 7(b) the contact set restricted
to the later half of the sweep interval is shown after removing the set of points which
does not belong to the envelope. We now define the subset of CI which needs to
be excised in order to obtain E .

Definition 21. The trim set is defined as

TI := {x ∈ CI |∃t ∈ I, x ∈Mo(t)}

By Lemma 5 it is clear that TI ∩ E = ∅. The correspondence in Definition 4
does not capture the points of CI which do not belong to the envelope. In order to
identify such points, we extend the correspondence of Definition 4 to CI ×M × I
as below.

Definition 22. Let R̃ := {(y, x, t) ∈ CI ×M × I|y = A(t) · x + b(t)}. As

expected, we define τ : R̃→ I and Y : R̃→ CI as: τ(y, x, t) = t and Y (y, x, t) = y.

Further, as before, R̃t0 := {(y, x, t) ∈ R̃|t = t0}, y0R̃ := {(y, x, t) ∈ R̃|y = y0}.

A crucial observation is that, unlike the earlier correspondence, R̃ 6⊂ CI×∂M×I
simply because R̃ may contain a tuple (y, x, t) where x ∈ Mo. In other words, for
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Figure 7. (a) The contact set of a capsule moving along a he-
lix while rotating about y-axis.(b) The contact set restricted to
interval [0.5, 1.0] with the trim set excised.

x′ ∈ ∂M and y = γx′(t′) ∈ CI , it may happen that γx′(t′) = γx(t) for some t 6= t′

and some x ∈Mo. In this case, yR̃ will not be a singleton set.

Lemma 23. The set TI is open in CI .

Proof. Consider a point y0 ∈ TI . Then y0 ∈ Mo(t0) for some t0 ∈ I. Hence, there
exists an open ball of non-zero radius r centered at y0, denote it by B(y0, r), which
is itself contained in Mo(t0). Let N0 := B(y0, r) ∩ CI . Then, N0 ⊂ TI and N0 is
open in TI . Hence TI is open in CI . �

In general, the trim set will span several parts of CI corresponding to different
faces of ∂M . For the ease of notation and presentation, in the rest of this paper,
we will analyse the corresponding trim structures on the funnel of a fixed face F of
∂M . Thanks to the natural parametrizations (cf. subsection 2.2), the migration of
these trim structures across different funnels is an easy implementation detail. In
view of this, we carry forward the notation developed in subsection 2.2.1 through
the rest of this paper.

Definition 24. The pre-image of TI on the funnel under the map σ will be
referred to as the p-trim set, denoted by pTI , i.e., pTI = σ−1(TI) ∩ F .

An immediate corollary of Lemma 23 is: pTI is open in F .
One can also define similar parametric trim areas on the left and right caps (cf.

L and R from Definition 15) and their counterparts in the object space. However,
in this paper, we assume here that these trim structures are empty. Our analysis
can be extended to also cover the non-empty case.

Definition 25. The boundary of TI will be referred to as the trim curves and
denoted by ∂TI . Here TI denotes the closure of TI in CI . Similarly, the boundary
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Figure 8. Elementary and singular p-trim curves.

of the closure pTI of pTI in F will be referred to as the p-trim curves and denoted
by ∂pTI .

Note that E ∩ TI = ∅, E ∩ TI = ∂TI and σ(F \ pTI) = E . Since ∂TI forms
the boundary of the trim set, the problem of excising the trim set is reduced to
the problem of computing the trim curves. Further, this computation is eventually
reduced to guided parametric surface-surface intersections via the parametrization
of σ(F) described in Section 2.2. In order to characterize the points of ∂pTI we
define the following function.

Definition 26. For p = (u, v, t) ∈ F , let σ(p) = y. Define L : F → 2R as

L(p) := τ(yR̃), where 2R denotes the set of all subsets of R. In other words, L(p)
is the set of all time instances t′ (except t) such that some point of M(t′) coincides
with σ(p).

Lemma 27. Let p0 ∈ pTI . Then p0 ∈ pTI iff L(p0) contains an interval, and
p0 ∈ ∂pTI iff L(p0) is a discrete set of cardinality either two or three.

Proof. Suppose first that p0 ∈ pTI . Let y0 := σ(p0). Then y0 ∈ TI and y0 ∈Mo(t0)
for some t0 ∈ I. Let B(y0, r) be an open ball of radius r > 0 centered at y0 contained
in Mo(t0). Assume without loss of generality that A(t0) = I and b(t0) = 0. By
continuity of the trajectory h it follows that given r > 0 there exists δt > 0 such
that for all t ∈ [t0, t0 + δt], ‖y0−A(t) · y0− b(t)‖ < r. Thus for each t ∈ [t0, t0 + δt],
there exists a point x = A−1(t) · (y0− b(t)) ∈ B(y0, r) satisfying y0 = A(t) ·x+ b(t),
i.e., y0 ∈Mo(t). In other words, [t0, t0 + δt] ∈ L(p0).

Conversely, suppose that L(p0) contains an interval [t1, t2], i.e., y0 ∈ M(t) for
all t ∈ [t1, t2]. By Assumption 2 about the general position of (M,h) it follows that
y0 ∈ Mo(t) for some t ∈ [t1, t2], i.e., y0 ∈ TI and p0 ∈ pTI . We have shown that
for p0 ∈ pTI , p0 ∈ pTI iff L(p0) contains an interval. Hence, L(p0) is discrete iff
p0 ∈ ∂pTI .

As ∂TI ⊂ E , by Lemma 6, it follows that at all but finitely many points
p ∈ ∂pTI , L(p) is of cardinality 2 and at remaining points it is of cardinality 3.
�

From Lemma 27 it follows that for almost all points y ∈ ∂TI there are two points
p1, p

′
1 ∈ ∂pTI such that σ(p1) = σ(p′1) = y. Figure 8 schematically illustrates p-trim

curves on F . For every point p1 in the red portion of ∂pTI , there is a point p′1 in
the green portion of ∂pTI such that σ(p1) = σ(p′1).
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Definition 28. Define the function ` : F → R ∪ ∞ as follows. For p =
(u, v, t) ∈ F ,

`(p) = inf
t′∈L(p),t′ 6=t

‖t− t′‖ if L(p) is not a singleton set,

=∞ if L(p) is a singleton set (i.e., L(p) = {t}).

Further, we define t−sep = inf
p∈F

`(p).

For p ∈ F , the function ` gives the ‘smallest’ time δt such that some point of
M(t± δt) coincides with σ(p).

We classify trim curves as follows.

Definition 29. A curve C of ∂pTI is said to be elementary if there exists
δ > 0 such that for all p ∈ C, `(p) > δ. It is said to be singular if inf

p∈C
`(p) = 0.

Figures 8(a) and 8(b) schematically illustrate elementary and singular p-trim
curves on F respectively. Further observe that, t−sep > 0 in case (a) and 0 in case
(b). The trim curve in the example shown in Figure 7 is elementary. The trim
curves in examples shown in Figures 12, 13, 14 and 15 are singular.

Before proceeding further, we introduce the following notation: for J ⊂ I,
F(J) = {(u, v, t) ∈ F | t ∈ J}.

Lemma 30. All but finitely many points of elementary trim curves lie on the
transversal intersections of two surface patches σ(F(Ii)) and the remaining points
lie on the transversal intersection of three surface patches σ(F(Ii)) where, for i =
1, 2, 3, Ii ⊂ I are subintervals.

Proof. Without loss of generality, assume that all curves of ∂pTI are elementary,
i.e., ∃δ > 0 such that for all p ∈ ∂pTI , `(p) > δ. By Lemma 27, all but finitely many
points y ∈ ∂TI have two points p1 = (u1, v1, t1) and p2 = (u2, v2, t2) in ∂pTI such
that σ(p1) = σ(p2) = y. Let F1 := F([t1 − δ, t1 + δ]) and F2 := F([t2 − δ, t2 + δ]).
Then y ∈ σ(F1) ∩ σ(F2). It will be shown later (cf. Section 5.2) that ∂M(t1) and
∂M(t2) are tangential to σ(F1) and σ(F2) respectively at y. By Assumption 2
about general position of (M,h), ∂M(t1) and ∂M(t2) intersect transversally at y.
Hence, σ(F1) and σ(F2) intersect transversally at y.

At most finitely many points y ∈ ∂TI have three points p1, p2 and p3 in ∂pTI
such that σ(pi) = y. By an argument similar to above, it can be shown that y lies
on the transversal intersection of three surface patches σ(Fi) for Fi corresponding
to appropriate subintervals Ii ⊂ I. �

Figure 7 shows an example in which a capsule is swept along a helical path
while rotating about y-axis. The trim curves are elementary.

4. Decomposable sweeps and θ

We now consider sweeps, which though not simple, can be divided into simple
sweeps by partitioning the sweep interval. We show that in such sweeps, the trim
curves can be obtained by transversal intersection of the contact set with itself,
a task which the existing kernels can handle easily. Given an interval I, we
call a partition P of I into consecutive intervals I1, I2, . . . , IkP to be of width δ if
max{length(I1), length(I2), . . . , length(IkP )} = δ.
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(a) Decomposable sweep (b) Non-decomposable sweep

Figure 9. Contact-sets of decomposable and non-decomposable sweeps.

Definition 31. We say that the sweep (M,h, I) is decomposable if there
exists δ > 0 such that for all partitions P of I of width δ, each sweep (M,h, Ii)
is simple for i = 1, · · · , kP . A sweep which is not decomposable is called non-
decomposable.

Figure 9 schematically illustrates the difference between decomposable and non-
decomposable sweeps. The example shown in Figure 7 is of a decomposable sweep
in which partitioning the sweep interval I into 2 equal halves will result in 2 simple
sweeps.

Proposition 32. The sweep (M,h, I) is decomposable iff t−sep > 0. Further,
if t−sep > 0 then all the p-trim curves are elementary.

Proof. Suppose first that t−sep > 0. Let P be a partition of I of width t−sep. We
show that (M,h, Ii) is simple for i = 1, 2, . . . , kP . Let Ei and CIi be the envelope
and the contact set for (M,h, Ii) respectively. By Proposition 8, (modulo end-caps),
Ei ⊂ CIi . It needs to be shown that CIi ⊂ Ei. Suppose not. Let y ∈ CIi(t) such
that y /∈ Ei for some t ∈ Ii. Then, y ∈ TIi , i.e., y ∈ Mo(t′) for some t′ ∈ Ii. By an
argument similar to that given in Lemma 27 it can be shown that there exists δt > 0
such that for all t′′ ∈ [t′ − δt, t′ + δt], y ∈ Mo(t′′). Let y = σ(p) for p = (u, v, t).
It follows that `(p) < ‖t − t′‖ ≤ length(Ii) ≤ t−sep, leading to a contradiction.
Hence, (M,h, I) is decomposable.

Suppose now that (M,h, I) is decomposable with width-parameter δ (cf. Def-
inition 31). Consider a point p0 = (u0, v0, t0) ∈ F and let σ(p0) = y0. Let
I1 = [t0 − δ, t0] and I2 = [t0, t0 + δ]. Further, let Ei and CIi be the envelope and
contact-set for the sweeps (M,h, Ii) respectively. Observe that y0 ∈ CIi for i = 1, 2.

Let y0R̃
i = {(y, x, t) ∈ CIi ×M × Ii|y = y0}. As (M,h, I) is decomposable with

width-parameter δ, both (M,h, I1) and (M,h, I2) are simple, and hence, CIi ⊂ Ei
for i = 1, 2. Therefore, y0 belongs to E1 and E2. By Lemma 12, y0R̃

1 and y0R̃
2 are

both singleton sets. Further, y0R̃
1 = y0R̃

2 = {(y0, x, t0)} for x = S(u0, v0) ∈ ∂M .
Hence, `(p0) > δ. Since for all p ∈ F , `(p) > δ, we conclude that t−sep ≥ δ > 0.

Suppose that t−sep > 0. Since `(p) ≥ t−sep for all p ∈ ∂pTI it follows that all
the p-trim curves are elementary. �

The above proposition provides a natural test for decomposability. Further,
coupled with Lemma 30, for a decomposable sweep, the problem of excising the
trim set can be reduced to transversal intersections. However, note that, the very
definition of t−sep is post-facto as it relies on the trim structures. Besides, it is
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the infimum value of the not necessarily continuous function ` and is difficult to
compute. Thus, the above test of decomposability is not effective.

One of the key contributions of this paper is a novel geometric ‘invariant’ func-
tion on the funnel which is computed in closed form and serves the following ob-
jectives.

(1) Quick/efficient and simple detection of decomposability of sweeps, which
occur most often in practice.

(2) Generation of trim curves for non-decomposable sweeps.
(3) Quantification and detection of singularities on the envelope.

For a point p = (u, v, t) ∈ F , let q = σ(p). Recall from Section 2.2 that,
Jσ(p) = [σuσvσt] is of rank 2. As det(Jσ(p)) = 0, {σu(p), σv(p), σt(p)} are linearly
dependent. Recall that σt(p) = V (p) is the velocity of the point S(u, v) at time t (cf.
Section 2.2). As S is regular, the set {σu(p), σv(p)} forms a basis for the tangent
space to ∂M(t). Therefore, we must have σt(p) = n(p).σu(p) + m(p).σv(p) where
n and m are well-defined (unique) on the funnel and are themselves continuous
functions on the funnel.

Definition 33. The function θ : F → R is defined as follows.

θ(p) = n(p) · fu(p) +m(p) · fv(p)− ft(p)(3)

where fu, fv and ft denote partial derivatives of the function f w.r.t. u, v and t
respectively at p, and n and m are as defined above.

Note that, unlike `, θ is easily and robustly computable continuous function on
the funnel. Now we are ready to state one of the main theorems of this paper.

Theorem 34. If for all p ∈ F , θ(p) > 0, then the sweep is decomposable. Fur-
ther, if there exists p ∈ F such that θ(p) < 0, then the sweep is non-decomposable.

The proof is given in Section 5.6 which highlights many other surprisingly
strong properties of the function θ.

Definition 35. The function θ partitions the funnel F into three sets, viz.
(i) F+ := {p ∈ F|θ(p) > 0}, (ii) F− := {p ∈ F|θ(p) < 0} and (iii) F0 := {p ∈
F|θ(p) = 0}. Further, we define CI

+ := σ(F+), CI
− := σ(F−) and CI

0 := σ(F0).

Figure 10 schematically illustrates the sets F+,F− and F0 on the funnel and
sets CI

−, CI
+ and CI

0 on the contact set.
Note that, for (M,h, I) in general position, either F− is a non-empty open

set or F = F+. Whence, the above theorem provides an efficient ‘open’ test for
decomposability, namely, a sweep (M,h, I) is decomposable iff the open set F−
is empty. By continuity of the function θ, the set F− is empty iff the set F0

is empty. Since F is a smooth manifold, every point of F is accessible via the
procedural parametrization discussed in Appendix C. Most kernels will have an
effective procedure for computing the set F0 provided ∇θ is non-zero on the curve
F0. This is demonstrated in Section 5.3. Thus, all components of F0 will be
discovered for the same reason that most kernels discover all the intersections of
two given solids.

5. Properties of the invariant θ

In this section we prove some key properties of θ, namely, its invariance under
the re-parametrization of the surface being swept and its relation with the notion
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x

yFunnel Contact-set

Figure 10. The shaded region on F and CI corresponds to F−
and CI

− respectively. A curve of contact is shown in red.

of inverse trajectory used in earlier works. Finally, we use these properties along
with Proposition 32, to prove Theorem 34.

5.1. Invariance of θ. We show that the function θ is invariant of the parametriza-
tion of ∂M and hence, intrinsic to the sweep.

Theorem 36. If S̄ is a re-parametrization of the surface S so that q :=
S̄(ū, v̄) = S(u, v), and if g(q, t) = 0, then θ(u, v, t) = θ̄(ū, v̄, t).

Proof. Suppose as before that the boundary ∂M is specified by the parametrized
surface S. Let φ : R2 → R2 be a re-parametrization map of S and S̄ := S ◦φ. Since
φ is a diffeomorphism, dφ is an isomorphism at every point in the entire domain of
φ. Let φ(ū, v̄) = (u(ū, v̄), v(ū, v̄)). For convenience of expression, we extend φ to
define it on the parameter space of the sweep map σ so that φ(ū, v̄, t) = (u, v, t).
Hence the re-parametrized sweep map (for S̄) is simply σ̄ = σ ◦ φ. Recall that

f(u, v, t) =
〈
N̂(u, v, t), V (u, v, t)

〉
, where N̂(u, v, t) is the unit outward normal to

∂M(t) at the point A(t) · S(u, v) + b(t). It is easy to check that N̂(u, v, t) can also
be expressed as A(t) · (G ◦S)(u, v), where G : ∂M → S2 is the intrinsic Gauss map,
S2 being the unit sphere and ◦ stands for the usual composition of functions. Thus,

f(u, v, t) =
〈
N̂(u, v, t), V (u, v, t)

〉
= 〈A(t) · (G ◦ S)(u, v), V (u, v, t)〉

Similarly, computing with the re-parametrization S̄, and using the fact that S̄ =
S ◦ φ, we have f̄ = f ◦ φ. Differentiating w.r.t. ū, v̄ and t we get ∇f̄ = dφT · ∇f
where dφ is the Jacobian of the map φ.

Observe that, from Eq. 3, for p̄ = (ū, v̄, t) and p = φ(p̄) = (u, v, t), θ(p) =
〈∇f(p), z〉 where z = (n,m,−1) spans the null-space of Jσ|p for p ∈ F . In order to
compute z̄ for the re-parametrized sweep we see that Jσ̄ = Jσ ◦ dφ and z̄ = dφ−1z.
Now using ∇f̄ = dφT · ∇f , we get that

θ̄(p̄) =
〈
∇f̄(p̄), z̄

〉
=
〈
dφT · ∇f(p), dφ−1 · z

〉
= 〈∇f(p), z〉 = θ(p)

This proves the theorem. �
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5.2. Geometric meaning of θ. For a smooth point w of W , let TW (w)
denote the tangent space to W at w.

We show that the function θ arises out of the relation between two 2-frames
on TCI

. Let p = (u, v, t) ∈ F be such that σ(p) is a smooth point of CI . We first
compute a natural 2-frame X (p) in TF (p). Note that, F being the zero level-set of
the function f , ∇f |p⊥TF (p). We set β := (−fv, fu, 0) and note that β⊥∇f . It is
easy to see that β is tangent to the p-curve-of-contact F(t). Let α := ∇f × β =
(−fuft,−fvft, f2

u + f2
v ). Here × is the cross-product in R3. Clearly, the set {α, β}

forms a basis of TF (p) if (fu, fv) 6= (0, 0). Since ∇f 6= 0, if (fu, fv) = (0, 0) then
ft 6= 0 and {α′, β′} := {(1, 0, 0), (0, ft, 0)} serves as a basis for TF (p). Figure 2
illustrates the basis {α, β} schematically.

The set {Jσ · α, Jσ · β} ⊆ TCI
(σ(p)) and can be expressed in terms of {σu, σv}

as follows [
Jσ · α Jσ · β

]
=
[
σu σv

] [−ft · fu + n · (f2
u + f2

v ) −fv
−ft · fv +m · (f2

u + f2
v ) fu

]
︸ ︷︷ ︸

D(p)

Note that,

det(D(p)) = (f2
u + f2

v )(n · fu +m · fv − ft)(4)

= (f2
u + f2

v )θ(p)(5)

Clearly, if (fu, fv) 6= (0, 0) then det(D(p)) is a positive scalar multiple of θ(p).
Again, if (fu, fv) = (0, 0), expressing {Jσ · α′, Jσ · β′} in terms of {σu, σv} we see
that det(D(p)) = θ(p) = −ft.

The above relation between {σu, σv} and {Jσ ·α, Jσ ·β} shows that if θ(p) 6= 0,
TCI

(y) and T∂M(t)(y) are identical (as subspaces of R3) for y = σ(p), i.e., ∂M(t)
makes tangential contact with CI at y.

5.3. Non-singularity of θ. We give a sweep example which will demonstrate
the non-singularity of the function θ. We show that on the set F0, ∇θ 6= 0̄. Consider
a sphere parametrized as S(u, v) = (cos v cosu, cos v sinu, sin v), v ∈ [−π2 ,

π
2 ], u ∈

[−π, π] swept along a curvilinear trajectory given by h(t) = (A(t), b(t)), A(t) =
I, b(t) = ( 1

2 cos 2t, 1
2 sin 2t, 0), t ∈ [0, 1]. The unit outward normal at S(u, v) at

time t is given by N̂(u, v, t) = (cos v cosu, cos v sinu, sin v) and velocity is given by
V (u, v, t) = (− sin 2t, cos 2t, 0). The envelope function is f(u, v, t) =〈
N̂(u, v, t), V (u, v, t)

〉
=cos v sin(u− 2t). The funnel F is given by (i) u = 2t− π,

v ∈ [−π2 ,
π
2 ] and (ii) u = 2t, v ∈ [−π2 ,

π
2 ]. Hence, u and v can serve as local

parameters of F . In component (ii) of the funnel, we see that θ > 0, hence we will
only consider component (i). On F , σt = n ·σu+m ·σv where n = −1

cos v and m = 0,

whence, θ(u, v, t) = n ·fu+m ·fv−ft = 2 cos v−1. The set F0 is given by v = ±π3 ,

u = 2t− π. On F0, ∂θ
∂u = 0 and ∂θ

∂v = 2 sin v 6= 0.

An important consequence of non-singularity of θ is that its zero set, i.e., F0

can be computed robustly and easily.

5.4. Singularities and their detection on the envelope. Now we charac-
terize the cusp-singular points of CI . Geometrically, these are precisely the points
where CI intersects itself non-transversally. At such points, the dimension of TCI
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drops below 2. Identification of such points is important because any parametriza-
tion of CI will be degenerate in the neighborhood of such points. Toward this,
consider the following restriction of σ to the funnel: σ|F : F → R3. Note that
σ|F (F) = CI .

Definition 37. The set CI is said to have a cusp-singularity at a point
σ(p) = x ∈ CI if σ|F fails to be an immersion at p.

A basic result about immersion (see [5]) implies that if σ|F is an immersion at a
point p, then there is a neighborhood N of p such that σ|F is a local diffeomorphism
from N onto its image.

Lemma 38. Let p0 ∈ F and σ(p0) = x0. The point x0 is a cusp-singularity iff
θ(p0) = 0.

Proof. From subsection 5.2, θ(p0) is a positive multiple of the determinant relating
frames {σu, σv} and {Jσ · α, Jσ · β} at x0 . Since the set {σu, σv} is always linearly
independent, it follows that {Jσ · α, Jσ · β} is linearly dependent iff σ|F fails to be
an immersion at p0 iff θ(p0) = 0. �

In other words, the set CI
0 is the set of cusp-singular points in CI .

5.5. Relation with inverse trajectory. We now show the relation of the
function θ with inverse trajectory [4, 7] used by previous authors. Given a trajec-
tory h and a fixed point x in object-space, the inverse trajectory of x is the set of
points in the object-space which get mapped to x at some time instant by h, i.e.
{z ∈ R3|∃t ∈ [0, 1], A(t) · z + b(t) = x}.

Definition 39. Given a trajectory h, the inverse trajectory h̄ is defined as
the map h̄ : I → (SO(3),R3) given by h̄(t) = (At(t),−At(t) · b(t)). Thus, for a
fixed point x ∈ R3, the inverse trajectory of x is the map ȳ : I → R3 given by
ȳ(t) = At(t) · (x− b(t)).

The range of ȳ is {At(t) · x− At(t) · b(t)|t ∈ I}. We list some facts about ȳ in
Appendix B which will be used in proving Theorem 40.

For the inverse trajectory ȳ of a point x ∈ ∂M(t0), let π be the projection of ȳ
on ∂M(t0). Let λ(t) be the signed distance of ȳ(t) from ∂M(t0). If the point ȳ(t) is
in Mo(t0), Ext(M(t0)) (the exterior of M) or on the surface ∂M(t0), then λ(t) is
negative, positive or zero respectively. Then we have ȳ(t)−π(t) = λ(t)N(t), where
π(t) is the projection of ȳ(t) on ∂M(t0) along the unit outward pointing normal
N(t) to ∂M(t0) at π(t). This is illustrated in Figure 11. So, the following relation
holds for λ.

λ(t) = 〈ȳ(t)− π(t), N(t)〉(6)

Theorem 40. For p = (u0, v0, t0) ∈ F ,

θ(p) = λ̈(t0) =
〈
−σ̈ + 2Ȧ · V,N

〉
+ κv2

where ¨ denotes the second derivative of λ, κ is the normal curvature of S at
(u0, v0) along velocity V (p), N is the unit outward normal to S at (u0, v0) and
v2 = 〈V (p), V (p)〉.



LOCAL AND GLOBAL ANALYSIS OF PARAMETRIC SOLID SWEEPS 19

M

Figure 11. The inverse trajectory of x intersects Mo(t0).

Proof. Differentiating Eq. 6 with respect to time and denoting derivative w.r.t. t
by ,̇ we get

λ̇(t) = 〈 ˙̄y(t)− π̇(t), N(t)〉+
〈
ȳ(t)− π(t), Ṅ(t)

〉
(7)

λ̈(t) = 〈¨̄y(t)− π̈(t), N(t)〉+ 2
〈

˙̄y(t)− π̇(t), Ṅ(t)
〉

+
〈
ȳ(t)− π(t), N̈(t)

〉
(8)

At t = t0, ȳ(t0) = π(t0). Since ẏ(t0) = V (p)⊥N(p), it follows from Eq. 18 that
˙̄y(t0)⊥N(p). It is easy to verify that π̇(t0) = ˙̄y(t0). Hence,

λ(t0) = λ̇(t0) = 0(9)

From Eq. 8 and Eq. 20 it follows that

λ̈(t0) = 〈¨̄y(t0)− π̈(t0), N(t0)〉

=
〈
−ÿ(t0) + 2Ȧ(t0) · ẏ(t0)− π̈(t0), N(t0)

〉
(10)

Since π(t) ∈ S(t0) for all t in some neighbourhood U of t0, we have that 〈π̇(t), N(t)〉 =

0,∀t ∈ U . Hence 〈π̈(t), N(t)〉+
〈
π̇(t), Ṅ(t)

〉
= 0,∀t ∈ U . Hence −〈π̈(t0), N(t0)〉 =〈

π̇(t0), Ṅ(t0)
〉

= 〈π̇(t0),G∗(π̇(t0))〉 = 〈ẏ(t0),G∗(ẏ(t0))〉 = 〈V (p),G∗(V (p))〉 = κv2.

Here G∗ is the differential of the Gauss map, i.e. the curvature tensor of S(t0) at
point x. Using this in Eq. 10 and the fact that ẏ(t0) = σ̇(p), ÿ(t0) = σ̈(p) we get

λ̈(t0) =
〈
−σ̈(p) + 2Ȧ(t0) · V (p), N(t0)

〉
+ κv2(11)

Recalling definition of θ(p) from Eq. 3

lfu +mfv − ft =
〈
lN̂u +mN̂v, V

〉
+
〈
N̂ , lVu +mVv

〉
−
〈
N̂t, V

〉
−
〈
N̂ , Vt

〉
Here N̂u = G∗(σu) and N̂v = G∗(σv) where G∗ is the shape operator (differential of
the Gauss map) of S(t0) at (u0, v0). Also, Vu = At · Su and Vv = At · Sv. Assume

without loss of generality that A(t0) = I and b(t0) = 0, hence N̂ = A(t0) ·N = N ,
σu = Su and σv = Sv. Using Eq. 16 and the fact that V = σt = lσu +mσv we get

lfu +mfv − ft = 〈G∗ · V, V 〉+ 2 〈At · V,N〉 − 〈Vt, N〉
= κv2 + 〈2At · V − Vt, N〉(12)

From Eqs. 11 and 12 and the fact that ∂σ
∂t2 = Vt we get θ(p) = lfu+mfv−ft = λ̈(t0).

�
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From Theorem 40 it is clear that the function θ is intimately connected with the
curvature of the solid and that of the trajectory. Further, unlike in the approaches
in [4] and [7] in which every sampled point of CI must be subjected to the inverse
trajectory test in order to perform trimming, we show in the following section that
ultimately only a few points of F0 are used for computing the trim curves. Hence,
the trim set TI , including the region F−, need not be explored at all.

We now give the proof of Theorem 34 which gives an efficient test for decom-
posability using the function θ.

5.6. Proof of Theorem 34. Theorem 34 If for all p ∈ F , θ(p) > 0, then
the sweep is decomposable. Further, if there exists p ∈ F such that θ(p) < 0, then
the sweep is non-decomposable.
Proof. Suppose that for all p ∈ F , θ(p) > 0. For p ∈ F , let t(p) denote the t-
coordinate of p. Consider the set of points P = {p ∈ F|∃p′ ∈ F , p′ 6= p, σ(p) = σ(p′)
and σ−1(σ(p)) = {p, p′}

}
. Note that, by the general position assumption, there are

only finitely many points p ∈ F such that σ−1(σ(p)) is of cardinality greater than
two. Hence such points may be ignored in the following discussion. By the general
position assumption, P is a collection of smooth curves in F . For p ∈ P , let p′

denote the unique point in P such that p 6= p′ and σ(p) = σ(p′). Further, we define
δ(p) = ‖t(p)− t(p′)‖. Let δ := inf

p∈P
δ(p). Consider two cases as follows:

Case (i): δ = 0, i.e., there exists a sequence (pn) in a curve C of P such that
lim
n→∞

δ(pn) = 0. Hence there exists p0 ∈ C̄ (closure of C) which is a limit point

of (pn). Since lim
n→∞

δ(pn) = lim
n→∞

‖t(pn) − t(p′n)‖ = 0 and ∂M is free from self-

intersections, we have that lim
n→∞

‖pn − p′n‖ = 0. Hence, for a small neighborhood

N of p0 in F , we may parametrize the smooth curve C̄ ∩ N by a map γ so that
γ(0) = p0 and, for s 6= 0, γ(s), γ(−s) ∈ C ∩ N and σ(γ(s)) = σ(γ(−s)). Let
Γ(s) := σ(γ(s)). Note that Γ(s) = Γ(−s). Now,

dΓ

ds
|0 = lim

∆s→0

Γ(∆s)− Γ(0)

∆s
= lim

∆s→0

Γ(0)− Γ(−∆s)

∆s

= lim
∆s→0

Γ(0)− Γ(∆s)

∆s
= − lim

∆s→0

Γ(∆s)− Γ(0)

∆s

Hence,

dΓ

ds
|0 = Jσ|γ(0).

dγ

ds
|0 = 0

Since dγ
ds |0 ∈ TF (p0), the map σ|F : F → CI fails to be an immersion at p0 and by

Lemma 38 we get that θ(p0) = 0, which is a contradiction to the hypothesis.
Case (ii): δ > 0. Let {I1, I2, . . . , Ik} be a partition of I of width δ

2 . Let
Fi and CIi denote the funnel and the contact set corresponding to subinterval Ii.
Then it is clear that for each i, σ : Fi → CIi is a diffeomorphism, i.e., for each
i, CIi(t) ∩ CIi(t′) = ∅ for all t, t′ ∈ Ii, t 6= t′. We show that the subproblems
(M,h, Ii) are simple for all i. Suppose not, i.e., for some i, there exists t ∈ Ii such
that CIi(t) ∩Mo(t′) 6= ∅ for some t′ ∈ Ii. Hence the trim set TIi is not empty. By
Lemma 30, for all but finitely many points in ∂TIi there are two points p1, p2 ∈ ∂pTIi
such that σ(p1) = σ(p2) = y. If p1 ∈ Fi(t1) and p2 ∈ Fi(t2) then it follows that
CIi(t1) ∩ CIi(t2) = y leading to contradiction. Hence, the subproblems (M,h, Ii)
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Figure 12. Example of a non-decomposable sweep: an elliptical
cylinder being swept along y-axis while undergoing rotation about
z-axis. The curve θ = 0 is shown in red and trim curve is shown in
blue. The portion of the swept edges where θ is negative is shown
in green.

are simple for all i. It follows that (M,h, I) is decomposable with width-parameter
δ
2 .

Hence we have proved that if for all p ∈ F , θ(p) > 0 then the sweep is decom-
posable.

Suppose now that there exists p = (u, v, t) ∈ F such that θ(p) < 0. Let
y = σ(p). Recall the definition of the function λ from Equation 6 and relation

θ(p) = λ̈(t) from Theorem 40. Clearly, if λ̈(t) < 0, then t is a local maxima of the
function λ and the inverse trajectory of y intersects Mo(t). So, there exists ε > 0
such that for all δ ∈ (0, ε), there exists wδ ∈Mo(t) such that A(t+δ)·wδ+b(t+δ) =
y. Hence, the interval [t, t + δ] ⊂ L(p). Thus `(p) = 0 and hence t−sep = 0. By
Proposition 32, the sweep is non-decomposable. �

6. Trimming non-decomposable sweeps using θ

In this section we look at singular p-trim curves, i.e., a curve C of ∂pTI where
inf
p∈C

`(p) = 0. We show that C−I ⊂ TI and that C0
I makes contact with ∂TI ,

thereby providing a seed for tracing ∂TI . Figure 18(b) schematically illustrates
singular p-trim curves. Figures 12, 13, 14, 15, 16 and 17 show six examples of non-
decomposable sweeps and the associated singular trim curves. In Figures 12, 13, 14
and 15 the 1-cage of the envelope, i.e., the swept edges are shown with the portion
where θ > 0 shown in black and the portion where θ < 0 shown in green. The curve
CI

0 is shown in red and the trim curve ∂TI is shown in blue.
In Figures 16(a) and 17(a), curves of contact at a few time instances are shown.

The portions of CI(t) where θ > 0 and θ < 0 on F(t) are shown in black and green
respectively. In Figures 16(b) and 17(b) the portion where θ is negative is excised,
the curve CI

0 is shown in red and the trim curve ∂TI is shown in blue. Note that
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Figure 13. Example of a non-decomposable sweep: a cone being
swept along a parabola. The curve θ = 0 is shown in red and trim
curve is shown in blue. The portion of the swept edges where θ is
negative is shown in green.

Figure 14. Example of a non-decomposable sweep: a cylinder
being swept along a cosine curve in xy-plane while undergoing
rotation about x-axis. The curve θ = 0 is shown in red and trim
curve is shown in blue. The portion of the swept edges where θ is
negative is shown in green.
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Figure 15. Example of a non-decomposable sweep: a blended
intersection of a sphere and an ellipsoid being swept along a circular
arc in xy-plane while undergoing rotation about z-axis. The curve
θ = 0 is shown in red and trim curve is shown in blue. The portion
of the swept edges where θ is negative is shown in green.

CI
0 and ∂TI make contact, as we explain in this section. Figure 19 schematically

illustrates the interaction between curves of contact in non-decomposable sweeps.

Proposition 41. If C is a singular p-trim curve and p0 ∈ C is a limit-point
of (pn) ⊂ C such that lim

n→∞
`(pn) = 0, then θ(p0) = 0.

Proof. For p ∈ F , let t(p) denote the t-coordinate of p. By Lemma 27 it follows that
for each pn ∈ (pn) there exists p′n ∈ C such that σ(pn) = σ(p′n). Since lim

n→∞
‖t(pn)−

t(p′n)‖ = 0 and ∂M is free from self-intersections, we have that lim
n→∞

‖pn−p′n‖ = 0.

Hence, for a small neighborhood N of p0 in F , we may parametrize C∩N by a map
γ so that γ(0) = p0 and, for s 6= 0, γ(s), γ(−s) ∈ N ∩ C and σ(γ(−s)) = σ(γ(s)).
Let Γ(s) := σ(γ(s)). Then,

dΓ

ds
|0 = lim

∆s→0

Γ(∆s)− Γ(0)

∆s
= lim

∆s→0

Γ(0)− Γ(−∆s)

∆s

= lim
∆s→0

Γ(0)− Γ(∆s)

∆s
= − lim

∆s→0

Γ(∆s)− Γ(0)

∆s

Hence,

dΓ

ds
|0 = Jσ|γ(0).

dγ

ds
|0 = 0

Since dγ
ds |0 ∈ TF (p0), the map σ|F : F → CI fails to be an immersion at p0 and by

Lemma 38 we conclude that θ(p0) = 0. �.

Definition 42. A limit point p of a singular p-trim curve C such that θ(p) = 0
will be called a singular trim point.

In Figure 18(b) a singular trim point p0 is shown on ∂pTI .
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=
trim curve

(b)

Figure 16. Example of a non-decomposable sweep: a sphere be-
ing swept along a parabola (a) Curves of contact at a few time
instances (b) The curve θ = 0 is shown in red and trim curve is
shown in blue.

Figure 17. Example of a non-decomposable sweep: an ellipsoid
being swept along a circular arc (a) Curves of contact at a few time
instances (b) The curve θ = 0 is shown in red and trim curve is
shown in blue.
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Figure 18. The p-trim curves for decomposable and non-
decomposable sweeps shown on F . Here, σ(p1) = σ(p′1). The
point p0 is a singular trim point.

Figure 19. A schematic illustrating the interaction between
curves of contact in non-decomposable sweeps.

Proposition 43. If p0 ∈ F such that θ(p0) < 0 then p0 ∈ pTI .

Proof. Let p0 = (u0, v0, t0) ∈ F . Recall the definition of the function λ from

Equation 6 and relation θ(p0) = λ̈(t0) from Theorem 40. Clearly, if λ̈(t0) < 0, then
t0 is a local maxima of the function λ and the inverse trajectory of σ(p0) intersects
Mo(t0) and σ(p0) ∈ TI . Hence, if θ(p0) < 0 then p0 ∈ pTI . �

Propositions 41 and 43 link the curves of F0 to the curves of ∂pTI . We see
that every curve of F0 lies inside a curve of ∂pTI and every curve C of ∂pTI has
a curve F0

C of F0 which makes contact with it. We have already seen that F0 is
a collection of curves on which ∇θ is non-zero. Thus, the computation of F0 in
modern kernels is straightforward. The task before us is now to locate the points
of F0 ∩ ∂pTI which is enabled by the following function.

Definition 44. Let Ω be a parametrization of a curve F0
i of F0. Let Ω(s0) =

p0 ∈ F0
i and z̄ := (n,m,−1) ∈ null(Jσ) at p0, i.e., nσu + mσv = σt. Define the

function % : F0 → R as follows.

%(s0) =

〈
z̄ × dΩ

ds
|s0 ,∇f |p0

〉
(13)

where × is the cross-product in R3.
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Here, % is a measure of the oriented angle between the tangent at p0 to F0
i and

the kernel (line) of the Jacobian Jσ restricted to the tangent space TF (p0).

Proposition 45. Every singular p-trim curve C makes contact with a curve
F0
i of F0 so that if p0 is a singular trim point of C then %(p0) = 0. Furthermore,

at such points, %′(p0) 6= 0 where %′ refers to the derivative of % along the curve F0
i .

Proof. We know from Proposition 43 that F− ⊂ pTI . Since F0 and ∂pTI form the
boundaries of F− and pTI respectively, F0 and a singular p-trim curve C of ∂pTI
meet tangentially at the singular trim point. Further, it was shown in the proof
of Proposition 41 that at a singular trim point p0, TC(p0) is the null-space of the
Jacobian Jσ|p0 . Since TC(p0) = TF0(p0), Jσ|p0(TF0(p0)) = 0. Since the function %
measures the oriented angle between null(Jσ) and TF0 , it follows that %(p0) = 0.

The derivative %′ 6= 0 at singular trim points for non-decomposable sweeps
shown in Figure 16 and Figure 17. �

The curves of F0 can be parametrized via the procedural approach. Further,
Proposition 45 confirms that for every singular p-trim curve, we may use the func-
tion % to locate a singular trim point p in F0 in a computationally robust manner.
Thus, via θ and % we may access every component of ∂pTI .

Proposition 46. In the generic situation, (i) the singular p-trim curve C has
a finite set of singular trim points. Each of these points lie on a curve of F0.
(ii) For all but finitely many non-singular points p ∈ C, the image σ(p) lies on
the transversal intersection of two surface patches σ(Fi) and the remaining non-
singular points lie on intersection of three surface patches σ(Fi) where Fi ⊂ F
corresponds to the subinterval Ii ⊂ I.

Proof. It follows from Proposition 41 that the singular trim points lie on F0. Since
at a non-singular trim point p ∈ C, `(p) > 0, the proof for (ii) is identical to the
proof for Lemma 30 about elementary trim curves. �

We now describe the tracing of a singular p-trim curve C once a point p0 in F0

has been located where % is zero. Since F0 and C meet tangentially at p0, starting
at p0 we take small steps in direction dΩ

ds |p0 and −dΩ
ds |p0 to obtain points p̃1 and

p̃′1 respectively which are fed to a Newton-Raphson solver which returns points p1

and p′1 such that p1, p
′
1 ∈ F , σ(p1) = σ(p′1) and t(p1) − t(p′1) = t(p̃1) − t(p̃′1). Let

q1 := σ(p1) = σ(p′1). Here, t(p) denotes the t-coordinate of p. The point q1 is on
the trim curve and the points p1 and p′1 are on the p-trim curve C. Since points
p1 and p′1 are non-singular, these can be fed as starting points to any of the known
surface-surface intersection algorithms to compute the trim curve.

Note that, for trimming, unlike in the inverse trajectory approach [3, 4], our
method does not rely on identifying all the points where θ is negative. Further,
the funnel being a smooth surface, every point of F is accessible via the proce-
dural parametrization (discussed in Appendix C). On this surface, the curve F0 is
computed. This guarantees that no portion of F− will be left out.

Figure 20 schematically illustrates a scenario in which a singular p-trim curve is
nested inside an elementary p-trim curve. Note that the sweep is non-decomposable
and this will be detected by the presence of points on F where θ ≤ 0. Further,
the region bounded by the singular p-trim curve needs to be excised before a
surface-surface intersection algorithm can trace the elementary trim curves since
no neighborhood of C0

I (where θ is zero) can be parametrized. Our analysis will
first successfully identify and excise the region bound by the singular p-trim curves.
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Figure 20. A singular p-trim curve nested inside an elementary
p-trim curve

After parametrizing the remaining part, the task of excising the regions bound by
elementary p-trim curves can be handled by existing kernels.

7. Discussion

This paper develops a mathematical framework for the implementation of the
“generic” solid sweep in modern solid modelling kernels. This is done via a complete
understanding of singularities and of self-intersections within the envelope and the
notion of decomposability. This in turn is done through the important invariant θ
by which all trim-curves are either stable surface-surface intersections or are caught
by θ.

We now detail certain implementation issues. Firstly, the use of funnel as the
parametrization space and the so called “procedural” framework is now standard,
see e.g., the ACIS kernel. Secondly, the non-generic case in the sweep, as in blends
or surface-surface intersections, will need careful programming and convergence
with existing kernel methods for handling degeneracy. Next, while we have not
tackled the case when the trim curves intersect the left/right caps, that analysis
is not difficult and we skip it for want of space. Finally, the non-smooth sweep
is a step away. The local geometry is already available. The trim curves and
other combinatorial/topological properties of the smooth and non-smooth case are
tackled in a later paper.

Mathematically, our framework may also extend to more complicated cases
where the curves of contact are not simple. This calls for a more Morse-theoretic
analysis which should yield rich structural insights. The invariant θ is surprisingly
strong and needs to be studied further.

Appendix A. Proof for Proposition 8

Recall the statement of Proposition 8 that for (y, x, t) ∈ R and I = [t0, t1],
either (i) t = t0 and g(x, t) ≤ 0, or (ii) t = t1 and g(x, t) ≥ 0 or (iii) g(x, t) = 0.
Proof. Let ê1, ê2, ê3 and ê4 be defined as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and
(0, 0, 0, 1) respectively. We define the following objects in R4 where the fourth
dimension is time. Let Z := {(A(t) · x + b(t), t)| where x ∈ M and t ∈ I} and
X := {(A(t) · x + b(t), t)| where x ∈ ∂M and t ∈ I}. Note that Z is a four di-
mensional topological manifold and X is a three dimensional submanifold of Z.
Further, a point (x, t) lies in Zo if t ∈ Io and x ∈ Mo(t). Further, if I = [t0, t1],
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∂Z = X ∪ (M(t0), t0)∪ (M(t1), t1) forms the boundary of Z. Define the projection
µ : R3 × I → R3 is defined as µ(x, t) = x and the projection τ : R3 × I → R is
defined as τ(x, t) = t. By Lemma 5, for a point w ∈ µ(Z), if µ−1(w) ∩ Zo 6= ∅
then w /∈ E . Hence a necessary condition for w to be in E is that the line µ−1(w)
should be tangent to ∂Z which is a three dimensional manifold which is smooth
everywhere except at (∂M(t0), t0) and at (∂M(t1), t1). For w ∈ Mo(t0), the out-
ward normal to ∂Z at (w, t0) is given by −ê4 and the outward normal to ∂Z at
(w, t1) ∈ (M0(t1), t1) is given by ê4. We now compute the outward normal to ∂Z
at (w, t) ∈ X. The manifold X is diffeomorphic to ∂M × I, i.e., the cross product
of ∂M which is a 2-dimensional manifold and I which is a 1-dimensional manifold,
with the diffeomorphism given by d : ∂M × I → X, d(x, t) = (A(t) · x + b(t), t).
Hence, if {y1, y2} spans T∂M (x) and {1} spans TR(t) then the tangent space of
∂M × I at (x, t) is spanned by {(y1, 0), (y2, 0), ê4} and TX(w, t) is spanned by
{(A(t) · y1, 0), (A(t) · y2, 0), (A′(t) · x+ b′(t), 1)}. Hence, the outward normal to ∂Z
at (w, t) is (A(t) ·N(x),−〈A(t) ·N(x), vx(t)〉). Consider now three cases as follows.

Case (i): t = t0. At any point (w, t0) ∈ (∂M(t0), t0) there is a cone of outward

normals given by α

[
A(t) ·N(x)

−〈A(t) ·N(x), vx(t)〉

]
− βê4 where α, β ∈ R and α, β ≥ 0. So

if the line µ−1(w) is tangent to ∂Z at (w, t0) then〈
ê4, α

[
A(t) ·N(x)

−〈A(t) ·N(x), vx(t)〉

]
− βê4

〉
= 0

for some α, β where α > 0 and β ≥ 0. Solving the above for 〈A(t) ·N(x), vx(t)〉 we

get 〈A(t) ·N(x), vx(t)〉 = −β
α ≤ 0. Hence g(x, t) ≤ 0.

Case (ii): t = t1. Proof is similar to case (i).
Case (iii): t ∈ Io. If the line µ−1(w) is tangent to X at (w, t), we have〈[

A(t) ·N(x)
−〈A(t) ·N(x), vx(t)〉

]
, ê4

〉
= 0

It follows that 〈A(t) ·N(x), vx(t)〉 = g(x, t) = 0. �

Appendix B. Some useful facts about the inverse trajectory

Recall the inverse trajectory of a fixed point x as ȳ(t) = At(t) · (x− b(t)). We
will denote the trajectory of x by y : [0, 1]→ R3, y(t) = A(t) ·x+b(t). We now note
a few useful facts about ȳ. We assume without loss of generality that A(t0) = I
and b(t0) = 0. Denoting the derivative with respect to t by ,̇ we have

˙̄y(t) = Ȧt(t) · (x− b(t))−At(t) · ḃ(t)(14)

Since A ∈ SO(3) we have,

At(t) ·A(t) = I, ∀t(15)

Differentiating Eq. 15 w.r.t. t we get

Ȧt(t0) + Ȧ(t0) = 0(16)

Ät(t0) + 2Ȧt(t0) · Ȧ(t0) + Ä(t0) = 0(17)

Using Eq. 14 and Eq. 16 we get

˙̄y(t0) = −Ȧ(t0) · x− ḃ(t0) = −ẏ(t0)(18)
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Differentiating Eq. 14 w.r.t. time we get

¨̄y(t) = Ät(t) · (x− b(t))− 2Ȧt(t) · ḃ(t)−At(t) · b̈(t)(19)

Using Equations 19, 16 and 17 we get

¨̄y(t0) = −ÿ(t0) + 2Ȧ(t0) · ẏ(t0)(20)

Appendix C. Procedural parametrization of the simple sweep

We now describe the parametrization of F assuming that the sweep (M,h, I)
is simple. We obtain a procedural parametrization of F which is an abstract way of
defining curves and surfaces. This approach relies on the fact that from the user’s
point of view, a parametric surface(curve) in R3 is a map from R2(R) to R3 and
hence is merely a set of programs which allow the user to query the key attributes
of the surface(curve), e.g. its domain and to evaluate the surface(curve) and its
derivatives at the given parameter value. This approach to defining geometry is
especially useful when closed form formulae are not available for the parametrization
map and one must resort to iterative numerical methods. We use the Newton-
Raphson(NR) method for this purpose. As an example, the parametrization of the
intersection curve of two surfaces is computed procedurally in [11]. This approach
has the advantage of being computationally efficient as well as accurate. For a
detailed discussion on the procedural framework, see [12].

The computational framework is as follows. Given S and h, an approximate
funnel is first computed, which we will refer to as the seed surface. Now, when
the user wishes to evaluate F or its derivative at some parameter value, a NR
method will be started with seed obtained from the seed surface. The NR method
will converge, upto the required tolerance, to the required point on F , or to its
derivative, as required. Here, the precision of the evaluation is only restricted by
the finite precision of the computer and hence is accurate. It has the advantage
that if a tighter degree of tolerance is required while evaluation of the surface or
its derivative, the seed surface does not need to be recomputed. Thus, for the
procedural definition of F we need the following:

(1) an NR formulation for computing points on F and its derivatives, which
we describe in Section C.1

(2) Seed surface for seeding the NR procedure, which we describe in Sec-
tion C.2

Recall that F =
⋃
t∈I
F(t). This suggests a natural parametrization of F in

which one of the surface parameters is time t. We will call the other parameter p
and denote the seed surface by F which is a map from the parameter space of F to
the parameter space of the sweep map σ, i.e. F(p, t) = (ū(p, t), v̄(p, t), t) and while
the point F(p, t) may not belong to F , it is close to F . We make the following
assumption about F .

Assumption 47. At every point on the iso-t curve of F , the normal plane to
the iso-t curve intersects the iso-t curve of F in exactly one point.

Note that this is not a very strong assumption and holds true in practice even
with rather sparse sampling of points for the seed surface. We now describe the
Newton-Raphson formulation for evaluating points on F and its derivatives at a
given parameter value.
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C.1. NR formulation for F . Recall that the points on F were characterized
by the tangency condition f(u, v, t) = 0. Introducing the parameters (p, t) of F ,
we rewrite this equation ∀(p0, t0):

f(u(p0, t0), v(p0, t0), t0) =
〈
N̂(u(p0, t0), v(p0, t0), t0),

V (u(p0, t0), v(p0, t0), t0)〉 = 0(21)

So, given (p0, t0), we have one equation in two unknowns, viz. u(p0, t0) and v(p0, t0).
F(p0, t0) is defined as the intersection of the plane normal to the iso-t(for t = t0)
curve of F at F(p0, t0) with the iso-t(for t = t0) curve of F which is nothing but
F(t0). Recall that F(t0) is given by (u(p, t0), v(p, t0), t0) where u, v, t0 obey Eq. 21.
Henceforth, we will suppress the notation that u, v, ū and v̄ are functions of p and t.
Also, all the evaluations will be understood to be done at parameter values (p0, t0).
The tangent to iso-t curve of F at (p0, t0) is given by

∂F
∂p

=

(
∂ū

∂p
,
∂v̄

∂p
, 0

)
(22)

Hence, F(p0, t0) is the solution of simultaneous system of equations 21 and 23〈
(u, v, t0)− (ū, v̄, t0),

∂F
∂p

〉
= 0(23)

Eq. 21 and Eq. 23 give us a system of two equations in two unknowns, u and v
and hence can be put into NR framework by computing their first order derivatives
w.r.t u and v. For any given parameter value (p0, t0), we seed the NR method with
the point (ū(p0, t0), v̄(p0, t0)) and solve Eq. 21 and Eq. 23 for (u(p0, t0), v(p0, t0))
and compute F(p0, t0).

Having computed F(p, t) we now compute first order derivatives of F assuming
that they exist. In order to compute ∂F

∂p , we differentiate Eq. 21 and Eq. 23 w.r.t.

p to obtain 〈
∂N̂

∂u

∂u

∂p
+
∂N̂

∂v

∂v

∂p
, V

〉
+

〈
N̂ ,

∂V

∂u

∂u

∂p
+
∂V

∂v

∂v

∂p

〉
= 0(24) 〈(

∂u

∂p
,
∂v

∂p
, 0

)
−
(
∂ū

∂p
,
∂v̄

∂p
, 0

)
,
∂F
∂p

〉
+

〈
(u, v, t0)− (ū, v̄, t0),

∂2F
∂p2

〉
= 0(25)

Eq. 24 and Eq. 25 give a system of two equations in two unknowns, viz., ∂u
∂p and

∂v
∂p and can be put into NR framework by computing first order derivatives w.r.t.
∂u
∂p and ∂v

∂p . Note that Eq. 24 and Eq. 25 also involve u and v whose computation

we have already described. After computing ∂u
∂p and ∂v

∂p , ∂F
∂p can be computed as

(∂u∂p ,
∂v
∂p , 0). ∂F

∂t can similarly be computed by differentiating Eq. 21 and Eq. 23

w.r.t. t. Higher order derivatives can be computed in a similar manner.

C.2. Computation of seed surface. The seed surface is constructed by
sampling a few points on the funnel and fitting a tensor product B-spline surface
through these points. For this, we first sample a few time instants, say, I =
{t1, t2, . . . , tn} from the time interval of the sweep. For each ti ∈ I, we sample a
few points on the pcurve of contact F(ti). For this, we begin with one point p on



LOCAL AND GLOBAL ANALYSIS OF PARAMETRIC SOLID SWEEPS 31

F(ti) and compute the tangent to F(ti) at p, call it z. Then p+ z is used as a seed
in Newton-Raphson method to obtain the next point on F(ti) and this process is
repeated.

While we do not know of any structured way of choosing the number of sam-
pled points, in practice even a small number of points suffice to ensure that the
Assumption 47 is valid.
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